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Preface 

Fourier analysis and distribution theory are fundamental mathematical tools for 

describing and solving a wide array of technical and scientific problems. These 

include areas of physics, mechanical engineering, electrical engineering, and signal 

and control theory. This text is intended for future scientists seeking to understand 

the theoretical foundation of mathematical modeling, Fourier analysis methods, and 

their practical applications. It builds on the author’s earlier work, published by 

Vieweg in 1996, and incorporates insights from many years of lectures delivered 

to students of applied mathematics, physics, electrical engineering, and communi-

cations engineering at the Technische Hochschule Nürnberg Georg Simon Ohm, 

starting in their fourth semester. 

The book is tailored for undergraduate and early master’s students in mathe-

matics, physics, and engineering. A basic understanding of differential and integral 

calculus is a prerequisite. The text is divided into chapters covering the mathematical 

foundations of Fourier series, distributions, and Fourier transforms, each comple-

mented by examples of practical applications. The fundamentals of distribution 

theory, widely used in engineering disciplines, enable and simplify numerous 

calculations for physical and technical problems. 

The book is structured such that theoretical and application-oriented chapters 

each account for half of the content. The theoretical chapters introduce Fourier series 

and integrals, distributions, and the z-Transform. 

The application chapters are designed to be read independently, depending on the 

reader’s interest. These chapters provide an introduction to the fundamental types of 

linear partial differential equations and essential principles of linear systems theory. 

Topics include methods for linear filter design and sampling, offering an accessible 

introduction to modern signal processing. The unified representation of analog and 

discrete linear systems within the framework of distributions is also explored. 

The sections on discrete Fourier and wavelet transforms, along with their appli-

cations in signal processing, and the introductory discussion on the finite element 

method, provide a glimpse into the numerical aspects of practical applications. 

Specific examples utilize physical SI units to ground the concepts in real-world 

scenarios.
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vi Preface

Through this book, I aim to offer mathematics and physics students a clear intro-

duction to widely used techniques in technology and engineering. Simultaneously, 

I hope to provide technically oriented students with a comprehensible mathematical 

presentation that supports their work. To facilitate learning, the text includes 175 

illustrations. I trust that the presentation will encourage readers to apply their newly 

acquired knowledge in practice and continue their learning journey with other 

available literature if necessary. The appendices include essential theorems from 

function theory and Lebesgue integration, which are used throughout the text. 

I would like to express my gratitude to my colleagues Herbert Leinfelder, 

Rudolf Rupp, and Jörg Steinbach in Nürnberg, and Peter Wagner in Innsbruck, 

for their valuable discussions during the preparation of this book. Special thanks 

go to Donna Chernyk and Kirithiga Nandini Gnanasekaran at Springer Nature for 

their professional assistance in publishing this text. I am also indebted to Charlott 

Caroline, Krefeld, and Friederike Laus, Niederzissen, for translating and typesetting 

several chapters from German into English, and to my students, whose motivated 

collaboration and constructive feedback in lectures and seminars contributed signif-

icantly to the development of this book. 

An important part of this book are the exercises, which I encourage serious 

readers to complete independently. Most exercises are designed to reinforce the 

content of the book and develop strong calculation techniques. Exercises marked 

with an asterisk are primarily intended for mathematicians and sometimes explore 

topics not discussed in detail within the text. For reference, solutions to all exercises 

are provided in Appendix C. 

Nürnberg, Germany Rolf Brigola 

January 2025 
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u Electric potential, V 

or gravitational potential, m 2 ./s 2 . 

I Electric current, Ampere, A 

R Resistance, Ohm, Ω ., V/A  

C Capacitance, Farad, F, As/V 

L Inductance, Henry, H, Vs/A 

q Electric charge, Coulomb, C, As 

 . Electric charge density per m 3 ., C/m  3 . 

per m 2 . or m, C/m 2 . or C/m 

or mass density, analogous with kg instead of C 

ε0 . Permittivity, F/m, As/(Vm) 

k Thermal diffusivity, m 2 ./s 

h̄. The reduced Planck constant h/(2π)., Js



Chapter 1 

Introduction 

Abstract As an introduction, the initial value problem for a vibrating string is 

treated as an application of Fourier expansions to a differential equation. The 

solutions are first prototypes of signals that will be studied in later chapters. 

Theoretical questions are discussed for approximate solutions by trigonometric 

polynomials and series solutions, which are subsequently answered. 

1.1 Preliminary Remarks on History 

Historically, trigonometric series such as 

. 
a0

2
+

∞
7

n=1

  

an cos(nωt) + bn sin(nωt)
  

were initially used to describe periodical events in astronomy and to work on motion 

equations for vibrating strings. These types of series were later—under suitable 

conditions for the series coefficients—named Fourier series. As early as 1753, D. 

Bernoulli (1700–1782) was convinced that “almost every” vibrational shape of a 

string could be expressed as a superposition of a fundamental vibration with an 

angular frequency ω. and harmonics with angular frequency multiples nω ., n =
2, 3, 4, . . .. In 1807, French mathematician Jean-Baptiste Joseph Fourier (1768– 

1830) used such trigonometric series to express solutions for the heat equation 

(Fourier (2009)). For a thin bar of length l with a thermal diffusivity k, where the 

bar ends are kept at temperature zero, the temperature u(x, t). in x ∈ [0, l]. at time 

t  0. is the solution of the following homogeneous partial differential equation: 

. 

∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t) (no external energy input),

u(x, 0) = f (x) (initial temperature distribution f ),

u(0, t) = u(l, t) = 0 (the bar ends are chilled with ice).
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The Fourier series solution was expressed as 

. u(x, t) =
∞
7

n=1

bn e
−k(nπ/l)2t sin

 nπ

l
x
 

,

bn =
2

l

l
ˆ

0

f (y) sin
 nπ

l
y
 

dy.

Since Fourier argued in part intuitively, his theory of heat conduction was met with 

concerns and reservations that were only addressed after decades of ultimately 

very fruitful discussions. The exact clarification of fundamental mathematical 

concepts for Fourier’s arguments essentially goes back to the work of mathemati-

cian P. L. Dirichlet (1805–1859). After almost a century, it became clear that 

Fourier’s work provided important impact for many mathematical subdisciplines. 

Questions derived from Fourier analysis, i.e., the representation of functions through 

trigonometric functions, led Dirichlet to the modern concept of functions, stood 

at the origin of G. Cantor’s (1845–1918) set theory, and were starting points for 

B. Riemann (1826–1866) and H. Lebesgue’s (1875–1941) measure and integration 

theory. Fourier series theory, with its abstract terms and the resulting new methods 

for solving specific application problems, provides strong impulses to functional 

analysis and modern numerical mathematics still today. Even during their initial 

discussion period, Fourier’s ideas rapidly entered natural and engineering sciences 

and are considered among the most effective mathematical tools in these fields 

today. 

To explain Bernoulli and Fourier’s basic ideas, let us first look at the problem of a 

vibrating string. One way a string’s vibration can be understood is as an elementary 

example of an acoustic signal. From this, we can already develop essential terms for 

many Fourier analysis applications. 

1.2 The Problem of the Force-Free Vibrating String 

Let us look at the force-free motion of a thin homogeneous string of length l, fixed  

in place at both ends. How will the string move if it is displaced from its at-rest 

state and then released? To deal with this question mathematically, we introduce 

a coordinate system and designate the transversal displacement of the string at 

position x at time t as the function u(x, t).. 

We are searching for a function u(x, t). on [0, l] × R
+
0 . that is twice continuously 

differentiable and which fulfills boundary value conditions (see Fig. 1.1) 

.u(0, t) = u(l, t) = 0 for t  0,
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Fig. 1.1 Initial displacement 

of a thin string 

as well as initial value conditions 

. 

u(x, 0) = f (x) for 0  x  l, f (0) = f (l) = 0,

lim
t→0+

∂u

∂t
(x, t) = g(x) for 0  x  l, g(0) = g(l) = 0.

In our example, “to let go off the string” means that g = 0. on [0, l].. 
To determine u(x, t). for times t > 0., physics tells us that during forceless 

motion, and with the previously mentioned boundary and initial conditions in place, 

for small transversal displacements the function u(x, t). approximately satisfies the 

one-dimensional wave equation: 

. 
∂2u

∂t2
= c2

∂2u

∂x2
(0 < x < l, t > 0).

In this equation, the constant c2 = P/e . is the quotient of the string’s tension P and 

mass density e .. P is the quotient of tension force F and the string’s cross-sectional 

area A. In this context, the constant c has the physical dimension of a velocity. 

If we additionally assume that u(x, t). is of the form 

. u(x, t) = v(x) · w(t) (separation of variables),

substitution in the wave equation is as follows: 

. vẅ = c2v''w.

For this, we use the notation ẇ =
dw

dt
., v' =

dv

dx
., ẅ =

d2w

dt2
., and v'' =

d2v

dx2
.. 

Division through c2vw . (under the condition c2vw /= 0.) results in 

. 
ẅ

c2w
=

v''

v
.

Because the left side is only a function of t and does not depend on x , the right side 

can also not depend on x, and it has to remain constant. If we name this constant λ., 

we end up with two ordinary linear differential equations: 

.v'' − λv = 0,

ẅ − λc2w = 0
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and initial and boundary conditions 

.v(0) = v(l) = 0, . (1.1) 

v(x)w(0) = f (x)  (0  x  l), . (1.2) 

v(x) lim 
t→0+ 

ẇ(t) = g(x) (0  x  l). (1.3) 

As a calculus reminder of ordinary linear differential equations, we will determine 

the solutions of v'' − λv = 0.: 

The v(x)=esx
.approach leads to the equation esx(s2−λ)=0.. Since esx /=0. is always 

true, we find solutions by determining the zeros of the characteristic polynomial 

P(s) = s2 − λ.. The zeros of the characteristic polynomial P(s) = s2 − λ. are 

. 

±
√

λ λ > 0,

0 if λ = 0,

±j
√

−λ λ < 0,

where j designates the imaginary unit with j2 = −1.. For readers accustomed to the 

expression i, i2 = −1., which is more common in mathematics than j , it should be 

noted that j2 = −1. is the notation widely used in electrical engineering and signal 

processing, because in these fields the letter i is firmly used to designate the electric 

current. Mathematician readers should easily be able to deal with this notational 

variant in the text. 

1. Case: λ > 0.: Let us assume that one of the solutions v(x)= c1 e
√

λx+c2 e
−

√
λx

. 

fulfills the boundary conditions. It follows that for the corresponding c1 . and c2 . 

. c1 e
√

λ·0 +c2 e
−

√
λ·0 = c1 + c2 = 0,

c1 e
√

λ·l +c2 e
−

√
λ·l = 0

is valid. Because the determinant det

 

1 1

e
√

λ·l e−
√

λ·l

 

/= 0., the result is c1 =

c2 = 0., i.e., only the zero solution is obtained. However, the zero solution does 

not fulfill the initial condition (1.2) for f /= 0. and therefore cannot be an option. 

2. Case: λ = 0.: c1 + c2x = 0. for x = 0. and x = l . also result in c1 = c2 = 0. 

here, i.e., this case constitutes another solution to the homogeneous differential 

equation v'' − λv = 0. that does not meet our initial condition for f /= 0.. 

3. Case: λ < 0.: It follows that the general solution of v'' −λv = 0. is given through 

. v(x) = c1 cos(
√

−λ · x) + c2 sin(
√

−λ · x).

To fulfill the boundary value conditions, c1, c2 .must be chosen so that 

.c1 cos(
√

−λ · 0) + c2 sin(
√

−λ · 0) = 0 = c1 cos(
√

−λ · l) + c2 sin(
√

−λ · l),
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meaning c1 = 0 and c2 sin(
√

−λ · l) = 0.. This is possible for any given c2 ∈ R. 

and
√

−λ · l = n · π ., n ∈ Z., therefore for λ. of the form λn = − (nπ/l)2 ., n ∈ Z.. 

To summarize, we can say that for every n ∈ N. the functions 

. vn(x) = cn sin
 nπ

l
x
 

, cn ∈ R arbitrary,

are solutions of v'' − λnv = 0. that fulfill the boundary value conditions (1.1). 

We subsequently determine the general solution of ẅ − λnc
2w = 0. for 

every value λn = − (nπ/l)2 . analogously resulting in the so-called nth string 

eigensolution 

. un(x, t) = sin
 nπ

l
x
  

an cos
 cnπ

l
t
 

+ bn sin
 cnπ

l
t
  

(n ∈ N.; factors cn . of vn . are included into an, bn .). 

The nth eigensolution has angular frequency ωn = cnπ/l .. By inserting initial 

conditions, we observe that an eigensolution un(x, t). is a solution for the problem, 

if the following is true: 

. f (x) = an sin
 nπ

l
x
 

und g(x) =
cnπ

l
bn sin

 nπ

l
x
 

.

In the mathematical model, trigonometric polynomials, i.e., linear combinations of 

the form 

. f (x) =
N
7

n=1

an sin
 nπ

l
x
 

und g(x) =
N
7

n=1

cnπ

l
bn sin

 nπ

l
x
 

,

are approximations for the exact initial conditions of a string’s vibration. The 

resulting linear combination of eigensolutions with coefficients an . and bn . of the 

initial conditions 

. u(x, t) =
N
7

n=1

sin
 nπ

l
x
  

an cos
 cnπ

l
t
 

+ bn sin
 cnπ

l
t
  

is then an approximate solution for the exact string displacement. To end up with 

good approximations for different physical conditions, we want to deal with initial 

conditions f and g that are as general as possible. The more trigonometric functions 

we use to represent f and g, the better approximations we can expect. We therefore 

set up f and g as infinite trigonometric series 

.f (x) =
∞
7

n=1

an sin
 nπ

l
x
 

and g(x) =
∞
7

n=1

cnπ

l
bn sin

 nπ

l
x
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and try to find a solution using the superposition of infinitely many eigensolutions 

in the form of 

. u(x, t) =
∞
7

n=1

sin
 nπ

l
x
  

an cos
 cnπ

l
t
 

+ bn sin
 cnπ

l
t
  

.

When the series converges to a sufficiently smooth function, it expresses a possible 

vibration satisfying the boundary value conditions u(0, t) = u(l, t) = 0.. The  

values an . and bn . are determined by the fact that the initial conditions should be 

fulfilled. Their physical unit is the same as of u(x, t).. Inserting the series into the 

initial conditions using term-by-term differentiation and interchanging the limiting 

operation t → 0+.with the series infinite summation operation result in 

. u(x, 0) =
∞
7

n=1

an sin
 nπ

l
x
 

= f (x),

lim
t→0+

∂u

∂t
(x, t) =

∞
7

n=1

cnπ

l
bn sin

 nπ

l
x
 

= g(x).

In order to definitively solve the problem, some inevitable questions arise at this 

point: 

Question 1: Which functions f and g on [0, l]. can be expressed as trigonometric 

series at all? 

Bernoulli and Fourier’s fundamental thought was that through suitable selection of 

the infinitely many coefficients an . and bn ., nearly every practically relevant function 

could be expressed as a superposition of harmonic oscillations. This would make 

the string problem solvable using the series method, for nearly “any” set of initial 

conditions. 

Question 2: If we can assume that the given functions f and g can be represented 

as such trigonometric series, how can we then calculate the required coefficients 

an . and bn .? 

We could only explicitly solve the vibration problem by determining these coeffi-

cients. We will answer Question 2 in the next two chapters. This will also require 

an answer to the following question: Is the calculated series representation for the 

wanted function u(x, t). actually a unique, twice differentiable solution to the initial 

value problem? The solution above was calculated assuming a very special solution 

form u(x, t) = v(x)w(t). with separate variables. We also once learned that we 

cannot differentiate function series simply term by term or interchange limiting 

operations without care but did just that in calculating our solutions. This problem 

therefore leads to the following question:
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Question 3: Dependent on initial conditions f and g—in what sense do trigono-

metric series converge to the expression of u(x, t). at all? Is the series actually 

twice differentiable? Is the solution found for the initial boundary value problem 

for the wave equation unique? 

These questions immediately show the concerns raised in the early nineteenth 

century against Fourier’s approach to a solution. A. L. Cauchy (1789–1857) only 

developed a convergence theory for infinite series during Fourier’s time around 

1821. 

Satisfying arguments regarding the solvability of linear partial differential equa-

tions only appeared around the middle of the twentieth century with the treatment 

of such problems within the theory of generalized functions, or as we also say, of 

distributions. 

To answer the questions raised in a step-by-step manner, we will begin the next 

sections with some fundamentals on trigonometric polynomials. In this regard, we 

find that frequently expressions using complex numbers are very useful. Recom-

mended preparatory readings for readers, which have so far only been accustomed 

to real analysis, are respective sections in E. Kreyszig (2011) or G. Strang  (2017). A 

collection of formulas such as that by L. Råde, B. Westergren (2004) can be equally 

helpful. We will particularly use complex exponential functions and their close link 

to trigonometric functions frequently.
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Six Important Protagonists in 250 Years History of Fourier Analysis 

Daniel Bernoulli, Jean Baptiste Fourier, Peter G. Lejeune Dirichlet, Bernhard Riemann, David 

Hilbert, and Laurent Schwartz 

All pictures from Wikimedia Commons, in the public domain everywhere.



Chapter 2 

Trigonometric Polynomials and Fourier 
Coefficients 

Abstract Representations of trigonometric polynomials are given as a preparation 

for the following chapters, in terms of their Fourier coefficients and as a convolution 

with a Dirichlet kernel. The computation of the complex coefficients is shown, and 

the number of zeros of a trigonometric polynomial is calculated. The orthogonality 

relation is deduced for sine and cosine functions with period T, but different 

frequencies n/T and m/T. Furthermore, properties of the Dirichlet kernels are 

discussed, which provide an initial insight into periodic pulse sequences, which play 

an essential role in discrete signal processing. 

2.1 Representation of Trigonometric Polynomials 

A trigonometric polynomial with period T is a function f with values in R. or C. of 

the form 

. f (t) =
a0

2
+

N
 

n=1

(an cos(nω0t) + bn sin(nω0t)) ,

with N ∈ N., t ∈ R., ω0 = 2π/T .. The maximum of n with |an| + |bn|  = 0. is called 

the degree of the trigonometric polynomial f . 

For calculation purposes most often a complex representation of trigonometric 

polynomials is useful. With the complex unit j , j2 = −1. and the formulas for the 

real and imaginary parts of ejnω0t ., we have  

. cos(nω0t) =
1

2

 

ejnω0t + e−jnω0t
 

=  

 

ejnω0t
 

,

sin(nω0t) =
1

2j

 

ejnω0t − e−jnω0t
 

= −
j

2

 

ejnω0t − e−jnω0t
 

=  

 

ejnω0t
 

.
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With b0 = 0., it follows by insertion above 

. f (t) =
a0

2
+

N
 

n=1

 
1

2
ane

jnω0t +
1

2
ane

−jnω0t −
j

2
bne

jnω0t +
j

2
bne

−jnω0t

 

=

N
 

n=0

 
an − jbn

2

 

    

=cn

ejnω0t +

N
 

n=1

 
an + jbn

2

 

    

=c−n

e−jnω0t

=

N
 

n=0

cne
jnω0t +

−1
 

n=−N

cne
jnω0t =

N
 

n=−N

cne
jnω0t .

The constants cn ., or alternatively an . and bn ., are called the Fourier coefficients of f . 

For 

. f (t) =
a0

2
+

N
 

n=1

(an cos(nω0t) + bn sin(nω0t)) =

N
 

n=−N

cne
jnω0t ,

we find the following conversion formulas between the Fourier coefficients: 

. 

cn =
an − jbn

2
, c−n =

an + jbn

2
,

b0 = 0, a0 = 2c0, an = cn + c−n, bn = j (cn − c−n).

2.2 Fourier Coefficients of Trigonometric Polynomials 

Computation of Fourier Coefficients 

The answer to the issue of computing Fourier coefficients results from the following 

so-called orthonormality relations for trigonometric functions: 

For all n, k ∈ Z., the complex conjugate function ejkω0t = e−jkω0t . of ejkω0t . 

(j2 = −1.) gives us 

.
1

T

T̂

0

ejnω0tejkω0tdt =

 

1 for n = k

0 for n  = k,
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because 

. 

T̂

0

ejnω0te−jkω0tdt =

T̂

0

1dt = T for k = n;

T̂

0

ej (n−k)ω0tdt =
1

j (n − k)ω0

 

ej (n−k)·2π
    

1

−1

 

= 0 for k  = n.

When f (t). has the form f (t) =
 N

k=−N cke
jkω0t ., one computes ck . by 

. ck =
1

T

T̂

0

f (t)e−jkω0tdt,

since 

. 
1

T

T̂

0

f (t)e−jkω0tdt =
1

T

N
 

n=−N

cn

T̂

0

ejnω0te−jkω0tdt

    

T for n = k

0 otherwise

= ck.

Furthermore, for the Fourier coefficients an ., bn ., n = 1, . . . , N ., we obtain 

.
a0

2
= c0 =

1

T

T̂

0

f (t)dt,

an = cn + c−n =
1

T

T̂

0

f (t)
  

e−jnω0t + ejnω0t
 

    

2 cos(nω0t)

dt =
2

T

T̂

0

f (t) cos(nω0t)dt,

bn = j (cn − c−n) =
j

T

T̂

0

f (t)
  

e−jnω0t − ejnω0t
 

    

−2j sin(nω0t)

dt =
2

T

T̂

0

f (t) sin(nω0t)dt .
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Equality of Trigonometric Polynomials 

For each pair of continuous T -periodic functions f : R → C. and g : R → C., we  

set 

.  f |g =  f (t)|g(t) =
1

T

T̂

0

f (t)g(t)dt.

This defines an inner product in the vector space V of continuous T -periodic 

functions. It has the same properties as the inner product for vectors in Rn
. order 

C
n
. and allows to transfer geometric terms like orthogonality of vectors to functions. 

For continuous T -periodic functions f , g, and h, we have  

.  f + g|h =  f |h +  g|h 

 f |g + h =  f |g +  f |h 

 αf |g = α f |g (α ∈ C)

 f |βg = β f |g (β ∈ C)

 f |g =  g|f  

 f |f   0

 f |f  = 0 ⇐⇒ f (t) = 0 for all t ∈ [0, T ].

Therefore, the orthonormality relations  ejnω0t |ejkω0t  =

 

1 for n = k

0 for n  = k
. show that 

the functions
 

ejnω0t
 

n∈Z
. build a linearly independent system in the vector space 

V . The subspace of all T -periodic trigonometric polynomials of maximum degree 

N has dimension 2N + 1. and is spanned by the functions ejnω0t ., − N  n  N ., 

ω0 = 2π/T .. They form an orthonormal basis of that subspace with respect to the 

inner product introduced above. With that notation, the kth Fourier coefficient ck . of 

a T -periodic trigonometric polynomial f is given by1 

.ck =  f (t)|ejkω0t  (ω0 = 2π/T ).

1 The notation f (t). will be used hereafter not only for the value of f at t but also for a function 

(and later a distribution) f , to show its parameter t . In spite of this ambivalent notation—in place 

of f or perhaps f (.).—the meaning will be readily apparent from the respective context. 
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Thus, the Fourier coefficients of a T -periodic trigonometric polynomial are just its 

coordinates with respect to that orthonormal basis. They are uniquely defined, in 

other words 

. f (t) =

N
 

k=−N

cke
jkω0t =

a0

2
+

N
 

n=1

(an cos(nω0t) + bn sin(nω0t)) = 0

for all t if and only if all ck = 0. and correspondingly all an = bn = 0.. 

Two T -periodic trigonometric polynomials are equal if and only if all their Fourier 

coefficients corresponding to the same basis functions are equal. 

Additionally, the formula for the Fourier coefficients shows that every T -periodic 

trigonometric polynomial f of maximum degree N has the following integral 

representation: 

. f (t) =
1

T

T̂

0

f (s)DN (t − s) ds mit DN (t − s) =

N
 

k=−N

ejkω0(t−s).

Real-Valued Trigonometric Polynomials and Complex 

Amplitudes 

For real-valued T -periodic trigonometric polynomials, we have f (t) = f (t)., and 

thus 

. f (t) =

N
 

k=−N

cke
jkω0t =

N
 

k=−N

c−ke
−jkω0t =

N
 

k=−N

cke
−jkω0t = f (t),

with ω0 = 2π/T .. Equating the coefficients shows 

. f is real-valued if and only if ck = c−k (−N  k  N).

Since ck = |ck|e
j arg(ck) . and arg(c−k) = − arg(ck). hold for k  = 0., we obtain 

.f (t) = c0 +

N
 

k=1

|ck|e
j (kω0t+arg(ck)) +

N
 

k=1

|c−k|e
−j (kω0t−arg(c−k))

= c0 +

N
 

k=1

|ck| · 2 
 

ej (kω0t+arg(ck))
 

.
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Therefore, in that case we get 

. f (t) = c0 + 2 ·

N
 

k=1

|ck| cos(kω0t + arg(ck)),

as a representation in polar form. 

The complex Fourier coefficients include the information on the amplitudes and 

phases of the oscillations that build up f in linear combination. These values 

ck . are called complex amplitudes. C.-valued trigonometric polynomials can be 

visualized as circular waves (see p. 17) or as curves in  C. (Nyquist plots), either 

through separate views of their real and imaginary parts or through visualization of 

amplitude and phase progressions versus (time) parameter t . 

Number of Zeros of Trigonometric Polynomials 

We can generate a T -periodic trigonometric polynomial of degree N > 0. 

. f (t) =

N
 

k=−N

cke
jkω0t

 

ω0 =
2π

T

 

with |cN | + |c−N |  = 0. by substitution of z = ejω0t . into the rational function 

. F(z) =

N
 

k=−N

ckz
k =

c−N + c−N+1z + . . . + cNz2N

zN
.

Since |z| = 1., the function f cannot have more than 2N zeros per period T . 

Specifically, it follows that two trigonometric polynomials P and Q of degree N 

are identical when they have the same values at 2N +1. points in [0, T [.. In that case, 

it is clear that P − Q. has a maximum degree N , but more than 2N zeros in [0, T [., 

i.e., P − Q. is identically zero (cf. Appendix, Fundamental Theorem of Algebra). 

2.3 Dirichlet Kernels 

Let us consider the trigonometric polynomial DN (t) =

N
 

k=−N

ejkt
.. This function 

is called Dirichlet kernel of degree N , and it plays an important role in answering 

question 1 from Sect. 1.2 regarding the possibility of representing periodic functions
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as trigonometric series. In polar form we have for t ∈ R. 

. DN (t) =

N
 

k=−N

ejkt = 1 + 2 cos(t) + 2 cos(2t) + . . . + 2 cos(Nt).

Observe that DN . is an even function. We can now substitute z = ej t
. and use the 

common geometric sum formula for z  = 1. 

. 

2N
 

k=0

zk =
z2N+1 − 1

z − 1
.

For t  = 2πn., n ∈ Z., we obtain 

. DN (t) =

N
 

k=−N

zk =
1 + z + . . . + z2N

zN
=

z2N+1 − 1

(z − 1)zN

=
zN+1 − z−N

z − 1
=

zN+1/2 − z−(N+1/2)

z1/2 − z−1/2

=
ej (N+1/2)t − e−j (N+1/2)t

ej t/2 − e−j t/2
=

sin

  

N +
1

2

 

t

 

sin

 
t

2

 .

We can therefore write the function DN . equivalently in the following form: 

. DN (t) =

N
 

k=−N

ejkt =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

2N + 1 for t = 2πn, n ∈ Z

sin

 

(N +
1

2
)t

 

sin(
t

2
)

for t  = 2πn, n ∈ Z.

Theorem 2.1 The following assertion holds true for the Dirichlet kernels DN (t).: 

. lim
N→∞

N
 

k=−N

ejkt = lim
N→∞

 

1 +

N
 

k=1

2 cos(kt)

 

=

 

+∞ for t = 2πn , n ∈ Z

otherwise indefinitely divergent.

There is no single point t ∈ R. for which we have a limit of the trigonometric series 

.

+∞
 

k=−∞

ejkt = 1 +

∞
 

k=1

2 cos(kt).
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If the series were convergent at a point t0 ., this would give us lim
k→∞

cos(kt0) = 0., 

and for k → ∞. it would lead to the following contradiction: 

. sin2(kt0) = 1 − cos2(kt0) −→ 1,

and also 

. sin2(kt0) =
1

2
(1 − cos(2kt0)) −→

1

2
.

However, if we interpret DN (t). as a signal, say the voltage change output of an 

electric transmission system, it appears intuitive that increasing N would result in 

DN (t). as a model for an impulse sequence. The impulses will appear at the “times” 

2πn., n ∈ Z., but the signal will never disappear between these impulses; it will 

increase its oscillations more and more (see Fig. 2.1). Signal processing in causal 

linear systems mathematically leads to integral transforms of a signal (convolution 

with the system’s impulse response, cf. p. 66 and p. 219 later on). For increasing 

N , the oscillations between the points 2πn. lead to annihilation in integrals over 

intervals [2πn+ε, 2π(n+1)−ε], 0 <ε< π ., because, with increasing frequencies, 

an increasing part of the area between the graph of DN . and the t-axis will alternate 

above and below the t-axis, thus adding to zero in the integral. We will work out 

and confirm this intuition more precisely in computations and a proof on p. 23, p.  

48, and p. 131 later on and in Sect. 9.1 as well. 

Fig. 2.1 Dirichlet kernels D3 . 

and D9 .
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2.4 Summary on Trigonometric Polynomials 

For trigonometric polynomials f of degree N > 0. with a minimum period T , the  

following relations hold: 

Basic angular frequency ω0 =
2π

T
.. 

Complex form f (t) =

N
 

k=−N

cke
jkω0t =

1

T

T̂

0

f (s)DN (t − s) ds . 

with DN (t − s) =

N
 

k=−N

ejkω0(t−s), j2 = −1.. 

Sine-Cosine form 
f (t) =

a0

2
+

N
 

k=1

(ak cos(kω0t) + bk sin(kω0t)).. 

Conversion formulas 
ck =

ak − jbk

2
, c−k =

ak + jbk

2
. 

with b0 = 0, k = 0, . . . , N;. 

a0

2
= c0, ak = ck + c−k, bk = j (ck − c−k).. 

Orthonormality relations
1

T

T̂

0

ejnω0tejkω0tdt =

 

0 for k  = n

1 for k = n.
. 

Computation of Fourier coefficients ck =
1

T

T̂

0

f (t)e−jkω0tdt . 

a0

2
=

1

T

T̂

0

f (t)dt, ak =
2

T

ˆ T

0

f (t) cos(kω0t)dt . 

bk =
2

T

T̂

0

f (t) sin(kω0t)dt .. 

For real-valued f hold ck = c−k, ak = 2 (ck), bk = −2 (ck),. 

and the polar representation f (t) = c0 + 2

N
 

k=1

|ck | cos(kω0t + arg(ck)).. 

Number of zeros per period maximally 2N zeros in [0,T [.
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Visualization of the trigonometric see Fig. 2.2 

polynomial P(t) = 0.3j sin(ω0t) +

j sin(2ω0t) − cos(3ω0t), ω0 = π/2., 

period T = 4., as a circular wave. 

Fig. 2.2 Circular wave



Chapter 3 

Fourier Series 

Abstract This chapter presents basic results on pointwise convergence of Fourier 

series. As a fundamental example, the Fourier series of the sawtooth function is 

studied. Properties of this series are deduced, such as pointwise convergence and 

uniform convergence in closed intervals, that do not contain a discontinuity point. 

The Gibbs phenomenon is worked out. The theorems of Dirichlet and Fejér are 

presented and discussed with examples. Their rigorous proofs are postponed until 

Chap. 7. Examples and exercises help the reader become familiar with the necessary 

calculations. 

3.1 The First Fourier Series 

By building the limit N → ∞., T -periodic trigonometric polynomials evolve into 

trigonometric series 

. fN (t) =

N
 

k=−N

ck ejkω0t −→
N→∞

+∞
 

k=−∞

ck ejkω0t (ω0 = 2π/T ) .

However, as we have seen in the example of the Dirichlet kernels
N 

k=−N

ejkt
., it may  

happen that no limit exists at any point. 

If a limit function f of a trigonometric series with T -periodic partial sums 

exists, then that function f is also T -periodic. First of all, to develop an appropriate 

intuition for the behavior of trigonometric series, we study “the first Fourier series,” 

mentioned for the first time by L. Euler as early as in 1744, i.e., we analyze the 

convergence of the series 

. 

∞
 

k=1

sin(kt)

k
=

+∞
 

k=−∞
k  =0

1

2kj
ejkt
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and work out a representation of its limit function by close inspection of the 

Dirichlet kernels. We start with a few preliminary remarks on functions with values 

in R. or in C.. 

Approximation Errors and Pointwise and Uniform Convergence 

In approximating a function f using a sequence of functions fN ., N ∈ N., the quality 

of the approximation (in other words the error fN − f . for increasing N ) plays a 

crucial role. For example, we can look at the error fN (t) − f (t). at single points 

t in an interval I in the domain of definition of the functions f and fN . or at the 

maximum error sup
t∈I

|fN (t) − f (t)|. in I . It may indeed happen that lim
N→∞

(fN (t) −

f (t)) = 0. holds for any single t ∈ I ., but the maximum error on I nevertheless does 

not decrease when N increases. Consider the example of the function sequence 

(fN )N∈N . and f , defined through 

. fN (t) = tN auf [0, 1] and f (t) =

 

0 for 0  t < 1

1 for t = 1.

For any t ∈ [0, 1]. we find lim
N→∞

fN (t) = f (t)., but the maximum error on the 

interval [0, 1]. is sup
0 t 1

|fN (t) − f (t)| = sup
0 t<1

tN = 1. for all N ∈ N.. On the  

other hand, for the function sequence (fN )N∈N . on the interval [0, 1/2]., we get 

lim
N→∞

fN (t) = f (t). for all t ∈ [0, 1/2].. The maximum error (1/2)N . on that 

interval becomes arbitrarily small for increasing N . For the precise description, 

we remember the definitions of pointwise and uniform convergence of function 

sequences: 

Definition A sequence of complex-valued functions fN : I → C. converges 

pointwise to a function f : I → C., if lim
N→∞

fN (t) = f (t). for every t ∈ I .. It  

converges to f uniformly on I ., if the maximum error sup
t∈I

|fN (t)−f (t)|. on I . goes 

to zero for N → ∞.. 

For readers whose acquaintance with these terms has yet to grow during further 

reading, the following important facts from first-year mathematical lectures are 

summarized again: 

1. A pointwise convergent sequence (fN )N∈N . can have a discontinuous limit f , 

even if all functions fN . are continuous. This fact is shown by the example 

above. But, when a sequence of continuous functions fN . converges uniformly 

to a function f , then f is also continuous.
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2. An important topic in the following studies is the uniform convergence of 

function series. Such a series
∞ 

k=1

fk . converges uniformly to a function f in an 

interval I , if for N → ∞. the sequence of its partial sums
N 

k=1

fk . converges 

to f uniformly on I . A uniformly convergent series of continuous functions fk . 

with limit f on I can be integrated term by term on any bounded subinterval 

[a, b] ⊂ I .: 

. 

b
ˆ

a

f (t) dt =

b
ˆ

a

∞
 

k=1

fk(t) dt =

∞
 

k=1

b
ˆ

a

fk(t) dt .

If the fk . are continuously differentiable and their series is pointwise convergent 

to f and if the series of derivatives f  
k . converges uniformly on I , then the limit 

function f is differentiable on I , and we have 

. f  (t) =
d

dt

 
∞
 

k=1

fk(t)

 

=

∞
 

k=1

f  
k(t) (t ∈ I ),

i.e., the series can be differentiated term by term. 

3. The Weierstrass M-Test is a test for determining whether a series
∞ 

k=1

fk . of 

functions fk . on an interval I converges uniformly: 

If there is a sequence of positive numbers (Mk)k∈N . so that sup
t∈I

|fk(t)|  Mk . for 

every k ∈ N. and if
∞ 

k=1

Mk < ∞., then the series
∞ 

k=1

fk . converges uniformly 

on I . 

As an example, the M-Test shows that the series
∞ 

k=1

cos(kt)

k2
. is uniformly 

convergent on R., since sup
t∈R

  
  
cos(kt)

k2

  
   

1

k2
= Mk . and

∞ 

k=1

1

k2
< ∞. (see also 

p. 35). 

An Initial Idea to Study the Series
∞ 

k=1

sin(kt)

k
. 

If you have ever felt daunted by the the “impulse function” δ(t). during a math or 

physics lecture, the following idea may be helpful: We have already seen that for 

large N the Dirichlet kernels in the interval [−π, π ]. behave like impulses. We can 

therefore recall a widely used introduction of the δ .-Impulse (see Fig. 3.1).
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Fig. 3.1 Functions f1 . and f6 . as elements of a δ .-sequence 

Fig. 3.2 The primitives σ1 ., σ6 . of f1 ., f6 . 

The impulse δ(t). is often introduced as a limit of the sequence of functions 

. fN (t) = σ  
N (t) =

N

π

1

(1 + N2t2)
.

The primitives σN (t) =
1

2
+

1

π
arctan(Nt). converge for N → ∞. to the unit step 

function (see Fig. 3.2) 

. σ(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0 for t < 0

1

2
for t = 0

1 for t > 0.

Looking at the convergence σN −→
N→∞

σ ., we find: 

1. σN (t) → σ(t). pointwise everywhere for N → ∞., i.e., for every t ∈ R.. 

2. It holds the mean value property 

. σ(t) =
1

2
(σ (t+) + σ(t−)) =

1

2

 

lim
h→0+

σ(t + h) + lim
h→0+

σ(t − h)

 

.

3. σ(t). is piecewise continuously differentiable.
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Therefore, we expect a similar behavior of the kernels DN (t).—namely pointwise 

convergence of their primitives. These integrals are closely related with the series 
∞
 

k=1

sin(kt)

k
. because the derivatives of the series’ partial sums yield—up to a 

factor and an additive constant—just the Dirichlet kernels. 

Study of the Series
∞ 

k=1

sin(kt)

k
. 

Inexperienced readers might find the following calculations intricate at first sight. 

I therefore want to clarify that I have only assumed first-year course knowledge of 

differential and integral calculus in putting this section together. The goal of the 

following calculations is for the reader to achieve a basic estimation technique and 

a confident handling of trigonometric functions. 

We build primitives of the Dirichlet kernels between two “impulse peaks” of DN . 

(compare the figure on p. 16), i.e., we integrate for t ∈ ]0, 2π [. from π . to t.. 

. 

t
ˆ

π

DN ( τ ) dτ =

t
ˆ

π

sin

 

(N +
1

2
)τ

 

sin(
τ

2
)

dτ =

t
ˆ

π

(1 + 2 cos(τ ) + . . . + 2 cos(Nτ)) dτ

= (t − π) + 2

 

sin(t) +
sin(2t)

2
+

sin(3t)

3
+ . . . +

sin(Nt)

N

 

= IN (t).

On the other hand, through integration by parts 

. 

t
ˆ

π

u(τ)v (τ ) dτ = u(τ)v(τ )

  
  
  

t

π
−

t
ˆ

π

v(τ)u (τ ) dτ ,

u(τ) =
1

sin(
τ

2
)
, v (τ ) = sin

 

(N +
1

2
)τ

 

, v(τ ) = −

cos

 

(N +
1

2
)τ

 

N +
1

2

,

we have 

.IN (t)= −

cos

 

(N+
1

2
)t

 

(N+
1

2
) sin(

t

2
)

+
1

N+
1

2

t
ˆ

π

cos

 

(N+
1

2
)τ

 

⎛

⎜
⎝

1

sin(
τ

2
)

⎞

⎟
⎠

 

dτ , thus
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IN (t)= −  

cos

 

(N+ 
1 

2 
)t

 

(N+ 
1 

2 
) sin( 

t 

2 
) 

+ 
1 

N+ 
1 

2 

max(π,t)
ˆ 

min(π,t) 

sgn(t−π) cos

 

(N+ 
1 

2 
)τ

 

× 

⎛ 

⎜
⎝ 

1 

sin( 
τ 

2 
) 

⎞ 

⎟
⎠

 

dτ .  

Here, sgn(t − π). denotes the sign of (t − π).. Now, it holds 1/sin(τ/2)  1. for 

0 < τ < 2π . and sgn(t −π)(1/ sin(τ/2))  0. for τ ∈ [min(π, t), max(π, t)].. This  

is immediately apparent in the monotonicity properties of the function 1/ sin(τ/2). 

in the interval [min(π, t), max(π, t)].. This function is strictly decreasing for t < π . 

while strictly increasing for t > π .. 

The cosine functions on the right-hand side are dominated by the constant K = 1. 

(| cos(x)|  1. everywhere). As a standard technique, application of the triangle 

inequality and increasing the terms at the right will yield the following estimation: 

. |IN (t)|  
1

(N +
1

2
) sin(

t

2
)

+
1

N +
1

2

max(π,t)
ˆ

min(π,t)

sgn(t − π)

⎛

⎜
⎝

1

sin(
τ

2
)

⎞

⎟
⎠

 

dτ

     

sin(t/2)−1−1

 
2

(N +
1

2
) sin(

t

2
)

.

Therefore, IN (t). disappears for increasing N → ∞.. For every fixed t . in ]0, 2π [., 

we have the result 

. (t − π) + 2

N
 

k=1

sin(kt)

k
−→

N→∞
0, i.e.,

∞
 

k=1

sin(kt)

k
=

 

(π − t)/2 for 0 < t < 2π

0 for t = 0.

Theorem 3.1 

1. The series

∞
 

k=1

sin(kt)

k
. represents the 2π .-periodic sawtooth function S(t). (see 

Fig. 3.3) 

.S(t) =

 

(π − t)/2 for 0 < t < 2π

0 for t = 0.
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Fig. 3.3 The sawtooth 

function 

2. The mean value property is fulfilled for all t ∈ R. 

. S(t) =
1

2
(S(t+) + S(t−)).

3. S(t). is piecewise continuously differentiable. 

4. The trigonometric series representation for the sawtooth function converges 

uniformly on every closed interval which does not contain a jump discontinuity of 

S(t).. However, even though all partial sums are indefinitely often differentiable, 

the limit function is not continuous. 

Namely, for h  t  2π − h., h > 0., we have sin(t/2)  sin(h/2) > 0., and thus 

. 

  
  
  
  
  
S(t) −

N
 

k=1

sin(kt)

k

  
  
  
  
  
=

1

2
|IN (t)|  

1

(N +
1

2
) sin(

t

2
)

 
1

(N +
1

2
) sin(

h

2
)

for all t ∈ [h, 2π − h].. The approximation of IN (t). to zero depends only on N , not 

on t ∈ [h, 2π − h].; in other words lim
N→∞

IN (t) = 0. with uniform convergence in 

every closed interval [h, 2π − h]., h > 0.. 

On the other hand, despite the uniform convergence of the partial sums SN (t). 

of S(t). in every interval [h, 2π − h]., h > 0., we will find wavelike overshoots of 

SN (t). over S(t). in a small neighborhood of the jump discontinuities. These ripples 

move closer to the discontinuity points but do not die out as more terms are added 

to the sums; the deviation from S(t). does not converge to zero. It turns out that the 

approximating partial sums SN (t). always overshoot S(t). with about 9%. of the jump 

height S(0+)−S(0−).. This property of the approximations SN (t). was discovered by 

J. W. Gibbs (1839–1903) and is therefore called the Gibbs phenomenon. 

In the following illustration in Fig. 3.4, Si(π). is the value of the sine integral 

. Si(t) =

t
ˆ

0

sin(τ )

τ
dτ

at the point t = π ..
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Fig. 3.4 Illustration of the Gibbs phenomenon 

The Gibbs Phenomenon for the Sawtooth Function 

To prove the Gibbs phenomenon we consider the first positive extreme points at tN . 

of the deviations SN (t)−S(t). between the sawtooth S(t). and its partial sums SN (t). 

for 0 < t < π .. Since 

. SN (t) − S(t) =
1

2
IN (t) =

t
ˆ

π

sin

 

(N +
1

2
)τ

 

2 sin
 τ

2

 dτ ,

one obtains by piecewise integration and comparison with p. 23 

. SN (t) − S(t) =

t
ˆ

0

sin

 

(N +
1

2
)τ

 

2 sin
 τ

2

 dτ −

π̂

0

sin

 

(N +
1

2
)τ

 

2 sin
 τ

2

 dτ

     

S(0+)=π/2

.

Namely, the right integral can be written as − lim
ε→0+

IN (ε)/2 = π/2.. 

The derivative S 
N (t) − S (t) =

sin

 

(N +
1

2
)t

 

2 sin

 
t

2

 . shows the first positive zero as 

tN =
π

N +
1

2

.. To estimate the deviation at tN . 

.SN (tN ) − S(tN ) =

tN
ˆ

0

sin

 

(N +
1

2
)τ

 

2 sin
 τ

2

 dτ −
π

2
,
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we use the following transformation: 

. 

sin

 

(N +
1

2
)τ

 

2 sin
 τ

2

 =

sin

 

(N +
1

2
)τ

 

τ
+

τ − 2 sin
 τ

2

 

2τ sin
 τ

2

 sin

 

(N +
1

2
)τ

 

.

Together with the substitution t = (N +
1

2
)τ . and tN =

π

N +
1

2

., we get 

. SN (tN ) −S(tN ) =

tN
ˆ

0

sin

 

(N +
1

2
)τ

 

τ
dτ −

π

2
+

+

tN
ˆ

0

τ − 2 sin
 τ

2

 

2τ sin
 τ

2

 sin

 

(N +
1

2
)τ

 

dτ

     

rN (tN )

=

π̂

0

sin(t)

t
dt −

π

2
+ rN (tN ).

By 2 sin
 τ

2

 

< τ . and sin
 

(N +
1

2
)τ
 

 0. for 0 < τ < tN ., it holds rN (tN )  0.. 

Now, using the known value of the sine integral (Exercise) 

. Si(π) =

π̂

0

sin(t)

t
dt = 1.8519 . . . ,

we accomplished 

. SN (tN ) − S(tN )  0.28 + rN (tN )  0,

i.e., SN (t). overshoots S(t). at tN .. 

Since the integrand of rN (tN ). has limit zero when τ → 0+. and lim
N→∞

tN = 0., 

it follows lim
N→∞

rN (tN ) = 0.. Active readers can readily check this, for example, 

by power series expansion of the integrand or by application of L’Hospital’s rule 

(Exercise). 

Result Eventually, for increasing N one obtains an overshoot of the partial sums 

SN (t). over the function S(t). of about 9%. of the jump height S(0+) − S(0−) = π ., 

even when the tN .move closer to the jump point at t = 0.: 

. lim
N→∞

(SN (tN ) − S(tN )) ≈ 0.28 ≈ 0.09π.
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That result on the bad convergence of the series near jump points goes back to the 

work of Wilbraham (1848) and Gibbs (1898). 

All so far considered properties for the particular sawtooth example are char-

acteristic for many relevant trigonometric series in practice. Questions on the 

representability of other T -periodic functions as superpositions of harmonic oscil-

lations are treated in the next section. 

3.2 Basic Theorems on Fourier Series 

The Fourier series of a function f : [0, T ] → C. is the series Sf (t) =
+∞ 

k=−∞

ck ejkω0t . with ω0 =
2π

T
., whose coefficients ck . are defined by ck =

1

T

T́

0

f (t) e−jkω0t dt .. 

An nth partial sum Sn . of Sf . is the sum Sn(t) =
+n 

k=−n

ck ejkω0t ., and we say that 

Sf . converges at t ∈ R. if lim
n→∞

Sn(t). exists. 

In the following sections we restrict ourselves for the most part to assertions on 

piecewise continuous or piecewise continuously differentiable T -periodic functions 

f . A function f is piecewise continuous when its real and imaginary parts are 

continuous except up to at most finitely many points in ]0, T [.. It is piecewise 

continuously differentiable when the same holds true for f  
. instead of f . Further 

on, we postulate that all one-sided limits in [0, T ]. of f exist in C. in the first case 

and of f  
. in the second case. The right- and left-sided limits of f at t are denoted 

by f (t+). and f (t−)., respectively. 

Under the assumed conditions the functions f and f  
.are bounded, and the values 

at discontinuity points do not matter for definite integrals as in Fourier coefficients. 

We set f (0) = f (T ). and think f as extended to a T -periodic function on R., 

which is also denoted by f . Such functions build a sufficiently large class for many 

applications, and the following theorems on their representation as Fourier series 

can be shown with the knowledge of common first-year lectures in mathematics. The 

statements in the theorems go back to the work of Dirichlet (1829), Fejér (1904), 

Wilbraham (1848), and Gibbs (1898). The first theorem is a variant of the more 

general assertion, proven by Dirichlet, that periodic functions of bounded variation 

are representable by their Fourier series. We denote this variant as follows: 

Theorem 3.2 (Theorem of Dirichlet) If f is piecewise continuously differentiable 

on [0, T ]., then its Fourier series Sf . converges at every point t to
1

2
[f (t+)+f (t−)].; 

hence it converges to f (t). at every point t of continuity. The Fourier series 

Sf . converges uniformly to f in every closed interval which does not contain a 

discontinuity point of f .
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Theorem 3.3 (Gibbs Phenomenon) At discontinuity points of piecewise continu-

ously differentiable periodic functions f , the Gibbs phenomenon occurs. All N th 

partial sums of the Fourier series for the real or imaginary part of f overshoot the 

respective jump for large N with about 9%. of the jump height. 

Theorem 3.4 (Theorem of Fejér) 

1. If f is a continuous periodic function, then the arithmetic means 

. SN =
1

N + 1
(S0 + S1 + · · · + SN )

of the partial sums Sn ., n ∈ N0 ., of  Sf . converge uniformly to f for N → ∞.. 

2. If the Fourier series Sf . of a piecewise continuous function f converges at a 

point t0 . at all, then it converges there to
1

2
[f (t0+) + f (t0−)].. If, in addition, f is 

continuous at t0 ., then it holds Sf (t0) = f (t0).. 

Theorem 3.5 (Vanishing of the Gibbs phenomenon for Fejér Means) When 

one uses Fejér means
1

N + 1
(S0 + S1 + · · · + SN ). of the partial sums of Sf . to 

approximate a piecewise continuously differentiable periodic function f , then the 

Gibbs phenomenon vanishes. 

First Explanations of the Theorems 

Pointwise Convergence in the Theorem of Dirichlet 

An impression about convergence of Fourier series at a single point t is obtained 

from the already observed behavior of the Dirichlet kernels, here with period 2π/ω0 .: 

. 

N
 

k=−N

⎛

⎝
1

T

T̂

0

f (s) e−jkω0s ds

⎞

⎠ ejkω0t =
1

T

T̂

0

f (s)

N
 

k=−N

ejkω0(t−s)

     

DN (t−s)

ds = I (N, t).

With increasing N , the kernels DN (t − s). concentrate more and more around t (see 

the figure below), while away from t their oscillations grow with N → ∞.. On the  

other hand,
1

T

T́

0

DN (t − s) ds = 1. for all N . The oscillating parts of DN (t − s). 

do not much contribute to that integral. Thus, the value of the integral I (N, t). is 

approximately the mean value of f in a small neighborhood U(N, t). of t . U(N, t). 

shrinks with the kernels DN (t − s). for N → ∞. to the point t , and the mean of
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Fig. 3.5 The integral of the 

product is largely canceled 

where DN . highly oscillates 

Fig. 3.6 Averaging partial 

sums of the Fourier expansion 

for the sawtooth 

f on U(N, t). converges to
1

2
[f (t+) + f (t−)]. (see Fig. 3.5). We will convert that 

impression into a mathematically precise proof later in Sect. 7.1. 

On Fejér’s Theorem 

P. Du Bois-Reymond (1831–1889) has shown that there are periodic continuous 

functions, whose Fourier series diverge on dense subsets of their domains of 

definition. Therefore, of special importance is the result of L. Fejér (1880–1959) 

that for Fourier series of continuous periodic functions f the arithmetic means of 

the partial sums converge uniformly to f . 

When we write the arithmetic mean of Sn(t) =
n 

k=−n

ck ejkω0t ., n = 0, . . . , N ., in  

the form 

. 
1

N + 1
(S0(t) + S1(t) + · · · + SN (t)) =

N
 

k=−N

 

1 −
|k|

N + 1

 

ck ejkω0t ,

we observe an attenuation of the higher frequency parts in that mean. Thus, we 

have a smoothing effect in the approximation of a function f by averaging its 

Fourier expansion’s partial sums. For a more detailed study of Fejér’s theorem, we 

refer to the subsequent Chap. 7. The effect of the averaging is shown in Fig. 3.6 

for the partial sum S4(t). of the sawtooth Fourier expansion and the corresponding 

arithmetic mean of its partial sums up to the order N = 4.. S(t). shows the sawtooth 

graph.
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On the Gibbs Phenomenon 

To obtain the Gibbs phenomenon at discontinuity points, it suffices to examine a 

T -periodic piecewise continuous real-valued function f with a single jump dis-

continuity at t0 . in [0, T ]. and the mean value property f (t0) = [f (t0+) + f (t0−)]/2.. 

Using the sawtooth function S on page 24, we write f in the form f (t) = g(t)+r(t). 

with 

. g(t) = f (t) −
1

π
[f (t0+) − f (t0−)] S

 
2π

T
(t − t0)

 

,

r(t) =
1

π
[f (t0+) − f (t0−)] S

 
2π

T
(t − t0)

 

.

The function g is continuous at t0 . with g(t0) = [f (t0+) + f (t0−)]/2.. By the Gibbs 

phenomenon for the sawtooth, the function r shows the overshoot of the partial sums 

of its Fourier expansion, which amounts to about 9%. of the jump height f (t0+) −

f (t0−). in the neighborhood of t0 .. 

The vanishing of the Gibbs phenomenon in Fejér means for the approximation 

comes from the fact, that the overshoot close to jump discontinuities, i.e., close 

to steep flanks, is caused by high-frequency parts in the approximating sum (see 

later p. 51). The amplitudes of the harmonic parts with higher frequencies, however, 

are heavily damped in the Fejér means. As a consequence, the approximations are 

smoothed and overshoots eliminated. On the other hand, this is paid by the price of 

less steep flanks in the approximations. For this compare the figures on p. 35 and 

p. 35 and Sect. 7.2, p.  136. 

Fejér’s averaging method for smoothing and convergence improvement corre-

sponds to using the weight function (Fig. 3.7) 

. wN (x) =

 

1 − |x|/(N + 1) for |x|  N + 1

0 otherwise

at the discrete points |k| = 0, . . . , N . (Fig. 3.7). 

In engineering applications of Fourier analysis the technique of smoothing by 

weight functions is often called windowing. It plays an important role, for example, 

in signal analysis. The triangle window provides the amplitudes of the harmonic 

Fig. 3.7 The triangle 

window w3 . of Fejér’s 

averaging
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oscillations with angular frequencies kω0 ., |k|  N ., in a partial sum as above with 

the weights 1 − |k|/(N + 1).. In signal processing, for instance, one often wants to 

work with much smaller tolerance limits than a 9%. error by the Gibbs phenomenon 

at steep signal flanks. The theorem of Fejér shows a first mathematical method for 

improvement by windowing techniques without large additional effort. 

The theorems show that one can represent a great many functions by their Fourier 

series. In contrast to Taylor series, which represent in their domain of convergence 

always infinitely often differentiable, i.e., very smooth, functions, Fourier series 

allow the representation of quite “irregular” functions by superposition of oscil-

lations with increasing frequencies. Therefore, Fourier series offer much benefit in 

mathematics and its application fields. The whole thinking in spectral and frequency 

terms in many application areas goes back to the above theorems. For now we turn 

first to some application examples. That will provide us with sufficient motivation to 

study the theorems of Dirichlet and Fejér and their proofs in Chap. 7 in more detail. 

3.3 The Spectrum of Periodic Functions 

Significance of the Discrete Spectrum 

The sequence (ck)k∈Z . of Fourier coefficients of a periodic function f is called the 

discrete spectrum of f . For T -periodic, real “signals” f : R → R., the  magnitude 

spectrum (|ck|)k∈Z . is symmetric because we have ck = c−k . (Fig. 3.8). 

Since 

. an = cn + c−n, bn = j (cn − c−n),

we have 

. An =

 

a2
n + b2

n =
 

4cnc−n = 2|cn|

Fig. 3.8 Schematic diagram of a magnitude spectrum
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for n  = 0. and ω0 = 2π/T . as amplitude of the nth order harmonic of 

. f (t) = c0 +

∞
 

k=1

2|ck| cos(kω0t + arg(ck)).

The sequence (2|ck|)k∈N . is called amplitude spectrum; the sequence (arg(ck))k∈N . is 

the corresponding phase spectrum of f . c0 = a0/2. is the DC part in f , for example, 

the DC part in a periodic AC voltage f . The spectrum shows the amplitudes and 

phases of harmonics with specified angular frequencies kω0 ., k ∈ N., which build up 

as superposition a 2π/ω0 .-periodic signal f . For real-valued periodic functions f , 

the number D =

 
 
 
 

∞
 

k=2

|ck|2
 ∞

 

k=1

|ck|2 . is called distortion factor. It is a measure 

for the amount of upper harmonics in f and thus for the distortion compared with 

the pure fundamental oscillation. In Sect. 4.6 we will see how the distortion factor 

can be computed with the help of the normalized power of a periodic signal f . 

Further Examples of Fourier Series 

1. Explicit Computation of a Fourier Series Representation 

. f (t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

A

2
t = −

T

2

−
2A

T
t for −

T

2
< t  0

0 0 < t <
T

2

f (t + T ) = f (t), A > 0

(see the illustration in Fig. 3.9) ck ., ak ., bk .. 

We compute the Fourier coefficients ck ., ak ., bk .. From the graph we see that 

c0 =
a0

2
=

A

4
.. 

For k ∈ Z \ {0}. and ω0 =
2π

T
., we obtain 

Fig. 3.9 Sketch of the 

T -periodic function f
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. ck =
1

T

T̂

0

f (t) e−jkω0t dt =
1

T

T̂

T /2

−
2A

T
(t − T ) e−jkω0t dt .

With the substitution u = t − T . and f (t) = 0. on [0,
T

2
[., we have also  

. ck =
1

T

0
ˆ

−T/2

−
2A

T
u e−jkω0u du=−

2A

T 2

 
e−jkω0u

(−jkω0)2
(−jkω0u − 1)

     

g(u)

 u=0

u=−T/2

 

g (u) =
e−jkω0u

(−jkω0)2
(−jkω0) [−jkω0u − 1] +

e−jkω0u

(−jkω0)2
(−jkω0)=u e−jkω0u

 

.

Inserting the limits of integration yields 

. ck = −
2A

T 2
·

 

−
1

k2ω2
0

 
⎡

⎣e0(0 − 1) − e
jkω0

T

2

 

jkω0
T

2
− 1

 
⎤

⎦

=
A

2π2k2
·
 

− 1 − ejkπ
     

cos(kπ)
     

(−1)k

+j sin(kπ)
     

0

(jkπ − 1)
 

= −
A

2π2k2

 

1 + (−1)k(jkπ − 1)
 

.

With ck = c−k ., we obtain for k ∈ N. 

. ak = ck + c−k = 2  (ck) = −
A

π2k2

 

1 − (−1)k
 

=

⎧

⎨

⎩

0 for even k

−
2A

k2π2
for odd k,

bk = j (ck − c−k) = −2  (ck) = (−1)k
A

kπ
.

With the spectral values ck ., respectively, ak . and bk . the harmonic “building blocks” 

of f are known, and f can approximately be reconstructed as a trigonometric 

polynomial from the partial sums of its Fourier series. The function f possesses 

the Fourier series expansion
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Fig. 3.10 Approximation 

with a partial sum S7 . of the 

Fourier series expansion 

Fig. 3.11 Approximation 

with the Fejér mean S7 . 

. f (t) =
A

4
+

∞
 

k=1

 
A

k2π2

 

(−1)k − 1
 

cos(kω0t) +
A

kπ
(−1)k sin(kω0t)

 

=
A

4
     

DC part

−
2A

π2
cos(ω0t) −

A

π
sin(ω0t)

     

fundamental oscillation

+
A

2π
sin(2ω0t)

     

first harmonic

−
2A

9π2
cos(3ω0t) −

A

3π
sin(3ω0t)

     

second harmonic

+ . . .

All partial sums are infinitely often differentiable, but their limit function is not 

continuous. Figure 3.10 with seven spectral values ck . clearly shows the Gibbs 

phenomenon: 

For comparison we look in Fig. 3.11 at a smoothed approximation by the 

corresponding Fejér mean S7 . of the partial sums. The Gibbs phenomenon has 

disappeared. That improvement comes at the expense of a less steep slope in the 

jump neighborhood and thus a greater error at the edges of the graph. 

2. Fourier Series Expansion with the Use of an Already Known Series 

The series 

. f (t) =

∞
 

k=1

cos(kt)

k2
= cos(t) +

cos(2t)

4
+

cos(3t)

9
+ . . .

is uniformly convergent (compare p. 20). By
N 

k=1

1

k(k + 1)
=

N

N + 1
. we have the 

estimate
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. 

∞
 

k=1

| cos(kt)|

k2
 

∞
 

k=1

1

k2
< lim

N→∞

N
 

k=1

2

k(k + 1)
= lim

N→∞

2N

N + 1
= 2.

Term-by-term differentiation yields the sawtooth function 

. f  (t) = −

∞
 

k=1

sin(kt)

k
= −S(t).

The sawtooth S converges uniformly in [h, 2π − h]., h > 0.. Therefore f (t). is a 

primitive of −S(t). in ]0, 2π [.: 

. f (t) =
(t − π)2

4
+ c (t ∈]0, 2π [) .

To determine the constant c we observe the DC value c0 = 0. for f , i.e., 

. 

2π
ˆ

0

f (t) dt =

2π
ˆ

0

 
(t − π)2

4
+ c

 

dt =
π3

6
+ 2πc = 0, thus c = −

π2

12
.

As an application one obtains for t = 0. the limit of the series
∞ 

k=1

1

k2
=

π2

6
.. 

3.4 Exercises 

(A1) (a) Compute the Fourier coefficients ak . and bk . of the function given in 

Fig. 3.12. 

(b) Give the Fourier expansion in trigonometric form and in polar form up to 

the 5th harmonic. 

(c) What is the limit of the Fourier series at the point x = 0 ?. 

(A2) Consider the T -periodic function u(t). given by 

Fig. 3.12 Sketch of a 

periodic function, whose 

Fourier series shall be 

calculated
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. u(t) =

⎧

⎪
⎨

⎪
⎩

û sin(ω0t) for 0  t <
T

2

0 for
T

2
 t < T

 

ω0 =
2π

T

 

.

(a) Sketch a graph of u(t). for 0  t < 2T .. 

(b) Compute the complex Fourier coefficients ck . and the real Fourier coeffi-

cients ak . and bk .. 

(c) Write the Fourier series in complex and in trigonometric form, and gen-

erate graphically an approximation by a few trigonometric polynomials. 

(A3) A function f is given by 

. f (t) =

⎧

⎪
⎨

⎪
⎩

  
  
  sin

 ω

2
t
   
  
  for −

T

2
< t  0

0 for 0 < t  
T

2

f (t + T ) = f (t), t ∈ R, ω =
2π

T
.

(a) What are the Fourier coefficients ak ., bk ., ck . of f ?. 

(b) What is the necessary degree of a Fourier partial sum so that it deviates 

not more than 0.5 · 10−3
. from the series limit at the point t = T/2.? 

(A4) Calculate for the sawtooth function S(t) =
∞ 

k=1

sin(kt)

k
. and a given h > 0. a 

number N ∈ N. so that for a fixed maximal error ε > 0. the deviation 

. 

  
  
  
  
S(t) −

N
 

k=−N

 S(t)| ejkt  ejkt

  
  
  
  

in [h, π ]. does not exceed ε .. 

(A5) (a) Calculate for x, t ∈ R. the Fourier series expansion of f (t) = ejx sin(t) .. 

(b) What are the Fourier series of cos(x sin(t)). and sin(x sin(t)). 

(see Fig. 3.13)? 

Hint: Use the Bessel functions. 

Fig. 3.13 Illustration of a 

frequency modulated function
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(A6) Let a be real with |a| > 1.. Find the sums of the series 

. f (t) =

∞
 

k=0

cos(kt)

ak
and g(t) =

∞
 

k=1

sin(kt)

ak
.

Hint: Use F(z) =
∞ 

k=0

zk

ak
. for z ∈ C., |z| < |a|.. 

(A7) Calculate the Fourier series in ]0, π [. of the function f (t) = eat
. 

(a) As a cosine series 

(b) As a sine series  

Realize the difference between the two cases, and plot the graphs of the π .-

periodically extended functions.



Chapter 4 

Calculating with Fourier Series 

Abstract General properties of Fourier series for piecewise continuously differ-

entiable functions are worked out. This includes symmetry properties, amplitude 

modulation, derivatives and integrals of Fourier series, asymptotic decay of Fourier 

coefficients, spectrum, and the Parseval equation. An example of an everywhere 

convergent trigonometric series is given that cannot be the Fourier series of a 

classical function. Further examples and exercises on the contents complement the 

chapter. 

4.1 Symmetry Properties, Linearity, and Similarity 

In the following sections—if not otherwise stated—f and g are C.-valued piecewise 

continuously differentiable T -periodic functions with the mean value property. 

Therefore they can be represented by their Fourier series. The Fourier coefficients 

of f are denoted by ck . and those of g by dk ., and we set ω0 = 2π/T .. We often call 

the parameter t a time parameter and ω. a (angular) frequency parameter. We work 

out some important rules for the handling of trigonometric polynomials and Fourier 

series. 

Interval of Integration 

Since f (t) e−jkω0t . is T -periodic, one can integrate over an arbitrary interval of 

length T to get the Fourier coefficients: 

. ck =
1

T

T̂

0

f (t) e−jkω0t dt =
1

T

α+T
ˆ

α

f (t) e−jkω0t dt (α ∈ R).

Time Reversal 

Since we have
1

T

T́

0

f (−t) e−jkω0t dt =
1

T

0́

−T

f (t) ejkω0t dt = c−k ., we obtain 
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. f (−t) =
+∞ 

k=−∞
c−k e

jkω0t .

Complex Conjugate Functions 

By 

. 
1

T

T̂

0

f (t) e−jkω0t dt =
1

T

T̂

0

f (t) ejkω0t dt = c−k,

we obtain 

. f (t) =
+∞ 

k=−∞
c−k e

jkω0t .

Even Functions 

If f . is even, f (t) = f (−t). for t ∈ R., then by ck = c−k . and bk = j (ck − c−k) = 0. 

all sine terms disappear, and it holds 

. ak = ck + c−k =
4

T

T/2
ˆ

0

f (t) cos(kω0t) dt (k ∈ N0).

The Fourier series of an even function is a cosine series. 

Odd Functions 

If f . is an odd function, f (t) = −f (−t)., t ∈ R., then all terms ak = ck + c−k = 0. 

disappear. Then, the Fourier series of f is a sine series. Since f (t) sin(kω0t). is an 

even function, it holds 

. bk = j (ck − c−k) =
4

T

T/2
ˆ

0

f (t) sin(kω0t) dt , (k ∈ N).

Linearity 

αf (t) + βg(t) =
+∞ 

k=−∞
(αck + βdk) e

jkω0t , (α, β ∈ C).. 

Similarity 

For α > 0. the function F(t) = f (αt). has period 
T

α
.. It possesses the same Fourier 

coefficients as f (t).:
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Fig. 4.1 Graph of f (t) = | sin(t)|. 

. F(t) = f (αt) =
+∞ 

k=−∞
ck e

jkαω0t .

A change of frequency does not change the amplitudes of the harmonics, but it 

changes the assignment of the Fourier coefficients ck . to the angular frequencies 

kαω0 .. 

Namely, from τ = αt ., 0  τ  
T

α
., we get 

. 
α

T

T/α
ˆ

0

f (αt) e−jkαω0t dt =
1

T

T̂

0

f (τ) e−jkω0τ dτ = ck.

For known Fourier series of signals f (t)., this similarity property allows to 

immediately see the Fourier expansions of similar functions f (αt). without new 

computations. 

Examples 

1. f (t)  = | sin(t)|. (Fig. 4.1). 
For T = 2π ., we have  

All bk = 0., since f is even;
a0

2
=

1

π

π́

0

sin(t) dt = −
1

π
cos(t)

    
π

0

=
2

π
.. 

For odd k we have ak =
2

π

π́

0

sin(t) cos(kt) dt = 0., because substitution t =

x+π/2. leads with the addition theorem cos(k(x+π/2)) = − sin(kx) sin(kπ/2). 

to an integral of an odd function over the interval [−π/2, π/2].; hence 

.ak = −
2

π

π/2
ˆ

−π/2

cos(x) sin(kx) sin

 
kπ

2

 
dx = 0.
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For even k = 2n., n ∈ N., we use the addition theorem 

. sin

 
α + β

2

 
cos

 
α − β

2

 
=

sin(α) + sin(β)

2
.

With t =
α + β

2
., 2nt =

α − β

2
., it follows α = (1 + 2n)t ., β = (1 − 2n)t ., and 

therefore 

. a2n =
1

π

⎛
⎝

π̂

0

sin((1 + 2n)t) dt +
π̂

0

sin((1 − 2n)t) dt

⎞
⎠

= −
1

π

 
1

1 + 2n

 
cos((1 + 2n)π)    

−1

−1
 
+

1

1 − 2n

 
cos((1 − 2n)π)    

−1

−1
  

=
2

π

 
1

1 + 2n
+

1

1 − 2n

 
= −

4

(2n + 1)(2n − 1)π
.

We obtain the result 

. f (t) =
2

π
−

4

π

 
cos(2t)

3
+

cos(4t)

3 · 5
+

cos(6t)

5 · 7
+ . . .

 
= −

2

π

+∞ 

k=−∞

ej2kt

4k2 − 1
.

2. By the similarity theorem on p. 40 and the last example, the function f (t) =
| sin(2t)|. has the Fourier series expansion 

. f (t) = −
2

π

+∞ 

k=−∞

ej4kt

4k2 − 1
=

2

π
−
4

π

 
cos(4t)

3
+
cos(8t)

3 · 5
+

cos(12t)

5 · 7
+ . . .

 
.

Remark For a T -periodic f and α =
T

2π
., the function f (αt). is 2π .-periodic, 

and it holds 

. f (αt) =
+∞ 

k=−∞
ck e

jkt mit ck =
1

2π

2π
ˆ

0

f (αt) e−jkt dt .

Therefore in literature often only 2π .-periodic examples are treated. 

3. When f :]0, T [→ R. is given, then f can be extended to a 2T -periodic even or 

an odd function (see Fig. 4.2). 

A 2T -periodic extension then has—dependent on the chosen option— a pure 

cosine or a pure sine series representation.
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Fig. 4.2 Even and odd 2T -periodic extensions 

Cosine series for f (2T -periodic evenly extended) 

. f (t) =
a0

2
+

∞ 

k=1

ak cos

 
kπ

T
t

 
, ak =

2

T

T̂

0

f (t) cos

 
kπ

T
t

 
dt .

Sine series for f (2T -periodic oddly extended) 

. f (t) =
∞ 

k=1

bk sin

 
kπ

T
t

 
, bk =

2

T

T̂

0

f (t) sin

 
kπ

T
t

 
dt .

Both series represent the same function on the interval ]0, T [.. The sine form was 

already used when we treated the problem of a vibrating string in Sect. 1.2. There, 

the initial conditions f (x). and g(x). for the string vibration— 2l .-periodically 

extended to the real axis R.—had been odd functions on R..
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4.2 Translations in Time and Frequency Domains 

Translation in the Time Domain 

By the substitution τ = t + t0 . in the computation formula for ck ., we get phase 

changes of the Fourier coefficients, namely 

. f (t + t0) =
+∞ 

k=−∞
(ejkω0t0 ck) e

jkω0t .

Example 

The function 

. f (t) =
 
t for −π < t < π

0 for t ∈ {−π, π}

is ( 2π .-periodically extended) a sawtooth function (Fig. 4.3), represented by 

. S(t) =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
(π − t) for 0 < t < 2π

0 for t ∈ {0, 2π}

The amplitudes in the Fourier expansion of f must be twice as large as in S, 

and with ejkπ = (−1)k . we obtain from the Fourier series of S(t). with the above 

principle (compare p. 19) 

. f (t) = −2

+∞ 

k=−∞
k  =0

ejk(t+π)

2kj
= −2

∞ 

k=1

(−1)k
sin(kt)

k
.

Translation in the Frequency Domain and Amplitude Modulation 

. From
1

T

T̂

0

ejnω0t f (t) e−jkω0t dt = ck−n, we get e
jnω0t f (t) =

+∞ 

k=−∞
ck−n e

jkω0t .

Fig. 4.3 The graph of a 

scaled and shifted 

2π .-periodic sawtooth
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Fig. 4.4 Complex amplitude modulation causes a shift of the spectrum 

Fig. 4.5 Amplitude modulation with a cosine generates two sidebands in frequency domain 

Multiplication of a 2π/ω0 .-periodic function f (t).with the function ejnω0t . produces 

a shift of the spectrum of f (t). by nω0 . (Illustration Fig. 4.4). 

For better understanding of possible applications, we consider an amplitude mod-

ulation with cos(nω0t)f (t). and observe that cos(nω0t) = (ejnω0t + e−jnω0t )/2.. 

The spectrum (dk)k∈Z . of cos(nω0t)f (t). is then given by 

. dk =
1

2
ck−n +

1

2
ck+n,

i.e., the spectrum is shifted to the left and to the right by the angular frequency nω0 .. 

We find two sidebands with halved amplitudes. In signal processing this property 

enables the shift of a signal spectrum to a freely selectable frequency band, for 

example, to transfer a speech signal spectrum into a non-audible frequency band and 

to bring it back to the audible band by repeated amplitude modulation (Illustration 

Fig. 4.5).
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Example 

The 2π .-periodic function f (t) =
∞ 
k=1

cos(kt)

k2
. (compare also p. 35) has the Fourier 

coefficients c0 = 0., ck = c−k = ak/2 = 1/(2k2). for k  1.. Consequently 

. cos(2t)f (t) = f (t)
ej2t + e−j2t

2
=

+∞ 

k=−∞

ck+2 + ck−2

2
ejkt

=
a2

2
+

∞ 

k=1

ak+2 + a|k−2|
2

cos(kt)

=
1

8
+

5

9
cos(t) +

1

32
cos(2t) +

13

25
cos(3t) +

5

36
cos(4t) + . . .

4.3 Derivatives of Fourier Series 

Theorem 4.1 If f is continuous on R. and piecewise continuously differentiable, 

then the Fourier coefficients c k . of its derivative f
 
. are given by 

. c k = jkω0ck.

The Fourier series of f  
. is obtained through term-by-term differentiation of the 

Fourier series of f . 

Piecewise integration by parts between the points 0 = t0 < t1 < . . . < tm = T ., 

where f  
. possibly does not exist, yields for k  = 0. 

. ck = −
1

jkω0T

m 

 =1

 
f (t) e−jkω0t

    
t 

t −1

−
t 
ˆ

t −1

f  (t) e−jkω0t dt

 
.

By continuity and T -periodicity of f , it follows 

. 
1

T

T̂

0

f  (t) e−jkω0t dt = jkω0ck.

For k = 0.we have
1

T

T́

0

f  (t) dt =
m 

 =1

(f (t ) − f (t −1)) = f (T ) − f (0) = 0..
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Example 

The function f (t) =
∞ 
k=1

cos(kt)

k2
. is continuous and piecewise continuously 

differentiable. Term-by-term differentiation yields the sawtooth series −S(t). (see 

p. 35). 

Remark If the derivative f  
. is not again piecewise continuously differentiable, it is 

not ensured that the Fourier series of f  
. converges at all. If, however, it converges 

at a point t , then by the theorem of Fejér it has the limit (f  (t+) + f  (t−))/2. there. 
Term-by-term differentiation of Fourier series of discontinuous functions generally 

leads to divergent series. For example, term-by-term differentiation of the sawtooth 

series f (t) =
∞ 
k=1

sin(kt)

k
. results in a series, which converges nowhere (see p. 15). 

G. Cantor and H. Lebesgue have shown that term-by-term differentiation of Fourier 

series of piecewise continuously differentiable functions with jump discontinuities 

leads to series, which converge at most in a null set (compare Exercise A7). 

Therefore, term-by-term differentiations of Fourier series, which are inserted into 

differential equations, for example (cf. Sect. 1.2), in general need clear mathematical 

arguments. We will only see in later chapters on distributions, in what sense we 

nevertheless can work successfully with such divergent series. 

4.4 Integration of Fourier Series 

For a piecewise continuous T -periodic function f (t). with Fourier series expansion 
+∞ 

k=−∞
ck e

jkω0t ., we consider its integral function F(t) =
t́

0

(f (x) − c0) dx .. The  

function F(t). is continuous and T -periodic with piecewise continuous derivative 

f (t) − c0.. Therefore, the integral function is representable by its Fourier series 

. F(t) =
+∞ 

k=−∞
Fk e

jkω0t .

Integration by parts and the fact F(0) = F(T ) = 0. yield for k  = 0. 

.Fk =
1

T

T̂

0

F(t)
d

dt

 
e−jkω0t

−jkω0

 
dt =

1

jkω0T

T̂

0

(f (t) − c0) e
−jkω0t dt =

ck

jkω0
.

F0 =
1

T

T̂

0

t
ˆ

0

(f (x) − c0) dx dt is the mean value of F.
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Hence
t́

0

(f (x) − c0) dx = F0 +
+∞ 
k=−∞
k  =0

ck

jkω0

ejkω0t ., and 

. 

t
ˆ

0

f (x) dx = c0t + F0 +
+∞ 

k=−∞
k  =0

ck

jkω0

ejkω0t .

Theorem 4.2 The integral of a T -periodic, piecewise continuous function f is 

built of a T -periodic function, which oscillates around the ramp c0t + F0 .. Definite 

integrals of f are obtained with term-by-term integration of the Fourier series of f : 

. 

β̂

α

f (t) dt =
β̂

0

f (t) dt −
α̂

0

f (t) dt =

. c0(β − α) +
+∞ 

k=−∞
k  =0

ck

jkω0

 
ejkω0β − ejkω0α

 
=

+∞ 

k=−∞

β̂

α

ck e
jkω0t dt .

Comments With more effort than above one can show that the integral function F 

is representable by its (uniformly convergent) Fourier series, if f is only absolutely 

integrable on [0, T ].. F is then absolutely continuous. This can be found, for 

example, in the textbook of Tolstov (1976). 

Example The sawtooth series f (t) =
∞ 
k=1

sin(kt)

k
. has no DC part. Integration from 

0 to  t yields the 2π .-periodic function (see p. 35) 

. F(t) =
t
ˆ

0

f (x) dx =
π2

6
−

∞ 

k=1

cos(kt)

k2

with DC part F0 =
π2

6
.. For 0  t  2π ., we have F(t) =

2πt − t2

4
.. 

4.5 Decrease of Fourier Coefficients and Riemann-Lebesgue 

Lemma 

The objectives of this section are statements on the connection between smoothness 

properties of periodic functions and the qualitative behavior of their spectrum.
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Thereby we will see that local properties of a function f affect its entire spectrum. 

For a T -periodic function f , which is Riemann integrable on [0, T ]. and T -periodic 
with the Fourier coefficients ak ., bk ., and ck ., respectively, we find the following 

important inequality. As usual again ω0 = 2π/T .. 

The Bessel Inequality (F.W. Bessel, 1784–1846) is 

. 
|a0|2

4
+

1

2

∞ 

k=1

(|ak|2 + |bk|2) =
+∞ 

k=−∞
|ck|2  

1

T

T̂

0

|f (t)|2 dt .

For the partial sums fN (t). of the Fourier series of f , it holds with ω0 = 2π/T .: 

. 
1

T

T̂

0

f (t)fN (t) dt =
N 

k=−N

ck
1

T

T̂

0

f (t) e−jkω0t dt =
N 

k=−N

ckck =
N 

k=−N

|ck|2.

By the orthonormality relations from 2.1, we also obtain for all N ∈ N. 

. 
1

T

T̂

0

fN (t)fN (t) dt =
N 

k=−N

|ck|2.

Hence we have 

. 0  
1

T

T̂

0

|f (t) − fN (t)|2 dt =
1

T

T̂

0

(f (t) − fN (t))(f (t) − fN (t)) dt

=
1

T

⎡
⎣

T̂

0

|f (t)|2 dt −
T̂

0

f (t)fN (t) dt −
T̂

0

f (t)fN (t) dt +
T̂

0

fN (t)fN (t) dt

⎤
⎦

=
1

T

T̂

0

|f (t)|2 dt −
N 

k=−N

|ck|2.

From this follows the right half of the Bessel inequality by the limit for N → ∞.. 

The left half follows from the conversions for the Fourier coefficients on p. 17: 

.|ak|2 + |bk|2 = (ck + c−k)(ck + c−k) + j (ck − c−k)(−j)(ck − c−k)

= 2ckck + 2c−kc−k ,
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and therefore |a0|2 = 4|c0|2 ., |ak|2+|bk|2 = 2(|ck|2+|c−k|2). for k  1.. In particular 

we always have 

. 
1

T

T̂

0

|f (t) − fN (t)|2 dt  
1

T

T̂

0

|f (t)|2 dt .

Implication The Fourier coefficients of a Riemann integrable function f on [0, T ]. 
are square summable: 

. 

∞ 

k=0

|ak|2 < ∞ ,

∞ 

k=1

|bk|2 < ∞ ,

+∞ 

k=−∞
|ck|2 < ∞.

The Riemann-Lebesgue Lemma 

Theorem 4.3 (Riemann-Lebesgue Lemma) 

1. For the Fourier coefficients ak ., bk ., ck . of a T -periodic function f , which  is  

Riemann integrable on [0, T ]., it holds 

. lim
k→∞

ak = lim
k→∞

bk = lim
|k|→∞

ck = 0.

2. More general, for Lebesgue-integrable functions f , it holds for the function 

 f (ω) =
+∞́

−∞
f (t) e−jωt dt ., which is the Fourier transform of f (cf. later 

Chap. 10) 

. lim
|ω|→∞

 f (ω) = lim
|ω|→∞

+∞
ˆ

−∞

f (t) e−jωt dt = 0.

Thus, also integrals like
T́

0

f (t) sin(ωt) dt . are canceled with increasing |ω| → ∞.by 

the increasingly dense oscillations of the harmonics. For that, simply set h(t) = f (t). 

in [0, T ]., h(t) = 0. otherwise, and apply 2. to h. We will use the Riemann-Lebesgue 

Lemma repeatedly. 

Proof 

1. The assertion follows immediately from |ck|2 → 0. for |k| → ∞.. 

2. We use that a Lebesgue-integrable function can be approximated by a step 

function of the form g =
n 

k=0

ak1Ik . with bounded, pairwise disjoint intervals Ik .
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Fig. 4.6 The more oscillations in the product, the less contribution to its integral 

(cf. Appendix B). Choose g such that
∞́

−∞
|f (t)− g(t)| dt < ε . for a given ε > 0.. 

For the Fourier transform  g . of g analogously as  f . above, it holds | g(ω)| < ε . for 

|ω|. large enough (Exercise, left to the reader). Therefore, for large enough |ω|., 

. | f (ω)|  | f (ω) − g(ω)| + | g(ω)|  
+∞
ˆ

−∞

|f (t) − g(t)| dt + | g(ω)|  2ε.

Since ε . is arbitrary, lim
|ω|→∞

 f (ω) = 0.. 

The function f , illustrated in Fig. 4.6, varies only slowly compared with a 

fast oscillating harmonic factor. In the integral of their product the positive and 

negative parts cancel each other out more and more with increasing frequency of 

the harmonic factor. We will refer to the Riemann-Lebesgue Lemma later in the 

proof of the inversion theorem for the Fourier transform (cf. Theorem 10.1). The 

lemma also holds for L1
.-functions of several variables. 

Order of Magnitude of Fourier Coefficients and Smoothness of f 

For a T -periodic function f , which is integrable on [0, T ]. and has Fourier 
coefficients ck ., we find the following relation between the magnitude of the Fourier 

coefficients ck . and differentiability properties of f : 

Theorem 4.4 If f, f  , . . . , f (m−1)
. are continuous on R. and if f (m)

. is piecewise 

continuous, then it holds 

.

+∞ 

k=−∞
|kmck|2 < ∞, in particular therefore |kmck| −→ 0 for |k| → ∞.
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On the other hand, if for a finite set A, all k ∈ Z \A., for a suitable constantM > 0., 

an integer m ∈ N., and an α > 1., we have the inequalities |ck|  M|k|−(m+α)
., then 

f is m-times continuously differentiable. 

It is a remarkable fact that local properties of the function f have an effect on 

its entire spectrum, and vice versa global properties of the spectrum reflect local 

properties of f . The theorem shows that highly localized disturbances with loss of 

differentiability properties change the entire spectrum. 

Proof For the Fourier coefficients ck ., c
 
k ., . . .., c

(m)
k . of f , the results in Sect. 4.3 

imply 

. c
(m)
k = (jkω0)c

(m−1)
k = . . . = (jkω0)

mck.

The first part of the theorem is therefore obtained from Bessel’s inequality and the 

Riemann-Lebesgue Lemma for f (m)
.. With α > 1. and the conditions in the second 

assertion, one finds for n  m. and sufficiently large k0 ∈ N. 

. 

 

|k|>k0

|knck|  M
 

|k|>k0

|k|−(m−n+α)
 2M

 

k>k0

k−α < ∞.

Thus, the series
+∞ 

k=−∞
(jkω0)

nck e
jkω0t . are uniformly convergent also for n  m. 

and represent the continuous functions f (n)
. by the theorem of Fejér on p. 29. 

A more detailed discussion of the interrelations between smoothness properties 

of periodic functions and the magnitude of their Fourier coefficients can be found in 

Tolstov (1976) or Zygmund (2003). 

Examples 

1. The sawtooth function is piecewise continuous but not continuous. Its Fourier 

coefficients decrease like 1/|k|. (case m = 0.). The function g, defined by g(t) =
t2 . for t in [−π, π ]., g(t) = g(t + 2πk)., k ∈ Z., composed of parable arcs, has 

quadratically decreasing coefficients (Exercise): 

. g(t) =
π2

3
− 4

 
cos(t)

12
−

cos(2t)

22
+

cos(3t)

32
∓ . . .

 
.

g(t). is not continuously differentiable (case m = 1.). 

If a function f (t) =
+∞ 

k=−∞
ck e

jkω0t . is continuously differentiable with a 

piecewise continuous second derivative (case m = 2.), then the amplitudes of the 

harmonics with angular frequencies kω0 . decrease for increasing |k| ∈ N. faster 

than 1/|k|2 . (Illustration Fig. 4.7).
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Fig. 4.7 Graph of the twice piecewise continuously differentiable function f 

For example, f (t) =
 
t (π + t) for −π  t  0,

t (π − t) for 0  t  π,
. 

. f (t) =
8

π

 
sin(t) +

sin(3t)

33
+

sin(5t)

53
+ . . .

 
.

2. If |ck|  
M

|k|3
. for all k ∈ Z \ {0}. and a suitable constant M > 0. as in the last 

example, then it follows 

. 

+∞ 

k=−∞
|k| |ck| =

∞ 

k=1

k |ck| +
∞ 

k=1

k |c−k|  2M

∞ 

k=1

1

k2
< ∞.

Then f (t) =
+∞ 

k=−∞
ck e

jkω0t . is continuously differentiable. 

3. When the Fourier coefficients ck . of f fulfill lim
|k|→∞

|k|m|ck| = 0. for all m ∈ N., 

then f is infinitely often differentiable. Namely in that case, for arbitrary m ∈ N. 

the sequence
 
|k|m+2|ck|

 
k∈Z . is bounded, and with a suitable M ∈ R.we find 

. 

+∞ 

k=−∞
|k|m|ck| =

+∞ 

k=−∞
k  =0

|k|m+2

|k|2
|ck|  M

+∞ 

k=−∞
k  =0

1

|k|2
< ∞.

Hence it follows that f is m-times differentiable for every m ∈ N.. 

Intuitively spoken, the above asymptotic statements mean that for a good repro-

duction of periodic functions with a “kink” or jump discontinuities the amplitudes 

of the harmonics must not decrease too fast.
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4.6 Spectrum and Power and Parseval Equation 

A T -periodic alternating voltage U , averaged over the period T with an effective 

resistance R, provides the output power P =
1

T

T́

0

|U(t)|2

R
dt .. Correspondingly, 

the normalized power P of a T -periodic piecewise continuous function f (t) =
+∞ 

k=−∞
ck e

jkω0t . is defined with the normalization R = 1. 

. P =
1

T

T̂

0

|f (t)|2 dt .

√
P . is called effective value or root mean square of f (RMS). In mathematics the 

effective value is called the norm of f , and one writes  f  2 =
√
P .. The inner 

product of p. 12 is also defined for piecewise continuous functions, and it holds 

 f  2 =
√

 f |f  . for the norm of f . 

For piecewise continuous T -periodic f and g, the norm  f − g 2 =  f −
g|f − g 1/2 . of their difference f − g . defines a distance between the two functions. 

In that context two functions are identified if they differ only on a null set. With 

this identification, the introduced inner product is positive definite. The functions 

f , more precisely, had to be replaced by their corresponding equivalence classes 

with this identification. Nevertheless, it is common to speak of functions further on 

instead of equivalence classes. The norm  f  2 . of f is zero if and only if f  = 0. 

at most in a null set, and for two functions f and g we have the triangle inequality 

 f ± g 2   f  2 +  g 2.. In Sect. 5.1 we will come back to this distance and the 

related convergence concept for function sequences, i.e., to convergence in quadratic 

mean. 

Theorem 4.5 (Parseval Equation) The normalized power of f can be expressed 

by the spectrum (ck)k∈Z . of f : 

. P =  f  22 =
1

T

T̂

0

|f (t)|2 dt =
+∞ 

k=−∞
|ck|2.

This equation is called Parseval equation after M. A. Parseval (1755–1836). 

Because the normalized power of f (t) = ck e
jkω0t . is just |ck|2 ., we can also 

formulate: 

The normalized power of f is equal to the sum of the powers of all harmonic parts 

of f . This important relation will be shown in Chap. 7 for piecewise continuous 

periodic functions. With theorems of Lebesgue’s integration theory, it can be shown 

for all square Lebesgue integrable functions on [0, T ]. (cf. Chap. 7, Exercise A8).
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4.7 Exercises 

The exercises with an asterisk  . for this and the following chapters are mathemat-

ically more difficult than the others and are intended primarily for mathematicians 

among the readers. 

(A1) Let f (t) = cos(t). be given for 0 < t < π .. 

Sketch a graph of the odd 2π .-periodic extension of f , and compute the 

Fourier series of this 2π .-periodic function. 

(A2) Let the 2π .-periodic function h be given by 

. h(t) =

⎧
⎨
⎩

1 for 0 < t < π

0 for t = 0

−1 for − π < t < 0.

(a) Compute its Fourier series (Fig. 4.8). 

(b) What is the Fourier series of the 4-periodic function g(t). outlined in 

Fig. 4.9? Use the similarity theorem and the result on translations for 

this. 

Fig. 4.8 One period of h 

Fig. 4.9 One period of g
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. g(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−3 for
1

2
< t <

5

2

0 for t =
1

2

3 for −
3

2
< t <

1

2
.

(A3) (a) For |sin(t)|. give the trigonometric polynomial f as an approximation 

with ω0 = 2. 

. f (t) =
a0

2
+

2 

k=1

(akcos(kω0t) + bksin(kω0t)) .

(b) Sketch the amplitude spectrum of f . 

(c) What is the amplitude spectrum of the modulated function 

cos(6t)f (t).? 

(d) Compute the Fourier series for g(t) = cos(6t)f (t).. 

(e) For N ∈ N., what is generally the Fourier series of cos(Nω0t)g(t). for 

. g(t) =
a0

2
+

∞ 

k=1

ak cos(kω0t) ?

(A4) What is the Fourier series of the 2π .-periodic function
t́

0

f (x) dx ., if f (x). 

is the 2π .-periodic extension of the rectangle function − sgn(x − π). for 

0  x < 2π .? 

(A5) Let two trigonometric polynomials f and g be given by 

. f (t) =
+N 

k=−N

ck e
jkt and g(t) =

+N 

k=−N

dk e
jkt .

Prove that the product f · g . has the Fourier coefficients hk =
+N 

n=−N

cndk−n . 

for − 2N  k  +2N . (set dm = 0. for |m| > N .). 

(A6) Compare continuity and differentiability properties of some Fourier series 

with previous examples here and in your formulary. Consider examples, 

whose Fourier coefficients decrease asymptotically like 
1

k
., 

1

k2
., 

1

k3
., or  

1

k2 − 1
.. 

(A7) Show that term-by-term differentiation of the Fourier series for the rectan-

gle meander f (t) = sgn(t).,−π  t < π, f (t+2kπ) = f (t), k ∈ Z., leads
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to a series, which converges only at the points t of the form t = (2k−1)π/2., 

k ∈ Z.. 

(A8) Show that the following series expansions hold: 

(a) t2 = 
π2 

3 
+ 4 

∞ 
k=1 

(−1)k 
cos(kt) 

k2 
. for − π  t  π,. 

(b) t cos(t) = −
1 

2 
sin(t) + 2 

∞ 
k=2 

(−1)k 
k sin(kt) 

k2 − 1 
. for − π < t < π,. 

(c) t sin(t) = 1 − 
1 

2 
cos(t) − 2 

∞ 
k=2 

(−1)k 
cos(kt) 

k2 − 1 
. for − π  t  π.. 

(A9) Compute the limits of the series 

. 

∞ 

n=1

1

4n2 − 1
,

∞ 

n=1

(−1)n+1 1

n2
,

∞ 

n=1

(−1)n+1 1

(2n − 1)3
.

Use Fourier series of periodic functions in your formulary. 

(A10)  . The graphical display of the sums
n 

k=1

sin(kt)

k
. suggests for the sawtooth 

function that all partial sums in ]0, π [.are strictly positive, in ]−π, 0[. strictly 
negative, i.e., that they do not undershoot the sawtooth in ]0, π [. and do not 
overshoot in ]−π, 0[.. Show this conjecture by induction. In which tolerance 
ranges can the sawtooth be approximated by such partial sums? 

(A11)  . This exercise shall show that there are convergent trigonometric series, 

which are not Fourier series in the classical sense dealt with so far. 

(a) Prove that 

. 

n 

k=1

sin(kt) =
sin((n + 1)t/2) sin(nt/2)

sin(t/2)

(with continuous extension at the zeros of the denominator). 

Hint: Use 1− ejϕ = ejϕ/2(−2j) sin(ϕ/2). and a similar computation as 

with the Dirichlet kernel on p. 15. 

(b) Show that the sine coefficients bk . of the Fourier series of an integrable 

function f on [0, 2π ].—which does not necessarily represent the 

function f —fulfill
∞ 
k=1

bk/k < ∞.. For this use the comment on p. 48, 

and expand the integral function of f into a Fourier series. 

(c) (Abel’s Lemma) Show that for each two sequences (ak)k∈N ., (bk)k∈N . 

and sn =
n 

k=1

ak ., one has
n 

k=1

akbk = snbn+1 +
n 

k=1

sk(bk − bk+1).. 

(d) (Abel-Dirichlet Test) Show with (c) the following generalization of the 

well-known Leibniz criterion for alternating series:
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For a sequence (ak)k∈N ., let
  n 
k=1

ak
   M . hold for all n ∈ N. and 

a constant M > 0.. Then the series
∞ 
k=1

akbk . converges for every 

monotonically decreasing sequence (bk)k∈N .with lim
k→∞

bk = 0.. 

(e) Show using the comment on p. 48 that
∞ 
k=2

sin(kt)

ln(k)
. converges every-

where, for h > 0. in every interval [h, 2π − h]. even uniformly to a 

continuous function. But verify that this series cannot be the (classical) 

Fourier series of that function.



Chapter 5 

Application Examples for Fourier Series 

Abstract This chapter shows applications of classical Fourier series. The following 

topics are treated in respective sections: the best approximation in quadratic mean 

(RMS approximation), periodic convolution and its role in AC Circuit calculations, 

the boundary value problem for the 2D-potential equation on a circular disk with the 

Poisson integral formula, the classical solution for the vibrating string, the approxi-

mation theorem of K. Weierstrass, and the 1/f theorem of N. Wiener. Examples and 

exercises are provided. These include, for example, the inhomogeneous vibrating 

string, the homogeneous one-dimensional heat equation, periodic convolution of 

given periodic functions, and Kepler’s equation. 

5.1 Best Approximation in Quadratic Mean 

The focus of the following considerations is no longer, as before, on pointwise or 

uniform approximations to periodic functions f by trigonometric polynomials, but 

rather approximations, whose mean squared deviation from the considered function 

f should be small. 

A T -periodic piecewise continuous function f : R → C. (or its restriction to 

[0, T ].) shall be approximated by a trigonometric polynomial 

. P(t) =
N 

k= N
αk ejkω0t ,

ω0 = 2π/T ., so that the mean square error becomes minimal: 

. 
1

T

T̂

0

|f (t) P(t)|2dt = min !
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If f has the Fourier coefficients ck ., the mean square error can be written in the 

following form: 

. 
1

T

T̂

0

|f (t) P(t)|2 dt

=
1

T

T̂

0

(f (t) 
N 

k= N
αk ejkω0t )(f (t) 

N 

k= N
αk e jkω0t )dt

=
1

T

T̂

0

|f (t)|2dt  
N 

k= N
αkck  

N 

k= N
αkck +

N 

k= N
|αk|2

=
1

T

T̂

0

|f (t)|2dt  
N 

k= N
|ck|2

     
independent of the αk

+
N 

k= N
|ck  αk|2.

The above integral becomes minimal if and only if αk = ck . for |k|  N .. Thus, we 

obtain the following theorem on best approximation in quadratic mean: 

Theorem 5.1 The best trigonometric approximation polynomial of degree at most 

N for this purpose is the N th partial sum P(t) =
 N

k= N ck ejkω0t . of the Fourier 

series of f . 

Geometric Interpretation 

When we look in a subspace U of Rn
. for an approximating vector y. to a given vector 

x = (x1, . . . , xn) ∈ R
n
. so that 

. |x y|2 =
n 

i=1

(xi  yi)
2 = min !

then, as is well known, y. is the orthogonal projection of x. into U . The inner products 

of (x y). and vectors u ∈ U . fulfill the orthogonality relation (Fig. 5.1) 

. (x y) · u = 0 for all u ∈ U.

The same fact holds true in higher dimensional vector spaces with an inner product. 

In the same sense, the N th partial sum fN .of the Fourier series of f is the orthogonal 

projection of f into the vector space TN . of T -periodic trigonometric polynomials
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Fig. 5.1 Orthogonal 

projection into U 

up to the degree N . The piecewise continuous T -periodic function f has a unique 

decomposition f = fN + f⊥N . with fN ∈ TN ., and 

.  f⊥N |h =  f  fN |h = 0 for all h ∈ TN ,

with the inner product on p. 12. For h(t) =
 N

k= N αk ejkω0t . we have 

.  f  fN |h =
1

T

T̂

0

( f (s) 
N 

k= N
ck ejkω0s )

N 

m= N
αm e jmω0s ds

=
 

N 

k= N
αkck  

N 

k= N
ckαk

 
= 0.

The function f is an element of the infinite dimensional vector space of all T -

periodic piecewise continuous functions. The orthogonal projection fN . with the 

integral representation 

. fN (t) =
1

T

T̂

0

f (s)DN (t  s)ds

is an element of the (2N + 1).-dimensional subspace TN ., where DN . denotes the 

Dirichlet kernel with degree N . 

Convergence in Quadratic Mean 

Theorem 5.2 The Fourier series of a T -periodic piecewise continuous function f 

converges to f in quadratic mean. 

This theorem is equivalent to the validity of the Parseval equation. If f has the 

Fourier coefficients ck ., then we have with ω0 = 2π/T .
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. 
1

T

T̂

0

|f (t) 
N 

k= N
ck ejkω0t |2dt =

1

T

T̂

0

|f (t)|2dt  
N 

k= N
|ck|2  →

N→∞
0.

The notion of convergence in quadratic mean is often more important than pointwise 

convergence for technical and also theoretical purposes. By the theorem of Dirichlet 

(cf. p. 28) pointwise representation of periodic functions f by their Fourier series, as 

presented in our context, is only ensured for piecewise continuously differentiable 

functions. In fact, there are examples of continuous periodic functions whose 

Fourier series diverge at infinitely many points. On the other hand, one knows from 

Carleson (1966) that Fourier series of continuous periodic functions f converge 

almost everywhere (cf. Appendix B). Besides the remarkable theorem of Fejér 

(p. 29), the most important result for applications is probably the above formulated 

convergence in quadratic mean, which can be shown for the Fourier series of very 

general functions. 

This result has been stated above for piecewise continuous functions and will 

be proven for this class of functions in Chap. 7. In functional analysis, using the 

Lebesgue integral (cf. Appendix B) for elements f of the vector space L2([0, T ]). of 

all square integrable complex-valued functions, the following more general theorem 

is shown. Any function f ∈ L2([0, T ])., defined on the interval [0, T ]., can be 

extended to a T -periodic function on R. as usual. 

Theorem 5.3 The Fourier series of a function f ∈ L2([0, T ]). converges to f in 

quadratic mean. 

A proof of this theorem can be found, for instance, in Rudin (1991). Even 

if functions f ∈ L2([0, T ]). are not necessarily represented pointwise by their 

Fourier series, they can be approximated arbitrarily well in quadratic mean by 

partial sums fN . of their Fourier series. In this sense, one also denotes f by 

f (t) =
 +∞

k= ∞ ck ejkω0t .. This means that the partial sums fN . for N → ∞. 

converge to f with respect to the norm of p. 54: limN→∞  fN  f  2 = 0.. The  

distances between fN . and f , measured with that norm, become arbitrarily small for 

increasing N , i.e., the mean square error  fN  f  2
2 . converges to zero. Actually, 

pointwise convergence in general does not make sense for L2
.-functions without 

additional conditions, since those represent entire equivalence classes of functions 

(cf. p. 54) whose elements are not determined at individual points. 

Computation of Distortion Factors 

By the Parseval equality we can compute distortion factors with the help of the 

normalized power P (compare p. 33). The distortion factor D for a real-valued 

signal f with Fourier coefficients ck . and normalized power P is given by D =√
Z/N ., where N = (P  |c0|2)/2. and Z = N  |c1|2 .. For the example on p. 33, 

we find, for instance, a distortion factor D of about D = 0.56..
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5.2 Periodic Convolution and Application to Linear Systems 

In this section, we apply Fourier series to solve linear differential equations with 

constant coefficients and periodic perturbation functions. Well-known examples are 

equations of motion in mechanics or differential equations describing RLC net-

works in electrical engineering. For this we need the notion of periodic convolution. 

Definition The T -periodic convolution for piecewise continuous T -periodic func-

tions f and h is defined by 

. (f ∗ h)T (t) =
1

T

T̂

0

f (u)h(t  u)du.

If f and h are piecewise continuous as assumed, then (f ∗ h)T . is continuous on 

R. and T -periodic. This property will be demonstrated in Chap. 7 and used there to 

prove the Parseval theorem. 

Remark With the Lebesgue integration theory, the periodic convolution can be 

defined more general. Thereby the convolution exists almost everywhere for 

functions f and h, which are Lebesgue integrable on [0, T ].. The continuity of 

(f ∗ h)T . can be shown for all T -periodic functions f and h, which are square 

integrable on [0, T ]., and then yields the Parseval equality also for these functions. 

The Fourier Series of a Periodic Convolution 

Let the coefficients ck . be the Fourier coefficients of f , the coefficients hk . those of 

h, f and h piecewise continuous. For the kth Fourier coefficient of (f ∗ h)T ., we  

obtain by interchanging the order of integration: 

. 
1

T

T̂

0

1

T

ˆ T

0

f (u)h(t u)du e jkω0t dt

=
1

T

T̂

0

f (u)
1

T

ˆ T

0

h(t u) e jkω0t dt

     
hk ·e jkω0u by 4.2 

du=ckhk. 

(f ∗ h)T (t) = 

+∞ 

k= ∞ 

ckhk e
jkω0t .
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Result The Fourier coefficients of the T -periodic convolution (f ∗ h)T . are the 

products of the corresponding Fourier coefficients of f and h. 

Multiplying out the inequality (|ck| |hk|)2  0., we get 2|ckhk|  |ck|2+|hk|2.. 
With the Bessel inequality we thereby obtain 

. 

+∞ 

k= ∞
|ckhk|  

1

2

+∞ 

k= ∞
(|ck|2 + |hk|2) <∞.

Therefore the Fourier series of (f ∗ h)T . is uniformly convergent. According to 

Fejér’s theorem (see later p. 134), the continuous function (f ∗ h)T . is actually 

represented pointwise by its Fourier series. The continuity of (f ∗h)T . will be shown 

on p. 139. 

Application to Asymptotically Stable Time-Invariant Linear 

Systems 

As application we consider linear differential equations
n 

k=0

aku
(k)(t) = f (t).. 

Here, the u(k) . denote the kth derivatives of u, and the ak . are constant real 

coefficients. Without loss of generality we set an = 1.. Many differential equations 

in modeling physical or technical problems are of this type. For example, think 

about electrical networks built with resistors, capacitances, and inductances or about 

differential equations of oscillations in mechanics. 

We now assume that the system is asymptotically stable, that is, for arbitrary 

initial values, the solution of the associated homogeneous differential equation 

vanishes for t → ∞.. This is exactly the case if all zeros of the characteristic 

polynomial have negative real parts. The characteristic polynomial must then be 

a Hurwitz polynomial, and all coefficients ak . must be positive, i.e., with the same 

sign as an > 0.. 

Under these conditions, for right-hand sides of the form f (t) = A sin(ωt + φ). 

the periodic solution is uniquely determined. It has the same angular frequency ω . 

but a different amplitude and phase than f (t). (cf. the common methods for solving 

such differential equations). 

For a right-hand side f (t) = U0e
jωt

., the linear operator L, mapping f to 

the uniquely determined periodic solution L(f )., describes a so-called linear 

time-invariant system (LTI system). We will analyze such systems after further 

mathematical preparations in more general terms in Chap. 11. Schematically, the 

facts presented here for harmonic oscillations f are shown in Fig. 5.2: 

The function  h(ω). expresses amplification or attenuation and phase shift in the 

transmission depending on the angular frequency ω .. We obtain  h(ω) = 1/P (jω). 

with the characteristic polynomial P of the given differential equation.
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Fig. 5.2 Schematic figure of a stable LTI system in steady state 

The question arises whether, in general, there is exactly one periodic solution 

for a periodic excitation. This solution would describe the long-term behavior after 

decay of transient solution parts. Under suitable constraints on the right-hand side 

f , we can prove the following theorem: 

Theorem 5.4 An asymptotically stable linear ordinary differential equation of 

order n with constant coefficients and with a continuous, continuously differentiable, 

T -periodic right-hand side f has the uniquely determined T -periodic solution 

. u(t) =
+∞ 

k= ∞
ckhk ejkω0t

 
ω0 =

2π

T

 
.

The coefficients ck . are the Fourier coefficients of f and hk = 1/P (jkω0)., where P 

is the characteristic polynomial of the differential equation. 

Proof Inserting the series into the differential equation shows this statement 

immediately. This series and all its term-by-term derivatives up to the order n 

are uniformly convergent, since the Fourier series of f converges uniformly. In 

particular, u is an n-times continuously differentiable function. The uniqueness 

follows immediately from the fact that the difference of two T -periodic solutions 

is again T -periodic and must be a solution of the homogeneous equation. This can 

only be the zero function by the presupposed stability.   

We can show the estimate |P(jω0k)| 1
 M |k| 3/2

. for sufficiently large |k|., a  

suitable M > 0., and polynomial degree n  2. (Exercise A4). Therefore the series 

. h(t) =
+∞ 

k= ∞
hk ejkω0t

represents a continuous function. For equations of order 1, we can see with some 

calculations, comparing with the sawtooth function, that h(t) =
+∞ 

k= ∞

1
jk+a0

ejkt ., 

a0 > 0., is continuous except for the points t = 2nπ ., n ∈ Z.. At those points h 

has right and left limits (π(coth(a0π) ± 1). for T = 2π .). The series represents a 

piecewise continuously differentiable function (Exercise A5). This holds true also 

for other periods than T = 2π .. Therefore, we obtain with the convolution property 

for Fourier series (Illustration Fig. 5.3):
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Fig. 5.3 T -periodic convolution 

Fig. 5.4 Lowpass RLC 

circuit 

The Fourier coefficients of the solution u are the products of the corresponding 

Fourier coefficients of f and h, and u is the T -periodic convolution u = (f ∗h)T .. 

The function h is called the T -periodic transfer function. 

Remark If we want to treat more general right-hand sides like a sawtooth function 

or a rectangular meander as a model of switch-on and switch-off processes, a 

modification of the classical notion of a solution for differential equations is 

necessary. This can be done for the case with piecewise continuous right-hand sides 

f by a modification of the common notion of a primitive function in the context 

of Riemannian integration theory, as, for instance, in Dieudonné (2006). With the 

results of the Lebesgue integration theory, functional analysis, and distribution 

theory, it is possible to introduce a new notion of a solution, thereby weakening the 

conditions on f to a very large extent. It suffices, for example, that the coefficients 

ck . of f are square summable. All Fourier series treated above then converge in 

L2([0, T ])., and the function u is the convolution (f ∗ h)T . of two functions in 

L2([0, T ]).. With the concept of generalized derivatives (Sect. 8.5) in  distribution 

theory and generalized Fourier series f and h (cf. Sect. 9.1), finally (f ∗h)T . can be 

interpreted as the solution of the differential equation, without additional continuity 

or differentiability conditions on f as long as the Fourier coefficients of f being of 

slow growth. This is a major progress in the treatment of many application problems. 

We consider, as already mentioned, time-invariant linear systems in more detail 

only after the necessary mathematical preparations in Chap. 11 and come back to 

the issues noted here in Sect. 11.5. The last theorem and its generalizations form the 

foundation of complex AC circuit calculation in electrical engineering. 

Example (AC Circuit Calculation) The RLC lowpass filter shown in Fig. 5.4 

with ohmic resistance R, inductivity L and capacity C due to Kirchhoff’s law, is 

described by the differential equation
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. LC
d2Ua

dt2
(t)+ RC

dUa

dt
(t)+ Ua(t) = Ue(t).

The zeros of the characteristic polynomial LCλ2 + RCλ+ 1. are 

. λ1,2 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

 R
2L
±
 

R2

4L2  1
LC

for R2

4L2  
1
LC

 R
2L
± j

 
1
LC
 R2

4L2 for R2

4L2 < 1
LC

.

They have negative real parts, and the given linear system is asymptotically stable. 

For Ue(t) = U0 ejkω0t ., ω0 = 2π/T ,. we obtain the T -periodic solution 

. Ua(t) =
U0

1+ jkω0RC  k2ω2
0LC

ejkω0t .

The continuous T -periodic transfer function is 

. 

+∞ 

k= ∞
hk ejkω0t =

+∞ 

k= ∞

1

1+ jkω0RC  k2ω2
0LC

ejkω0t .

Thus, the convolution rule can be used to obtain Fourier series representations 

of the periodic system responses, if the Fourier expansions of (so far assumed 

continuous) periodic input signals and the corresponding periodic transfer functions 

are known. 

Remark The spectral sequence (hk)k∈Z =
 

1

1+jkω0RC k2ω2
0LC

 

k∈Z
. corresponds 

to samples of the function  h(ω) = 1/(1+ jωRC  ω2LC)., which in electrical 

engineering is called frequency response of the filter. The lowpass effect of the 

circuit, i.e., the attenuation of high-frequency input parts, can be seen in the 

sequence (hk)k∈Z . and in the frequency response h(ω). of the example. 

Mechanical Systems of Second Order with Periodic Forces 

Analogously to the above example from electrical engineering, we obtain a solution 

for asymptotically stable mechanical systems of the form 

. mẍ(t)+ kẋ(t)+Dx(t) = K(t),

with the important case of periodic forces K(t).. The periodic solution is received 

by Fourier expansion of K(t). and periodic convolution with the system’s periodic
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transfer function (up to now again under the continuity condition on K(t)., later 

on with more generality in the Sects. 9.1 and 11.5). Replacing in analogy the 

coefficients of the preceding example by the constants m, k, and D is left to the 

reader. 

5.3 The Potential Equation on a Circular Disk 

The Laplace equation Δu = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = 0. occurs in many areas of math-

ematical physics. In the theory of heat conduction, u is the stationary temperature, 

i.e., the temperature which is reached after some time. This temperature is obtained, 

if in the heat conduction equation ∂u
∂t
= α2Δu. the left side is set to zero ( α2

. is the 

thermal diffusivity in m 2 ./s). In the theory of gravitation or electricity, the function u 

represents a gravitational potential or an electrical potential. The equation Δu = 0. 

is therefore also called potential equation . 

The task to solve Δu = 0. within a domain G, where u is given on the boundary 

of the domain G, is called a Dirichlet boundary value problem. It can be solved for 

functions of two variables on a circular disk by applying the convolution relation for 

Fourier series. In a circular disk around the zero point with radius R, we consider 

the problem 

. Δu =
∂2u

∂x2
+

∂2u

∂y2
= 0.

In polar coordinates this equation for 0 < r < R . and 0  φ < 2π . is given by 

. Δu =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂φ2
= 0.

Solution by Fourier Series Expansion for Given Boundary 

Values 

Inserting 

. uk = ck

 r

R

 k
ejkφ and u k = c k

 r

R

 k
e jkφ

into the equation, we prove that these functions are solutions of the potential 

equation for every k ∈ N0 . and arbitrary constants ck . and c k .. With the superposition
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principle, we thereby obtain a solution of the form 

. u(r, φ) =
+∞ 

k= ∞
ck

 r

R

 |k|
ejkφ,

provided that the series converges and represents a sufficiently smooth function. The 

constants ck . have the physical unit of u. With given boundary values U(φ). on the 

circle r = R ., the  ck . are just the Fourier coefficients of U(φ)., 0  φ < 2π ., 

. u(R, φ) = U(φ) =
+∞ 

k= ∞
ck ejkφ .

The Poisson Integral Formula 

For every r ∈ [0, R[. and φ ∈ [0, 2π [., the following geometric series is absolutely 

convergent and represented as 

. 

∞ 

k=0

 r

R
ejφ

 k
=

R

R  r ejφ
=

R2  Rr cos(φ)+ jRr sin(φ)

R2 + r2  2Rr cos(φ)
.

Hence it follows 

. 

+∞ 

k= ∞

 r

R

 |k|
ejkφ =

∞ 

k=0

 r

R

 k
ejkφ +

 1 

k= ∞

 r

R

  k
ejkφ

=
∞ 

k=0

 r

R

 k
ejkφ +

∞ 

k=0

 r

R

 k
ejk( φ) 1.

Thus, we can also write this series as 

. 

+∞ 

k= ∞

 r

R

 |k|
ejkφ =

R2  Rr cos(φ)+ jRr sin(φ)+ R2  Rr cos(φ)

R2 + r2  2Rr cos(φ)

+
 jRr sin(φ)+ 2Rr cos(φ) R2  r2

R2 + r2  2Rr cos(φ)
=

R2  r2

R2 + r2  2Rr cos(φ)
.

Because u(r, φ). is the Fourier series of the 2π .-periodic convolution between U(φ). 

and the function g(r, φ) = R2 r2

R2+r2 2Rr cos(φ)
., which is additionally dependent on 

r , we find from the convolution relation the resulting integral representation of the
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solution u(r, φ). for 0  r < R . and 0  φ < 2π .: 

. u(r, φ) =
1

2π

2π
ˆ

0

U(ψ)
R2  r2

R2 + r2  2Rr cos(φ  ψ)
dψ.

This solution formula for the potential equation with the boundary values U(φ). on 

the circle r = R . is known as Poisson integral formula. If the function u(r, φ). is, for 

example, a stationary temperature distribution, then the temperature for each point 

inside the circular disk is thus expressed by the (kept constant) temperature values 

U(ψ)., 0  ψ < 2π ., on the boundary of the circular disk. 

Smoothness and Uniqueness of the Solution and Maximum 

Principle 

In order to deepen our work with partial differential equations one more step, we 

briefly investigate the question of differentiability and uniqueness of the solution. 

For example, we require that the boundary condition U(φ). is a continuous, 

piecewise continuously differentiable, 2π .-periodic function. For every m ∈ N. we 

get 

. lim
|k|→∞

|k|m|ck|
 r

R

 |k|
= lim
|k|→∞

|k|m|ck| e|k| ln(r/R) = 0.

By the results in Sect. 4.5 on summability properties of the series representation for 

the solution, we find that u(r, φ). is differentiable in both variables arbitrarily often, 

and we obtain for φ ∈ [0, 2π [. 

. lim
r→R

u(r, φ) = U(φ).

The proof of uniqueness can be done with the help of the so-called maximum 

principle for the potential equation, which we formulate for more general domains 

as circular disks in the plane. A domain G is a non-empty, open, and connected set. 

Theorem 5.5 Let G be an open bounded domain in the two-dimensional plane 

and ∂G. its boundary, and let a nonconstant function u fulfill the potential equation 

Δu = 0. in G. If  u is continuous on G ∪ ∂G., then it attains its maximum and its 

minimum on the boundary of the domain. 

Proof For ε > 0. we set v(x, y) = u(x, y)+ ε(x2 + y2).. Then 

.
∂2v

∂x2
+

∂2v

∂y2
= 4ε > 0 in G.
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If (x0, y0). is supposed to be an inner point of G with 

. v(x0, y0) = max{v(x, y) | (x, y) ∈ G ∪ ∂G},

then, from well-known theorems on extreme values, necessarily follows 

. 
∂2v

∂x2
(x0, y0)  0 and

∂2v

∂y2
(x0, y0)  0.

This is a contradiction to the above equation. Therefore, v(x, y). attains its maximum 

on the boundary ∂G.. By continuity of u(x, y). and u  v ., it follows immediately: 

. max
G∪∂G

u(x, y)  max
G∪∂G

v(x, y) = max
∂G

v(x, y)  max
∂G

u(x, y)+ ε max
∂G

(x2 + y2).

Since ε > 0. can be chosen arbitrarily small, we obtain the result 

. max
G∪∂G

u(x, y) = max
∂G

u(x, y).

The same conclusion, applied to  u(x, y)., shows that u attains also its minimum 

on the boundary.   

The continuous functions u on G satisfying in G the equation Δu = 0. are called 

harmonic functions on G. In a plausible simple meaning, the maximum principle 

for harmonic functions in a problem with constant temperature T0 . on the boundary 

of a bounded domain says that the stationary temperature in the interior of the 

region can be neither lower nor higher than at the boundary, i.e., after some time 

the temperature T0 . will be reached everywhere. 

Uniqueness of the Solution 

Supposed ũ. is a second solution, then we set v(x, y) = u(x, y)  ũ(x, y).. Hence, 

v(x, y). fulfills the potential equation and has zero boundary values: 

. v(x, y) = 0 for all (x, y) ∈ ∂G.

Then, the maximum principle says that v(x, y) = 0. everywhere in G∪ ∂G., and this 

means 

.u(x, y) = ũ(x, y) everywhere in G ∪ ∂G.
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Fig. 5.5 Potential in a 

circular disk for the given 

boundary function U 

Illustration of the Solution for a Dirichlet Boundary Value 

Problem 

The illustration in Fig. 5.5 shows the solution of the Laplace equation on the unit 

circle disk for the given boundary function U(φ) = cos(φ) + sin(2φ).. Maxima 

and minima of the solution lie on the boundary. Inside the circle there are no local 

extrema, but a saddle point. The solution represents the stationary temperature 

distribution or the electric potential inside of the circle for a given boundary 

temperature or boundary potential U(φ).. 

5.4 Solution for the Problem of the Force-Free Vibrating 

String 

In our preceding work on the initial boundary value problem for the homogeneous 

force-free vibrating string 

. 

∂2u

∂t2
= c2 ∂

2u

∂x2
, u(x, 0) = f (x),

u(0, t) = u(l, t) = 0, lim
t→0+

∂u

∂t
(x, t) = g(x),

we had the solution approach 

. u(x, t) =
∞ 

n=1

sin
 nπ

l
x
  

an cos
 cnπ

l
t
 
+ bn sin

 cnπ
l

t
  

.

With term-by-term differentiation and interchanging the limit processes, we have 

.u(x, 0) =
∞ 

n=1

an sin
 nπ

l
x
 
= f (x),

lim
t→0+

∂u

∂t
(x, t) =

∞ 

n=1

cnπ

l
bn sin

 nπ
l

x
 
= g(x).
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For sufficiently smooth functions f and g, therefore the solution can be determined 

with the Fourier coefficients of f and g. The functions f and g are assumed to be 

2l-periodic and oddly extended. The coefficients an ., bn . are 

. an =
2

l

l
ˆ

0

f (x) sin
 nπ

l
x
 

dx, bn =
2

cnπ

l
ˆ

0

g(x) sin
 nπ

l
x
 

dx.

Thus, we have obtained a series representation for the solution. 

On Differentiability of the Solution 

The question of which functions f and g are “sufficiently smooth” is answered by 

the following theorem: 

Theorem 5.6 If f is twice continuously differentiable on the entire axis R. and 

f    . is piecewise continuous and if g is continuously differentiable on R. and g  . 
is piecewise continuous, then the solution u(x, t). is twice continuously partially 

differentiable. Differentiation with respect to x or to t twice results in convergent 

series, which represent continuous functions. 

Proof According to Sect. 4.3, we obtain the Fourier coefficients f
(3)
n . of f    . by 

threefold term-by-term differentiation of the series f (x) =
 ∞

n=1 an sin
 
nπ
l
x
 
.. 

Correspondingly we find the Fourier coefficients g
(2)
n . of g  . by differentiating term 

by term twice the series of the function g. For the coefficients an . of f and bn . of g, 

we have the relations 

. an =  
l3

π3n3
f (3)
n ,

bn =  
l3

cπ3n3
g(2)n .

Thus, we can write u(x, t). in the form 

. u(x, t)= 
 

l

π

 3 ∞ 

n=1

1

n3
sin

 nπ
l

x
  

f (3)
n cos

 cnπ
l

t
 
+

1

c
g(2)n sin

 cnπ
l

t
  

.

With Bessel’s inequality it is found that also after twofold term-by-term differentia-

tion with respect to x or t the result is a uniformly convergent series:
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. 

∞ 

n=1

|f (3)
n |
n

 
1

2

∞ 

n=1

 
1

n2
+ |f (3)

n |2
 

<∞,

∞ 

n=1

|g(2)n |
n

 
1

2

∞ 

n=1

 
1

n2
+ |g(2)n |2

 
<∞.

  

D’Alembert’s Solution for the Force-Free Vibrating String 

We can also rewrite the solution into another form. Namely, if we set 

. an = An sin(φn) and bn = An cos(φn),

then by the trigonometric addition theorems—again for sufficiently smooth func-

tions f and g—D’Alembert’s representation of the solution is obtained (Exer-

cise A7): 

. u(x, t) =
∞ 

n=1

An

2

 
cos

 nπ
l
(x  ct) φn

 
 cos

 nπ
l
(x + ct)+ φn

  

=
1

2

⎛
⎝f (x  ct)+ f (x + ct)+

1

c

x+ct
ˆ

x ct

g(τ)dτ

⎞
⎠ .

G. S. Ohm (1789–1854) concluded as an application of the series representations 

first basic principles of acoustics for the string vibration. 

Ohm’s Law in Acoustics The sound of the string contains the tone pitch, 

determined by the fundamental frequency c/(2l)., and the overtones depending on 

the initial conditions with different amplitudes An .. The sound perception depends 

on the ratio of these amplitudes An=
 
a2
n + b2

n .. 

Remark Transient vibrations, necessary for the recognition of a musical instru-

ment, and phases, which are acoustically important for the localization of sound 

sources, are not taken into account in this characterization of timbre. 

Concrete examples of string vibrations can be found in textbooks on mechanics 

or acoustics. Some initial boundary value problems of the discussed type and also 

string vibrations under the influence of constraining forces are dealt with in the 

exercises.
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Uniqueness of the Solution 

A prerequisite that allows musicians among the readers to learn skills on a string 

instrument through regular practice, or even to risk an audition in front of an 

audience, is the fact that a string will always sound the same if the initial and 

boundary conditions are the same. Mathematically, this means that the solution to 

our initial boundary value problem must be unique. A standard method to show the 

uniqueness is to investigate the energy integral. 

The energy of a twice continuously differentiable solution u(x, t). is given at time 

t  0. with tension P , mass density  ., and cross-sectional area A of the string for 

small displacements by 

. E(t) =
l
ˆ

0

1

2
 A

 
∂u

∂t

 2

     
kinetic

+
1

2
PA

 
∂u

∂x

 2

     
potential energy density

dx.

By differentiation with respect to t under the integral, observing the wave equation 

with c2 = P/ ., and applying the chain and product rules when differentiating, we 

get 

. 
1

A

dE

dt
(t) =

l
ˆ

0

 
 
∂u

∂t

∂2u

∂t2
+P

∂u

∂x

∂2u

∂x∂t

 
dx=

l
ˆ

0

 
 
∂u

∂t

 
P

 

∂2u

∂x2

 
+ P

∂u

∂x

∂2u

∂x∂t

 
dx

= P

l
ˆ

0

∂

∂x

 
∂u

∂t

∂u

∂x

 
dx = P

 
∂u

∂t

∂u

∂x

 x=l

x=0     
=0 by the boundary condition

= 0.

This means that the law of energy conservation applies for the vibrating string: 

. E(t) is constant.

If now ũ. were a second solution, then we had for v = u ũ. 

. 
∂2v

∂t2
= c2 ∂

2v

∂x2
, v(x, 0) = 0 and lim

t→0+

∂v

∂t
(x, t) = 0 for all x, v(0, t) = v(l, t) = 0

for all t ; thus ∂v
∂x

(x, 0) = 0.. Consequently we have E(0) = 0., and therefore we 

obtain by energy conservation E(t) = 0. for all t . Hence also ∂v
∂x

(x, t) = 0. for all x 

and t , and finally
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. v(x, t) = v(0, t)+
x
ˆ

0

∂v

∂x
(τ, t)dτ = 0.

This says that the solution u is unique: u = ũ.. For the beautiful experience of being 

happy when listening to well-rehearsed music, we have to thank the law of energy 

conservation. 

Meaning of the Solution 

For an initial velocity g ≡ 0. the solution u(x, t). consists of the two waves 1
2
f (x +

ct). and 1
2
f (x  ct),. which move in opposite directions with velocity c without 

changing their shape, superpose each other, and are reflected at the ends of the string 

with opposite phase. The influence of an initial velocity g  = 0. is given by the 

additive component 1
2c

x+ct
´

x ct
g(τ)dτ . in the solution. 

The tone pitch is determined by the fundamental frequency c/(2l). in the Fourier 

series representation of the solution. Since c2 = P/ . is the quotient of the tension 

P and the mass density  . of the string, the influence of tension, mass, or length 

changes to the frequencies can be seen immediately in the series. Anyone who has 

ever manipulated or even tuned a string instrument probably knows these effects 

from experience. 

Without regard to physical units, we illustrate the solution function u(x, t). for 

0  x  1., 0  t  2., c = 1., with concrete initial conditions f and g in two 

examples (Figs. 5.6 and 5.7). In the first example we set 

f (x) = h(4x  2). with h(x) =
 

e 1/(1 x2) for  1 < x < 1,

0 otherwise.
. 

In the second example we set f (x) =
 

2x for 0  x  1/4,

2(1 x)/3 for 1/4  x  1.
. 

Fig. 5.6 Smooth solution of 

the 1D wave equation
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Fig. 5.7 Non-differentiable 

solution of the 1D wave 

equation 

In both cases we use g = 0.. In the first example, the initial condition f and the 

solution are infinitely often differentiable. In the second example, f and thus also 

the solution u are not differentiable (cf. later on Sect. 9.6). 

5.5 The Approximation Theorem of Weierstrass 

In the practice of mathematical modeling technical problems and also in many 

mathematical proofs, one replaces a continuous function f : [a, b] → C. 

approximately by a polynomial. A basis for this is the following theorem of K. 

Weierstrass (1815–1897). 

Theorem 5.7 (Theorem of Weierstrass) Every continuous f : [a, b] → C. on a 

closed bounded interval [a, b]. can be uniformly approximated by a polynomial. 

Proof The function can be extended to a continuous 2(b  a).-periodic function f̃ . 

so that for any given ε > 0. there exists a trigonometric polynomial Pn . of the form 

Pn = 1
n
(S0+ S1+ · · ·+ Sn 1)., where sup

t∈R
|f̃ (t) Pn(t)|  ε

2
. (according to Fejér’s 

theorem, p. 28). Here, the Sk . for k ∈ N0 . are the kth partial sums of the Fourier series 

expansion of f̃ .. For each partial sum Sk . there is a Taylor polynomial Tk . such that 

sup
t∈[a,b]

|Sk(t) Tk(t)|  ε
2
.. With T = 1

n

n 1 
k=0

Tk . it follows immediately that 

. sup
t∈[a,b]

|f (t) T (t)|  sup
t∈[a,b]

|f (t) Pn(t)| + sup
t∈[a,b]

|Pn(t) T (t)|  ε.

  

Remark We do not give any explicit examples here, because the method given 

in the proof for obtaining approximation polynomials is laborious and complicated. 

However, functions f in practice often have additional smoothness properties. Then, 

one can find polynomials with less complicated methods, which interpolate the 

function at certain node points and which also have good overall approximation 

properties between the nodes (cf. p. 111).
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The theorem of Weierstrass can be sharpened if the function f , which shall be 

approximated, has additional smoothness properties (cf. later on p. 142). 

5.6 The 1/f-Theorem of Wiener 

The subject of this section is an elementary proof of the famous 1/f .-Theorem 

of Wiener (1933). This theorem states that for a Fourier series f , which has no 

zero and has absolutely summable coefficients, also the reciprocal function 1/f . 

has absolutely summable coefficients. When we discuss discrete linear filters in 

Sect. 11.6, an application of this theorem is shown to the reconstruction of filtered 

discrete data. The proof we follow was given by Newman (1975). Other proofs 

with the help of theorems on maximal ideals in normed algebras can be found in 

textbooks of functional analysis (e.g., in Rudin, 1991). 

For a Fourier series f (t) =
+∞ 

k= ∞
ck ejkt . with absolutely summable coefficients, the 

value 

.  f  A =
+∞ 

k= ∞
|ck|

is a norm. Evidently, we have  f  ∞ = max |f (t)|   f  A.. Two such series f 

and g each, now considered as continuous functions on [0, 2π ]., fulfill the following 

inequalities: 

.  f + g A   f  A +  g A and  f · g A   f  A ·  g A.

With this norm, the vector space A. formed by such Fourier series is a normed 

algebra with the function f (t) = 1. on [0, 2π ]. as multiplicatively neutral element. 

One can show that this space A. is complete, i.e., every Cauchy sequence in A. 

converges to a function in A. (for completeness see Rudin, 1991, for instance). 

The first inequality is immediately obtained from the corresponding triangle 

inequality for the partial sums, and the second is seen as follows: 

For fN (t) =
+N 

k= N
ck ejkt . and gN (t) =

+N 
k= N

dk ejkt ., the Cauchy-Schwarz 

inequality and the Parseval equality of p. 54 yield the convergence of fNgN . to fg  

in the norm  . 1 . of L1([0, 2π ]). (for the definition of  . 1 . see p. 500): 

.
1

2π

2π
ˆ

0

|fN (t)gN (t) f (t)g(t)|dt   fN  f  2  gN 2+ f  2  gN  g 2  →
N→∞

0.



5.6 The 1/f-Theorem of Wiener 79

The Fourier coefficients hk(N). of fNgN (t) =
+2N 

k= 2N

hk(N) ejkt . are (compare 

Exercise A5, p. 56) hk(N) =
+N 

n= N
cndk n . (with dm = 0. for |m| > N .). They 

converge for N →∞. to the Fourier coefficients hk . of fg, since the L1
.-convergence 

of fNgN . implies 

. |hk(N) hk| =

      
1

2π

2π
ˆ

0

(fN (t)gN (t) f (t)g(t)) e jkt dt

      
  fNgN fg 1  →

N→∞
0.

Thereby, we have hk =
+∞ 

n= ∞
cndk n ., i.e., the Fourier coefficients of f · g . are 

obtained by discrete convolution of the coefficient sequences of f and g. Thus, we 

have for every N ∈ N. 

. 

+N 

k= N
|hk(N)|  

+N 

n= N
|cn|

+N 

k= N
|dk|   f  A ·  g A,

and eventually from that the inequality  f · g A   f  A ·  g A.. 

Attentive readers are reminded of the absolute convergence of the Cauchy 

product of power series shown in calculus, where one proceeds quite analogously. 

We continue with another useful preparatory inequality: For  2π .-periodic and twice 

continuously differentiable functions f and their derivatives f  ., the following 

inequalities are valid: 

. max
t∈[0,2π ]

|f (t)|   f  A  max
t∈[0,2π ]

|f (t)| + 2 max
t∈[0,2π ]

|f  (t)|.

The first inequality is trivial. For the second one we estimate with the Cauchy-

Schwarz inequality (see also p. 35 and p. 51). For f with Fourier coefficients ck ., we  

have (compare also the Poincaré-Friedrichs inequality, p. 503) 

. 

⎛
⎝  

k∈Z,k  =0

|ck|

⎞
⎠

2

 
 

k∈Z,k  =0

1

k2
·

 

k∈Z,k  =0

k2|ck|2  
π2

3
·

1

2π

2π
ˆ

0

|f  (t)|2dt

 
π2

3
max

t∈[0,2π ]
|f  (t)|2  4 max

t∈[0,2π ]
|f  (t)|2.

With c0  maxt∈[0,2π ] |f (t)|. now the upper bound for  f  A . in the inequality is 

obtained.
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Theorem 5.8 ( 1/f .-Theorem of N. Wiener) For every Fourier series f ∈ A ,. 

which has no zero, also 1/f . belongs to A.. 

Proof Let f ∈ A. be given without a zero. We can assume that |f (t)|  1. for all t . 

Then there exists a partial sum P of the Fourier series of f , which has no zero so 

that  P  f  A  1/3.. Now we build the geometric series 

. S =
∞ 

n=1

sn =
∞ 

n=1

(P  f )n 1

P n

and show that S converges in A. to 1/f .: 

We have |P(t) f (t)|  1/3. for all t , and therefore by the triangle inequality also 

for all t 

. |P(t)|  |f (t)|  |P(t) f (t)|  
2

3
.

From this, for n ∈ N. we get the estimate 

. max
t∈[0,2π ]

    
1

P n

     
 

3

2

 n

.

From (1/P n) =  nP  /P n+1
., it follows with K = max |P  |. that 

. max
t∈[0,2π ]

    
 

1

P n

       nK

 
3

2

 n+1

.

Consequently, from the preceding preparatory inequality above, it follows that 

. 

    
1

P n

    
A

 (3nK + 1)

 
3

2

 n

.

Furthermore, by the norm inequality we have  (P  f )n 1 A   P  f  n 1
A

  
1
3

 n 1
,. so that we now obtain for the summands sn . of S, again with the norm 

inequality in A., 

.  sn A =
    
(P  f )n 1

P n

    
A

 
9Kn+ 3

2n
.

Therefore
∞ 
n=1

 sn A < ∞., what can be seen, for example, by the well-known 

quotient criterion. Hence the series S converges in the norm of A., and by  sn ∞  
 sn A . it converges also uniformly (M-Test, p. 21). With  (P  f )/P  n

A
→ 0. for 

n→∞. now, it follows for the geometric series
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. S =
1

P

∞ 

n=1

 
P  f

P

 n 1

=
1

f
.

To prove finally the absolute summability of the Fourier coefficients of 1/f ., we  

denote the kth Fourier coefficient of 1/f . by ck(1/f ). and those of sn = (P  
f )n 1/P n

. analogously by ck(sn).. 

The Fourier coefficients of S can be computed with term-by-term integration, 

because the series converges uniformly. We obtain with sn ∈ A. and interchanging 

the order of summation in the following absolutely convergent double sequence: 

. 

    
1

f

    
A

=
+∞ 

k= ∞
|ck(1/f )| =

+∞ 

k= ∞

     

∞ 

n=1

ck(sn)

      
+∞ 

k= ∞

∞ 

n=1

|ck(sn)|

=
∞ 

n=1

+∞ 

k= ∞
|ck(sn)| =

∞ 

n=1

 sn A  
∞ 

n=1

9Kn+ 3

2n
<∞ .

Thus, the assertion of the 1/f .-Theorem is proven.   

Remark The 1/f .-Theorem is also valid for Fourier series of several variables. See 

Rudin (1991) for that. An analogous result of this type for so-called Dirichlet series 

can be found in Goodman and Newman (1984). 

5.7 Exercises 

(A1) (a) What is the distortion factor of the odd 2π .-periodic extension of the 

function f (t) = cos(t). for 0 < t < π .? 

(b) What is the distortion factor of the 2π .-periodic rectangle signal r(t). 

(Fig. 5.8)? 

(A2) Let f and g be given by Fig. 5.9. 

Fig. 5.8 2π .-periodic 

rectangle signal 

Fig. 5.9 A rectangle and a triangle signal that shall be convolved
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Fig. 5.10 RLC circuit 

whose asymptotic output 

voltage for the given input 

shall be calculated 

What is the Fourier series of (f ∗g)2π .? Is (f ∗g)2π . a differentiable function? 

(A3) What is the T -periodic transfer function for the circuit in Fig. 5.10 with 

inductance L, capacitance C, and ohmic resistance R? 

What is for t → ∞. the output voltage Uout (t). for Uin(t) =
U0| sin(ω0t)|.? 

(A4) Set hk = 1/P (j2πk/T ),. k ∈ Z., for an asymptotically stable differential 

equation
n 

k=0

aku
(k) = f . with the characteristic polynomial P . 

Show for n  2. that the coefficients hk . of the T -periodic transfer function 

satisfy for sufficiently large |k|. the inequality 

. |hk|  M|k| 3/2

with a suitable constant M > 0. (cf. p. 65). 

(A5) Show that the 2π .-periodic transfer function 

. h(t) =
+∞ 

k= ∞

ejkt

jk + a0

of the equation u (t)+ a0u(t) = f (t)., a0 > 0., is a  2π .-periodic extension of 

the function 2π e a0t (1 e 2πa0) 1
. on ]0, 2π [.. 

Remark: Since h solves the equation for the 2π .-periodic impulse 

sequence 

. f (t) = 2π

+∞ 

k= ∞
δ(t  2kπ),

which vanishes between two impulses (cf. later Sect. 9.1), the solution 

in ]0, 2π [. must coincide with a solution of the homogeneous differential 

equation. The series of h converges uniformly on every closed subinterval 

of ]0, 2π [. and the one-sided limits for t → 0+. and t → 2π . exist. h is 

piecewise continuously differentiable. Calculate these limits and the jump 

height at t = 0. (see also p. 65). 

(A6) What is the Fourier series representation for the potential u(r, φ). in a circular 

disk around zero with radius R, if the potential on the boundary of the disk 

is given by
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. u(R, φ) =
 
 U0

π
(φ  π) for 0 < φ  π

U0
π
(φ  π) for π < φ  2π ?

(A7) Using the trigonometric addition theorems, transform the Fourier series 

solution for the problem of the force-free vibrating string, with sufficiently 

smooth functions f and g, into D’Alembert’s form 

. u(x, t) =
1

2
(f (x + ct)+ f (x  ct))+

1

2c

x+ct
ˆ

x ct

g(τ)dτ

and to 

. u(x, t) =
∞ 

n=1

An

2

 
cos

 nπ
l
(x  ct) φn

 
 cos

 nπ
l
(x + ct)+ φn

  
.

(A8) Solve—as Fourier did in 1807—the one-dimensional heat equation from 

page 1 with thermal diffusivity k 

. 

∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t) (no external energy input)

u(x, 0) = f (x) (initial temperature distribution f )

u(0, t) = u(l, t) = 0 (the bar ends are chilled with ice)

by a separation of the variables approach as for the vibrating string. Assume 

that all occurring series converge uniformly. 

(A9)  . For the inhomogeneous one-dimensional wave equation 

. 

∂2u
∂t2 = c2 ∂2u

∂x2 + F(x, t), u(x, 0) = f (x),

u(0, t) = u(l, t) = 0, limt→0+
∂u
∂t
(x, t) = g(x),

one searches for a solution of the form u = v + w ., where w is the solution 

of the homogeneous initial boundary value problem as in Sect. 1.2, and v is 

a solution of the inhomogeneous equation. The function v shall satisfy the 

boundary conditions v(0, t) = v(l, t) = 0., the initial conditions v(x, 0) = 0., 

and limt→0+
∂v
∂t
(x, t) = 0.. 

Solve the task by the approach v(x, t) =
∞ 
k=1

vk(t) sin
 
kπx
l

 
.. Use  

term-by-term differentiation and coefficient comparison with the Fourier 

series of the inhomogeneous part F(x, t) =
∞ 
k=1

Fk(t) sin
 
kπx
l

 
.,
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Fig. 5.11 Sketch of the orbit 

of planet P around its Sun S 

Fk(t) = 2
l

ĺ

0

F(x, t) sin
 
kπx
l

 
dx .. Assume that all occurring series converge 

uniformly. 

(A10) Solve the homogeneous equation 

. 
∂2u

∂t2
= c2 ∂

2u

∂x2
 2κ

∂u

∂t
with 0 < κ <

πc

l
,

for the damped vibration of a string with the same initial and boundary 

conditions as in the preceding exercise. 

(A11) Kepler’s equation (J. Kepler 1571–1630) for the elliptic orbit of a planet P 

is 

. ϕ(t) ε sin(ϕ(t)) = ωt.

Here, ω = 2π/T . is the angular frequency with orbital period T , 0  ε < 1. 

the eccentricity of the ellipse, and ϕ(t). the eccentric anomaly at time t (see 

Fig. 5.11). 

For all t ∈ R. the following is valid: 

. 
.
ϕ(t) =

dϕ

dt
(t) =

ω

1 ε cos(ϕ(t))
> 0.

Furthermore ϕ(0) = 0. and ϕ(T ) = 2π.. Therefore, ϕ(t). is monotonically 

increasing with t and sin(ϕ(t)). must be an odd function of t , due to the 

motion’s symmetry. This motivates the solution approach ϕ(t) = ωt +
∞ 
k=1

bk sin(kωt).. Find the solution, which goes back to J. L. Lagrange and 

F. W. Bessel, by calculating the Fourier coefficients bk ..



Chapter 6 

Discrete Fourier Transforms, First 
Applications 

Abstract This chapter presents the discrete Fourier transform DFT with applica-
tions and examples. The alias effect is studied in detail with its disadvantages, but 
also with its great advantages for low-cost signal processing. The connection of the 
DFT with interpolation by Chebyshev polynomials is deduced. Further applications 
worked out are: trigonometric interpolation and interpolation with Chebyshev 
polynomials. The use of the discrete cosine transform DCT in numerical Clenshaw-
Curtis integration is shown as well as the 2D-Cosine transform in image processing 
like JPEG. The principle of the Fast Fourier Transform FFT is demonstrated with 
a programmable algorithm. The exercises treat approximation error estimates of 
trigonometric interpolations, dependent on the number of nodes, DFT frequency 
assignments, low-cost subsampling, comparison of interpolations on an interval 
with equidistant nodes versus Chebyshev abscissae. As practice tasks, a Chebyshev 
lowpass filter can be designed with the help of the Joukowsky transformation, and 
characteristic values like DC gain, distortion, or RMS value for a transmitter in 
emitter circuit can be computed with a DFT. 

6.1 Finite Discrete Fourier Transform (DFT) 

The task of approximating signals f : [0, T ] → C. of finite duration T by 
superposition of harmonic oscillations is solved by Fourier series expansion. In 
signal processing practice or numerical integration, however, the signal f (t)., t ∈
[0, T ]., is often not given as a continuous curve, but only by values f (tn). at certain 
equidistant sampling times tn = nΔt .. From those, a trigonometric polynomial has 
to be found by which approximate values of f (t). shall be computed for times t  = tn . 

as well as approximations for the spectral values ck . of the signal. 
We assume that f : [0, T [→ C. is continuous and piecewise continuously 

differentiable and that the limit f (T−). exists for t → T , t ∈ [0, T [.. For  f on 
[0, T [., let  

. y=(y0, y1, . . . , yN−1), yn = f (nΔt),
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be a given sampling vector with Δt > 0,. n = 0, 1, . . . , N − 1. and 
T = NΔt.. The signal f has a piecewise continuously differentiable T -
periodic extension fp ., which then has the sampling sequence (yn)n∈Z =
(. . . , y−2, y−1, y0, y1, . . . , yN−1, yN , . . . ).. This sequence is N -periodic, i.e., 
yn+mN = yn,.m ∈ Z,. n = 0, 1, . . . , N − 1.. 
As approximation  ck . for the kth Fourier coefficient ck . of fp ., 

. ck =
1

T

T̂

0

fp(t) e
−jkω0t dt (k ∈ Z, ω0 = 2π/T ),

the following Riemannian sum  ck . is chosen with the available samples: 

.  ck =
1

T

N−1 

n=0

f (nΔt) e−jknω0Δt Δt =
1

N

N−1 

n=0

yn e
−jkn2π/N .

However, when using these approximations  ck . for the spectral values ck ., we have to  
take the following aspects into account: 

1. The periodicity of the complex exponential function implies 

.  ck = cl for all l = k +mN, m ∈ Z,

because for m ∈ Z. one has: e−jkn2π/N = e−j (k+mN)n2π/N .. 

Thus, the resulting sequence ( ck)k∈Z . is N -periodic. On the other hand, for 
the Fourier coefficients ck . of fp ., we know that lim

|k|→∞
ck = 0. (cf. Sect. 4.5). 

Therefore, we can use at most a segment of length N of this sequence for 
approximation of N spectral values of the function fp .. For the DFT coefficients 
 ck . of real-valued functions f , we have ck =  cN−k ., 1  k  N/2., i.e., for even 
N the coefficient cN/2 . is real. 

2. With fp(nΔt) = f (nΔt) =
+∞ 

l=−∞
cl ej ln2π/N . for n  = 0. and (cf. Theorem of 

Dirichlet, p. 28)
+∞ 

l=−∞
cl =

fp(0)+fp(T−)

2 . we obtain for k ∈ Z., applying term-by-

term summation of the convergent series, 

. ck =
1

N

 
fp(0)+

N−1 

n=1

+∞ 

l=−∞
cl e

j ln2π/N e−jkn2π/N

  

=
+∞ 

l=−∞
cl

1

N

N−1 

n=0

e−j (k−l)n2π/N −
1

N

+∞ 

l=−∞
cl +

fp(0)

N
.
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The finite geometric series 1
N

N−1 
n=0

e−j (k−l)n2π/N
. yields 

. 
1

N

N−1 

n=0

e−j (k−l)n2π/N =
 
1 for l = k +mN, m ∈ Z,
0 for l  = k +mN, m ∈ Z.

Summarizing, we refer to the result as Alias Formula: 

.  ck =
+∞ 

m=−∞
ck+mN +

fp(0)− fp(T−)

2N
.

The coefficient  ck . contains the sum of all exact Fourier coefficients ck+mN . of 
fp ., m ∈ Z.. The corresponding circular oscillations ej (k+mN)ω0t . with angular 
frequencies (k + mN)ω0 . cannot be distinguished on the basis of the samples 
f (nT /N)., because all functions ej (k+mN)ω0t .match at all points nT/N .: 

. ejkn2π/N = ej (k+mN)n2π/N for all m ∈ Z and all n = 0, 1, . . . , N − 1.

This fact is called the “alias effect.” The complex amplitudes of all oscillations with 

angular frequencies (k + mN)ω0,m ∈ Z. arbitrary are represented in  ck . as sum. 
If fp . has a jump discontinuity at t = T ., then the term (fp(0) − fp(T−))/(2N). is 

added to all DFT coefficients. This term vanishes, if one changes the value f (0). to 
the mean value (fp(0+)+ fp(T−))/2.. 

Example For N = 10. and ω0 = 2π/T ., T = 1 .s, the following Fig. 6.1 shows 
as example that the oscillations f1(t) = sin(4ω0t). and f2(t) = sin(14ω0t). are 
indistinguishable on the basis of 10 samples at the times tk = kT /N ., k = 0, . . . , 9.. 
A DFT of f1 + f2 .with these samples results in c4 = −j . and c6 = j . as if the DFT 
were of 2f1 .. 

Fig. 6.1 Illustration on the 
alias effect
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Consequences for Applications of the DFT 

Frequency Assignment in the Baseband By assigning the DFT coefficients  ck . 
and  cN−k . to oscillations in the baseband with frequencies k/T ., − N/(2T )  

k/T  N/(2T )., and bandwidth B = N/(2T )., one chooses the frequencies of 
smallest magnitude that are possible according to the alias relation. For real-valued 
signals, the symmetry of the frequency band in both semiaxes makes sense, due to 
 ck = cN−k .. 

Example For N = 15. and T -periodic fp .with Fourier coefficients ck ., k ∈ Z., 

. ( c0, c1, . . . , c7) serves in the baseband as approximation for (c0, c1, . . . , c7),

( c8, c9, . . . , c14) serves in the baseband as approximation for (c−7, c−6, . . . , c−1).

For N = 14. and T -periodic fp .with Fourier coefficients ck ., k ∈ Z., 

. ( c0, c1, . . . , c6) serves in the baseband as approximation for (c0, c1, . . . , c6),

( c8, c9, . . . , c13) serves in the baseband as approximation for (c−6, c−5 . . . , c−1).

Since N is even, the coefficient c7 = cN/2 . serves as approximation for the amplitude 
of the oscillation cos (2πtN/(2T )).. For real-valued fp ., the coefficient cN/2 . is real 
and otherwise ck = cN−k .. 

Frequency mappings in the baseband as above are convenient for T -periodic 
signals, which are several times differentiable, if their Fourier coefficients ck . decay 
rapidly at higher angular frequencies |(k + mN)ω0|. (ω0 = 2π/T .) (cf. Sect. 4.5 on 
the asymptotic behavior of ck .). Then one can take  ck . with |k|  N/2. as useful 
approximation for ck .. For  T -periodic baseband signals, i.e., with frequencies only 
in the baseband, the DFT coefficients reveal the exact Fourier coefficients. Such 
signals are trigonometric polynomials and can be exactly reconstructed with the 
DFT. Signal frequencies outside the baseband produce alias effects. A disadvantage 
of the alias effect for detecting periodic oscillations of a frequency ν . in a specified 
baseband is the requirement that the sampling frequency must be at least 2ν .. In  
practice, one uses lowpass filters with the band limit as cutoff frequency before 
sampling to mitigate alias effects. Signal components of f with frequencies ν . not 
of the form ν = n/T . for some n ∈ Z. affect all Fourier coefficients of fp ., and thus 
also the DFT coefficients, when f is periodized to fp ., even if such frequencies are 
in the baseband. In this case, we speak of spectral leakage. For more on that, please 
refer to Sect. 12.6. 

The better the frequency resolution 1/T . of a DFT should be, the longer the 
sampling time T must be. The number N of the DFT samples determines the 
bandwidth B for a given T . The frequency band [0, B]. is also called Nyquist 
interval, and B also Nyquist frequency. 

Our human senses likewise make an assignment in the specified baseband in 
the case of visual impressions. The human eye can perceive image sequences in a
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video with 24 frames per second—a frame rate in movies—as a continuous process. 
Optical illusions, such as rotating wheels appearing to rotate slowly in the opposite 
direction of motion in a film, are alias effects: We assign the alias frequency with 
the lowest magnitude matching the sampled values. This, associated with a phase 
change, can cause the impression of a slower motion opposite to the actual rotation 
(Stroboscope effect, see Example 2 on p. 93). 

Remark on DFT Scaling Factors Since different scaling factors are used in 
software for a DFT, it should be noted that the correct values of the complex 
amplitudes of analyzed harmonic oscillations are obtained only with the prefactor 
1/N . in the definition of the DFT coefficients  ck .. 

We can visualize the alias effect and the possible mappings between DFT 
coefficients and spectral values of T -periodic functions, if we extend the DFT 
spectrum N -periodically. The following figure shows two possible correspondences 
in the baseband of bandwidth B = N/(2T ).. T is the duration of an N -point DFT of 
a real-valued function with spectral values at frequencies ν ., |ν| ∈] 3B , 4B[.. There 
is a phase reversal when the frequency of an alias oscillation changes its sign. This 
is the case when an alias frequency lies in a half-band of the form [mB, (m+ 1)B]. 
or [−(m+ 1)B, −mB]. for odd m ∈ N.. 

Example A DFT is performed for the 8 Hz oscillation 

. f (t) = 2 sin(32ω0t)

with T = 4.s, N = 20. and ω0 = 2π/T .. With 32 − N = 12., − 32 + 2N = 8., the  
DFT coefficients  c8 . and  c12 . are nonzero. We find 

.  c8 = j,  c12 = −j = c8.

In the baseband [−2.5Hz, 2.5Hz]., f corresponds to fa(t) = −2 sin(8ω0t). as alias 
with frequency 2 Hz and phase reversal compared to f (cf. the following Fig. 6.2 
with 8 Hz in [ 3B, 4B ].). 

Remark We will later see in Sect. 12.2 that signal sampling always generates 
a periodic spectrum. Therefore the observations on aliasing here apply to every 
sampling scenario accordingly. 

Alias Effect and Frequency Assignment with Undersampling 

We have seen that the bandwidth of a segment of the spectrum of fp . is determined 
by N and T and thus a segment whose spectrum is representable by a DFT 
without aliasing. Not a priori determined is the position of such a spectral part 
on the frequency axis. Its position can be determined from a priori knowledge
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Fig. 6.2 N -periodically 
extended DFT spectrum, 
locations of repeated DFT 
coefficients 

or deliberately. This has disadvantages in observing unknown signals, but also 
enormous advantages in signal processing for technical systems as for example in 
communications engineering, because there the signals and the allocation of signal 
frequencies in the spectrum can be chosen intentionally. 

Again, we assume that a DFT with N values and sampling frequencyN/T = 2B . 

is given for a function f as at the beginning of the section, and f is T -periodically 
extended to fp .. 

While the above alias formula shows how amplitudes of real signals with 
frequencies above N/(2T) appear as aliases in the DFT, in frequency detection 
problems we want to detect signal components cl ej2πlt/T . in frequency bands of 
the form mN

2T  
l
T
 

(m+1)N
2T . or − (m+1)N

2T  
l
T
 −mN

2T .with m  1.. 
The assignment of DFT coefficients to frequencies in a band [−(m+1)B ,−mB ]

∪ [mB , (m + 1)B ]. , B = N/(2T )., m ∈ N., is useful if you know that the 
sampled signal has frequencies only in the selected spectral range. If the signal is 
also T -periodic, then it is a trigonometric polynomial, which can be reconstructed 
exactly from the DFT, although the DFT—measured with the Nyquist frequency 
of the baseband—has a too low sampling rate. This is called subsampling or 
undersampling in a passband or bandpass sampling. 

In practice a one-to-one mapping of signal components in those half-bands 
to DFT coefficients and their respective signal frequencies could be done by 
amplitude modulation (cf. p. 45) and subsequent sampling or equivalently by an 
appropriate undersampling (cf. Examples 3 and 4 on p. 93). Therefore, we ask 
for the correspondence between DFT coefficients  ck . to unique circular waves 
cl ej2πlt/T . in these spectral bands. 

In other words, we want to know the mapping of these half-bands to the baseband 
through rephrasing the alias relations. The correspondences ck ←→ cl . are given in 
the following theorem, whose statements follow directly from the alias formula. 

Theorem 6.1 

1. For each m ∈ N0 . and each k , 1  k < N/2. , there is a unique circular wave 
cl ej2πlt/T . in the Fourier series of fp . with mN

2 < l <
(m+1)N

2 . , whose complex
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amplitude corresponds to  ck . for even m or cN−k . for odd m according to the alias 

formula. 

2. There is a unique oscillation cl ej2πlt/T . with − (m+1)N
2 < l < −mN

2 ., whose 

amplitude corresponds to  ck . for odd m or cN−k . for even m. 

For a selected m the correspondences between  ck ., cN−k ., and cl . are as follows: 

. 

m even :
 ck ←→ cl with l = k + mN

2 , and cN−k ←→ cl with l = −k − mN
2 .

m odd :
 ck ←→ cl with l = k − (m+1)N

2 , and cN−k ←→ cl with l =−k + (m+1)N
2 .

3. For m ∈ N0 . , k = 0. and k = N/2. at even N , and for the band-edge frequencies 

mN/(2T ). and (m + 1)N/(2T )., the following statements are valid with ω0 =
2π/T .: 

(a) If m is even, then the complex amplitudes of ejω0tmN/2
. and e−jω0tmN/2

. as 

parts of fp . are added to  c0 .. If  N is also even, then the complex amplitudes of 

ejω0t (m+1)N/2
. and e−jω0t (m+1)N/2

. as parts of fp . are added to cN/2 .. 

(b) If m is odd, then the complex amplitudes of ejω0t (m+1)N/2
. and of 

e−jω0t (m+1)N/2
. as parts of fp . are added to  c0 .. If  m is odd and N is even, 

then the complex amplitudes of ejω0tmN/2
. and e−jω0tmN/2

. are added to cN/2 .. 

Since sin(ω0tmN/2). always yields zero at the sampling points of the considered 
DFT for all m ∈ Z., only the complex amplitudes of the cosine parts in the circular 
waves e±jω0tmN/2 = cos(ω0tmN/2)± j sin(ω0tmN/2)., as considered in 2.a) and 
2.b) above, contribute to  c0 .or cN/2 .. If  m and N are both odd, thenmN/(2T )  = n/T . 

for all n ∈ Z., i.e., these are not frequencies in the Fourier series of the T -periodic 
extension fp . of f . The effect of such frequencies in the signal f on indeed all 
Fourier coefficients of fp ., and thus also on the DFT, is discussed later under the 
keyword “leakage effect” in Sect. 12.6. 

The following Fig. 6.3 schematically illustrates the correspondences of DFT 
coefficients to high-frequency signal parts as given in the theorem before with 
m = 3.. 

Fig. 6.3 Undersampling 
shifts by aliasing 
high-frequency bands into the 
range of the DFT spectrum
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Important Observation The theorem shows an enormous advantage of the alias 
effect for applications in signal processing. For the purpose of detecting signal 
components in a high-frequency band, the signal to be observed is subjected to 
bandpass filtering before sampling, i.e., only signal components with frequencies in 
the selected subband are permitted to pass the filter. This permits to detect signal 
components with very high frequencies by a DFT with only a few samples and 
short observation times T (cf. Example 3, p. 93). That is a key feature in modern 
transmissions of high-frequency signals. 

In digital communications, high transmission frequencies—in the range of 
several GHz for WLAN or LTE—are used with much lower CPU clocks of the 
digital end-user devices and limited memory capacity in real-time operation. The 
transmitted signal consists of good approximation of time segments of trigonometric 
polynomials with mutually orthogonal components and known constant frequency 
spacings in a given high-frequency band. The complex amplitudes of the oscillations 
carry the encoded user information. The associated oscillations are therefore 
also called carriers. Examples are OFDM transmissions (Orthogonal Frequency 
Division Multiplexing, see later Sect. 12.2), applying, e.g., 64-QAM modulation and 
40 MHz bandwidth for WLAN according to IEEE802.11n. 

A DFT with bandpass sampling makes it possible to reconstruct the amplitudes, 
required for the user information at the receiver, with a low sampling rate— 
depending only on the bandwidth and the spacing of the carrier frequencies. 
Trigonometric polynomials in a passband (with large m in the last theorem) 
are mapped by subsampling to a signal of the same bandwidth and the same 
amplitude distribution which lies in another low-frequency alias band (small m 

in the last theorem). One simply reads the DFT coefficients as amplitudes of 
carriers with alias frequencies in the chosen band. For carrier frequencies in a 
high-frequency passband, the analog-to-digital conversion (ADC) thus can save 
enormous cost and energy, compared with alternative amplitude modulations using 
mixers, by undersampling matching the bandwidth and carrier frequencies1 (cf. 
Example 4, p. 93). Frequency assignments as in the theorem on p. 90 can be 
understood as an amplitude modulation into the baseband, by a simple mathematical 
operation without additional hardware in practice. Readers with interest in digital 
communications should consult the textbooks of Proakis and Salehi (2013) or Tietze 
and Schenk (2008). 

Examples (Frequency Assignments) 

1. Alias Effect in the Baseband. Let us assume that we observe a real signal which 
is a superposition of oscillations with frequencies up to a bandwidth of 400 Hz. 
A DFT performed over T = 2. seconds with N = 512. points is assumed to show 
only the DFT coefficients  c80 . and c432 . as nonzero. 

All complex amplitudes of signal components with frequencies |k +mN |/T ., 
m ∈ Z., within the given bandwidth up to B = 400.Hz are added in the two DFT

1 Check, for example, the specification of the ADC12DL040/65 of Texas Instruments. 
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coefficients  ck . and c−k+N .. This means that an oscillation with |k + mN |/T . Hz 
can contribute to these coefficients as long as |k + mN |  BT .. With k = 80., 
(80 + 512)/2 = 296., and |(80 − 512)/2| = 216. in the example, besides the 
oscillation with 40 Hz, also 216 Hz and 296 Hz are possible signal frequencies 
affecting  c80 . and c432 .. 

All functions with the same samples have the same DFT spectrum. The true 
spectra of this variety of conceivable functions can be very different but are 
indistinguishable from the DFT coefficients without additional information. In 
signal processing one tries to avoid unwanted alias effects by using bandpass 
filters and weight functions, the so-called window functions. For more details on 
this, we refer again to the later Sect. 12.6 in Chap. 12. 

2. Stroboscope Effect. We consider the DFT of the two complex-valued functions 

. f1(t) = ej20ω0t and f2(t) = e−j4ω0t with N = 24, T = 1 s and ω0 = 2π/T .

They represent opposite circular motions. The DFT of f1 . yields c20 = 1., ck = 0. 
for k  = 20.. In the baseband with bandwidth B = 12. Hz, the alias for f1 . is the 
slower opposite rotation e−j4ω0t = f2(t).. 

Since for the Fourier coefficients ck . of complex-valued periodic functions, the 
equations ck = c−k . need not be true, we can dispense with the symmetry of the 
baseband in both semiaxes, if we know that only complex circular waves with 
positive frequencies are sampled. Choosing the interval [0 , N/T [. for frequency 
assignments in the example and assigning  c20 . to  c20 ej20ω0t ., we obtain the 
observed rotation f1 ., which in turn appears as an alias of f2 .. Rotations ejnNω0t ., 
n ∈ Z., result with the above DFT in the point 1 at rest as alias. The function 
f3(t) = ej25ω0t . in turn has the slower rotation ejω0t . of the same direction as 
alias. 

3. High-Frequency Detection with Undersampling. Let us assume that a DFT with 
N = 512. points, duration T = 0.256× 10−3

.s is sampling a real signal f in the 
frequency band ]1GHz, 1GHz + 1MHz[., and yields only the DFT coefficients 
 c160 = c352 . and c164 = c348 . as nonzero. 

With m = 1000., mN/(2T ) = 1. GHz, N/(2T ) = 1. MHz, ν1 = 160/T =
625. kHz, and ν2 = 164/T = 640625. Hz, it must be true that f (t) =
2 c160 cos(2π(1 GHz+ ν1)t)+ 2 c164 cos(2π(1 GHz+ ν2)t).. The trigonometric 
alias polynomial in the baseband is 2 c160cos(2πν1t)+ 2 c164cos(2πν2t).. 

4. Gain in Computational Effort by Undersampling in the Radio-Frequency Band. 
Assume we have signals in the radio-frequency band FM  from 87.5MHz. 
to 108MHz]., which shall be digitally processed. Sampling with 216MHz 
according to the Nyquist frequency would require an anti-alias lowpass filter 
with cutoff frequency 108MHz and yield a data stream of 2 · 216 = 432.MB/s 
from a 16 Bit ADC to the signal processing unit. Undersampling with sampling 
frequency fs = 43.5.MHz shifts the signal spectrum to [0.5MHz , 21MHz ].. 
This would result in a data stream of only 87 MB/s for further signal processing, 
which is a gain of about 80%. in computation time, compared to 432MB/s, 
without the need of an (costly) analogue mixer.
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5. Delayed Sampling, Correction in the Spectrum of Trigonometric Polynomials. 
We consider a sampling of f (t) = 2 ejω0t +(1 + j) ej2ω0t +(1 − j) ej3ω0t . with 
T = 1.s, ω0 = 2π/T .. Assume that the sampling times are tn = nT/N + 0.1.s 
with N = 4. and n = 0, . . . , N − 1.. The DFT spectrum of the delayed sampling 
with the “synchronization error” Δt = 0.1.s is  

. (c̃0 , . . . , c̃3) = (0, 1.6180+ 1.1755j,−0.6420+ 1.2600j, 0.6420+ 1.2600j).

Since f is a T -periodic trigonometric polynomial with frequencies only in the 
passband [0 , N/T [., the DFT coefficients  ck . of f are simply phase-shifted 
toward c̃k = ckzk ., z = ejω0Δt

., due to the delayed sampling (cf. p. 44). 
If the amplitude A of a “pilot carrier” is known, here for example A = 2. 

for the carrier frequency 1 Hz, one can recognize the phase shifts from the 
obtained DFT coefficient of this carrier and correct the entire DFT spectrum. 
In the example, the products c̃kz−k

. with z = c̃1/A., k = 0, . . . , 3. yield the true 
spectrum ( 0 , 2 , 1+ j , 1− j ). of f in the frequency band up to 3 Hz. 

Of course, from z = ejω0Δt
. the time delay Δt = arg(z)/ω0 . can be 

calculated. In a transmit-receive scenario, where the amplitudes of trigonometric 
polynomials represent the encoded information in a suitably chosen frequency 
band, the use of known amplitudes on known carriers (preambles and pilot 
symbols) is standard in transmissions such as DAB, DVB-T, DSL, WLAN, LTE, 
etc. They are used for synchronization and generally for channel estimation. 

6. Limits of Special Series. We had already seen in example 2 on p. 35 that 
sometimes limits of series can be found if the series elements are Fourier 
coefficients of a known periodic function. Also the alias relation for a coefficient 

 ck . of a DFT of length N permits this, if the coefficients of a series
∞ 

m=1
am . are of 

the form am = ck+mN + ck−mN . and the Fourier coefficients ck±mN . result from a 
function with known necessary samples and spectrum. 

We choose as an example the Fourier series of the 2-periodic extension of 
f (t) = −t+1.on [0, 1].and f (t) = 0.on [1, 2[.. We know from example 1 on p. 33 
the Fourier coefficients c0 = 1/4. and ck = ((−1)k+1 + 1)/(2π2k2) − j/(2πk). 
for k  = 0.. There, the Fourier coefficients must be multiplied by (−1)k ., due to 
the right shift. 
A 3-point DFT with T = 2. yields c0 = 4/9. and c1 = 5/18− j

√
3/18.. With the 

alias effect for the coefficient  c0 . one immediately calculates 

. 

∞ 

k=1

1

(6k − 3)2
=
 
 c0 − c0 −

1

6

 
π2

2
=

π2

72
.

From  ( c1) = 1
6 +

∞ 
k=1

 (c6k−5 + c1−6k). and the according equation for the 

imaginary part, left to the reader, we obtain the two limits
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. 

∞ 

k=1

 
1

(6k − 5)2
+

1

(1− 6k)2

 
=

π2

9
,

∞ 

k=1

1

(3k − 2)(1− 3k)
= −

√
3π

9
.

A systematic theory for the calculation of series limits uses the residue theorem, 
hypergeometric summation, or special functions like the polygamma function 

Ψ (n, z) = dn+1

dzn+1 lnΓ (z).. We find 

. 

∞ 

k=1

 
1

(6k − 5)2
+

1

(1− 6k)2

 
=

Ψ (1, 1/6)+ Ψ (1, 5/6)

36
=

π2

9
.

More details can be found in the work of Grosjean (1984) and of Choi and 
Cvijović (2010) on specific values of the polygamma function. Summation 
algorithms in computer algebra systems are discussed in the textbook of Koepf 
(1998). 

We now show that the DFT has an inverse, which is called IDFT. 

Definition The linear transform 

. (y0, y1, . . . , yN−1) −→ ( c0, c1, . . . , cN−1),

 ck =
1

N

N−1 

n=0

yn e
−jkn2π/N

is called finite discrete Fourier transform or in short DFT. The coefficients  ck . are 
uniquely determined for k = 0, 1, . . . , N − 1. by the samples y0, . . . ., yN−1 . and are 
called DFT coefficients of y = (y0, . . . , yN−1).. 

The Inverse Discrete Fourier Transform (IDFT) 

Conversely, by the vector ( c0, c1, . . . , cN−1). exactly one vector (y0, y1, . . . , yN−1). 

is determined, whose DFT coefficients are the  ck .: 
For n = 0, . . . , N−1.and k = 0, . . . , N−1.we obtain with yn =

N−1 
k=0
 ck ejkn2π/N . 

. 
1

N

N−1 

n=0

yn e
−jkn2π/N =

1

N

N−1 

n=0

N−1 

l=0

 cl ej ln2π/N e−jkn2π/N

=
N−1 

l=0

 cl
1

N

N−1 

n=0

e−j (k−l)n2π/N

    
1 for l=k, 0 otherwise (cf. 2. on p. 87) 

= ck.
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Theorem 6.2 The mapping (y0, y1, . . . , yN−1)−→DFT( c0, c1, . . . , cN−1). is lin-

early one to one on CN .. Its inverse mapping is called inverse finite discrete Fourier 

transform, in short IDFT. 

. 

DFT :  ck = 1
N

N−1 
n=0

yn e−jkn2π/N (k = 0, . . . , N − 1)

IDFT : yn =
N−1 
k=0
 ck ejkn2π/N (n = 0, . . . , N − 1).

Properties and Calculation Rules for the Discrete Fourier 

Transform 

Now, let y., x ∈ CN . be given vectors and c., d ∈ CN . the vectors of their 
corresponding DFT coefficients. For computational purposes, one extends these 
vectors in CN . to N -periodic sequences so that yn+mN = yn . for m ∈ Z,. n =
0, 1, . . . , N − 1.. Then the DFT is a bijective linear map on the vector space of all 
N -periodic complex sequences with 

.  ck =
1

N

N−1 

n=0

ynz
−kn, k = 0, . . . , (N − 1), z = ej2π/N .

We obtain analogous calculation rules as for Fourier series. The most important 
rules are summarized in the following Table 6.1. 

Here, we only prove the convolution relation as an example. With z = ej2π/N . 

it follows for the m-th DFT coefficient of the cyclic convolution (y ∗ x)n∈Z .—in 
this text with the same prefactor 1/N . as in the DFT—by interchanging the order of 
summation: 

. 
1
N

N−1 

n=0

 
1

N

N−1 

k=0

xkyn−k

  
z−nm =

1

N

N−1 

k=0

 
1

N

N−1 

n=0

xkyn−kz
−nm

  

=
 
1

N

N−1 

k=0

xkz
−mk

   
1

N

N−1 

n=0

yn−kz
−m(n−k)

  
=  dm cm.

In the last line it is used that the sequence (yn)n∈Z . is N -periodic. Note again the 
alias effect. Readers are encouraged to prove the remaining relations of the table 
and Exercise A21 by themselves.
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Table 6.1 Properties of Fourier series and the DFT compared 

Fourier series DFT 

Time-domain function Samples Spectral values 

f (t) T -periodic. yn = f (nT /N) N -periodic.  ck =. 

f (t) =
+∞ 

k=−∞
ck ejkω0t , ω0 = 2π

T
. yn =

N−1 
k=0
 ck ejkn2π/N .

1
N

N−1 
n=0

yn e−jkn2π/N
. 

ck = 1
T

T́

0
f (t) e−jkω0t dt . 

Similarity yn = f (nT /(αN)). as above 

f (αt) =
+∞ 

k=−∞
ck ejkαω0t . otherwise as above 

T/α-periodic, α > 0. 

Translations, amplitude modulation (yn+m)n∈Z, (m ∈ Z). (zkm ck)k∈Z, z =ej2π/N . 

f (t + t0) =
+∞ 

k=−∞
ck ejkω0(t+t0) . (znmyn)n∈Z . ( ck−m)k∈Z . 

ejmω0t f (t) =
+∞ 

k=−∞
ck−m ejkω0t . 

T -periodic convolution N -periodic convolution with DFT coefficients 

For f (t) =
+∞ 

k=−∞
ck ejkω0t . For yn = f (nT /N). ( ck)k∈Z . 

g(t) =
+∞ 

k=−∞
dk ejkω0t . xn = g(nT /N) . ( dk)k∈Z . 

(f ∗ g)T (t) =
+∞ 

k=−∞
ckdk ejkω0t . (y ∗ x)n∈Z = 1

N

N−1 
m=0

xmyn−m . ( ck dk)k∈Z . 

Parseval equality 

||f ||2 =
+∞ 

k=−∞
|ck |2 . 1

N

N−1 
n=0

|yn|2 =
N−1 
k=0

| ck |2 . 

6.2 Trigonometric Interpolation 

Let be given a sample vector (y0, y1, . . . , yN−1). of a continuous function f on 
[0, T ]., T > 0., yn = f (nΔt), NΔt = T .. We ask for a trigonometric polynomial 

P(t) =
m 

k=−m

αk ejkω0t . with ω0 = 2π/T . of degree at most m  N/2. so that 

P(nΔt) = f (nΔt). at the equidistant sampling points nΔt . for n = 0, . . . , N − 1 .. 
To accomplish this we must find 2m+ 1. coefficients for P . 

Trigonometric Interpolation with an Odd Number of Samples 

If the number N of the interpolation points is odd, N = 2m + 1., then the trigono-
metric interpolation polynomial is uniquely determined. Because a trigonometric 
polynomial P(t)  = 0. of degree m has at most 2m zeros per period (cf. p. 14), 
each two such polynomials which coincide at 2m+ 1. points per period are already 
identical.
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By construction of the DFT and the IDFT, Q(t) =
N−1 
k=0
 ck ejkω0t . with the DFT 

coefficients  ck . of (y0, . . . , yN−1). is a trigonometric interpolation polynomial. Since 
the functions ejkω0t . and ej (k+N)ω0t . for k ∈ Z. match at all points nΔt . and the 
sequence ( ck)k∈Z . is N -periodic, it follows immediately 

. Q

 
n
T

N

 
=

2m 

k=0

 ck ejkn
2π
N =

m 

k=0

 ck ejkn
2π
N +

−1 

k=−m

 ck+N ej (k+N)n 2π
N =

m 

k=−m

 ck ejkn
2π
N .

Theorem 6.3 The uniquely determined trigonometric interpolation polynomial P 

with  a degree of at most m = (N − 1)/2. results from the DFT of (y0, . . . , yN−1). 

with ω0 = 2π/T .: 

. P(t) =
m 

k=−m

 ck ejkω0t (N = 2m+ 1).

The trigonometric form of P follows with the values P(nΔt) = yn . for n =
0, . . . , N − 1. as in Sect. 2.1: 

. P(t) =
 a0
2

+
m 

k=1

( ak cos(kω0t)+ bk sin(kω0t)),

.  ak = ck + c−k =
2

N

N−1 

n=0

yn cos

 
nk

2π

N

 
,

.  bk = j ( ck− c−k) =
2

N

N−1 

n=1

yn sin

 
nk

2π

N

 
.

If the samples are real, then P(t). is also real-valued. In particular, P = f . if f is a 
T -periodic trigonometric polynomial of degree at most m. 

Trigonometric Interpolation with an Even Number of Samples 

If N = 2m. is even, then the interpolation problem is not uniquely solvable; the 

trigonometric polynomial P(t)=
m 

k=−m

αk ejkω0t . has N + 1. coefficients. The DFT 

of (y0, y1, . . . yN−1). yields N coefficients ( c0, . . . , cm−1, cm, . . . , cN−1).. 

If we map the coefficient cm = cN/2 . as amplitude to the oscillation e−jmω0t . and 
set αm = 0., i.e., 

.(α−m, . . . , α0, . . . , αm) = ( cm, . . . , cN−1, c0, . . . , cm−1, 0),
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then we obtain the trigonometric interpolation polynomial 

. P1(t) =
m−1 

k=−m

 ck ejkω0t .

However, in general P1(t). is not real-valued. Though, by aliasing we can also use 
the assignment 

. (α−m, . . . , α0, . . . , αm) =
 
1

2
 cm, . . . , cN−1, c0, . . . , cm−1,

1

2
 cm
 
,

and then obtain as trigonometric interpolation polynomial with cm=
N−1 
n=0

yn(−1)n/N . 

. P2(t) =
m−1 

k=−m+1

 ck ejkω0t + cm cos(mω0t).

P2 . is real-valued for given real samples yn .. We now denote by Vm . the real vector 
space spanned by the functions cos(kω0t), sin(kω0t). for k = 1, . . . , m − 1., the  
constant one and the function cos(mω0t).. Then we can formulate the following 
theorem: 

Theorem 6.4 Let the number N = 2m. of nodes tn = nT/N . (n = 0, . . . , N − 1). 
be even and yn = f (tn). be samples of a real-valued function f on [0, T ].. Then  cm . 

is real, and with ak,  bk . as above, ω0 = 2π/T ., the function 

. P2(t) =
 a0
2
+

m−1 

k=1

( ak cos(kω0t)+ bk sin(kω0t))+
 am
2

cos(mω0t), P2(tn) = f (tn),

is the uniquely determined real-valued trigonometric interpolation polynomial in 

the vector space Vm .. If  f can be extended to a T -periodic even function, then all 

coefficients bk = 0.. If an odd T-periodic extension is possible, then all ak = 0.. 

Proof Let P be in Vm . and have the samples y0, . . . , y2m−1 . of P2 . and their DFT 
coefficients  ck .. Since P(0) = P(T−). by continuity, it holds true (cf. the Alias 
Formula on p. 87) 

. ck =
+∞ 

n=−∞
pk+2nm for k = −m+ 1, . . . , m.
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Since pn = 0. for |n| > m. for P in Vm . and pm = p−m . are real, it follows pk =  ck . 
for |k|  m−1. and pm = cm/2 = p−m..Thus, having the same Fourier coefficients, 
P and P2 . coincide. If f can be extended T -periodically to an even function, then 
by symmetry it must be yn = y2m−n ., and thus ck =  c2m−k =  c−k .. Then all  bk =
j ( ck − c−k) = 0. and P2 . is even. For an odd symmetry in a T -periodic extension of 
f , we have correspondingly yn = −y2m−n ., ck = − c−k ., i.e., all  ak . are zero and P2 . 

is odd.   

Example For N = 4., tn = nπ/2., T = 2π ., and with samples y0 = 1., y1 = 2., 
y2 = 1., and y3 = 3., we compute P2 . as above and obtain 

. P2(t) =
7

4
−

1

2
sin(t)−

3

4
cos(2t).

Also P(t) = P2(t)+ α sin(2t).with arbitrary real α . is a trigonometric interpolation 
polynomial of degree 2, since sin(2tn). always yields zero. However, such a function 
P is not in V2 . for α  = 0.. 

The given interpolations P1 . and P2 . are trigonometric polynomials in the baseband 
to a DFT. For bandpass signals f , trigonometric interpolation polynomials in 
the corresponding passband can also be given with the help of a DFT and 
bandpass sampling. In particular, trigonometric polynomials in a passband can be 
reconstructed exactly with a DFT. The formulation of this is left to the readers. 

6.3 The Discrete Cosine Transform DCT I 

The interpolation formula gives reason to introduce a real-valued discrete Fourier 
transform for real-valued functions, which is known in the literature as Discrete 
Cosine Transform of Type I or DCT I for short. To do this, we assume a continuous, 
piecewise continuously differentiable real-valued function f on [0, T ]., which we 
think of as being extended to an even 2T -periodic function fp ., and consider samples 
yn . of fp .with the symmetry yn = y−n .. 

With N = 2m. samples yn = fp(nT /m). for n = −m + 1, . . . , m., we obtain 
for the DFT coefficients  ck . of fp . and 0  k  2m − 1., due to the symmetry 
yn = yn±2m = fp(nT /m± 2T ). and the relation e−jπkn/m = e−jπk(n±2m)/m

., 

. ck =
1

2m

 
m 

n=0

yn e
−jπ kn

m +
2m−1 

n=m+1

yn−2m e−jπ kn
m

  
=

1

2m

m 

n=−m+1

yn e
−jπ kn

m

=
1

m

 
y0

2
+

m−1 

n=1

yn cos

 
πkn

m

 
+

ym

2
cos(kπ)

  
.
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Since we have also ck =  c−k =  c2m−k ., by virtue of the symmetry requirement, 
it is sufficient to calculate the coefficients for k = 0, . . . , m. from the samples 
y0, . . . , ym .. One defines the DCT I of yk . for k = 0, . . . , m. by  ck . as above. 

This transform is invertible like the DFT, due to the interpolation property of 
the trigonometric polynomial P2 . from above, and the inverse transform is directly 
readable from P2 ., because of yn = P2(nT /m). with ω0 = π/T .. We set   ak =
 ck + c−k = 2 ck . and obtain the discrete cosine transform DCT I and its inverse: 

. 

DCTI :  ak = 2
m

 
y0
2 +

m−1 
n=1

yn cos
  
πkn
m

 
+ ym

2 cos(kπ)

  
, (k=0, . . . , m),

IDCTI : yn =  a02 +
m−1 
k=1
 ak cos

  
πkn
m

 
+  am2 cos(nπ), (n=0, . . . , m).

Before showing applications of the DCT, we turn to another option and consider 
interpolation with a shifted set of nodes in comparison. This case results in the 
variant known as DCT II, which is particularly widespread in DCT applications. 
One reason for this is the optimality statement no. 4 of the later following theorem 
on page 112. 

6.4 Shifted Nodes, Discrete Cosine Transform DCT II 

As before, we assume a given continuous, piecewise continuously differentiable 
real-valued even 2T -periodic function fp .. However, we now choose the following 
shifted set of nodes, at which the samples are taken: 

. tn =
2n+ 1

2m
T for 0  n  2m− 1, m ∈ N.

We set yn = fp(tn). and obtain by symmetry of fp . for n = 0, . . . , m− 1. 

. yn = fp(tn) = fp(2T − tn) = fp(t2m−1−n) = y2m−1−n.

To use the previous result, we define the function g on [0, 2T ]. by g(t) = fp(t +
T/(2m)).. In general, the function g is not even, but gn = g(nT /m) = fp(nT /m+
T/(2m)) = yn . is true for n = 0, . . . 2m − 1.. Now, as before, we interpolate this 
function g on the interval [0, 2T ]. with P2 . as above, where ω0 = π/T .. The  DFT  
coefficients  ck ., k = −m+ 1, . . . , m., for the samples gn = yn . are 

. ck =
1

2m

2m−1 

n=0

gn e
−jπkn/m =

1

2m

2m−1 

n=0

yn e
−jπkn/m .
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By e−jπkn/m = ejπk/(2m) e−jπk(2n+1)/(2m)
., e−jπk(2M+1)/(2m) = e+jπk(2n+1)/(2m)

. 

for M = 2m− 1− n., we get from the symmetry yn = y2m−1−n . 

.  ck = ejπk/(2m) 1

m

m−1 

n=0

yn cos

 
πk(2n+ 1)

2m

 
.

We have cm = 0., since the cosine terms in the sum are zero for k = m.. 
Eventually, we obtain for the shift fp(t) = g(t − T/(2m)). and its DFT coefficients 
 c(fp)k =  ck e−jπk/(2m)

. (compare p. 44) with ω0 = π/T . the corresponding real-
valued trigonometric interpolation polynomial P3 . from the formula for P2 . on p. 99: 

. P3(t ) =
m−1 

k=−m+1

 ck e−jπk/(2m) ejkω0t =
 a0
2

+
m−1 

k=1

 ak cos(kω0t),

 ak =
2

m

m−1 

n=0

yn cos

 
πk(2n+ 1)

2m

 
for k = 0, . . . , m− 1.

As before, the map (y0, y1, . . . , ym−1) −→ ( a0, a1, . . . , am−1). is invertible and the 
inverse can be read directly from the interpolation formula. This map is called DCT 
II, its inverse correspondingly IDCT II. We denote the DCT II and the IDCT II with 
m samples yn = f ((2n+ 1)T /(2m))., n = 0, . . . , m− 1. by 

. 

DCTII :  ak = 2
m

m−1 
n=0

yn cos
 
πk(2n+1)

2m

 
(k = 0, . . . , m− 1),

IDCTII : yn =  a02 +
m−1 
k=1
 ak cos

 
πk(2n+1)

2m

 
(n = 0, . . . , m− 1).

Thus, with the same number of samples y0, . . . , ym ., it is possible to exactly 
represent even real 2T -periodic trigonometric polynomials f up to the degree m 

by a DCT I or a DCT II with the associated trigonometric interpolation polynomials 
P2 . and P3 .with ω0 = π/T .. For  P2 . and the DCT I the samples are yn = f (nT /m).; 
for the DCT II accordingly the samples are yn = f ((2n + 1)T /(2m + 2)). with 
n = 0, . . . , m.. In the above formulas of the DCT II and P3 ., then m has to be replaced 
by m+ 1.. 

Remarks 

(a) The coefficient a0/2. is the DC component ( e.g., the DC gain of an alternating 
voltage f ). In the literature and in software implementations of DFT and DCT 
variants (as for example in Matlab, Mathematica or Maple) different scaling 
factors are in use. Also the indexing often starts there with one instead of zero.
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Applying the DFT or DCT, attention has to be paid to such differences in the 
definitions. 

(b) As we have already seen, the decay of the spectral values |ck|. of a periodic 
function f for growing |k|. depends on smoothness properties of f . For func-
tions with pointwise representation by their Fourier series as considered last, the 

alias relation ck =
+∞ 

l=−∞
ck+lN . permits estimates for the approximation errors 

of the trigonometric interpolations, and for the decay of the DFT coefficients 
depending on the number N of samples. You can find such estimates for instance 
in the textbooks of Briggs and Van Emden Henson (1995) or Kincaid and 
Cheney (2002). 

6.5 Numerical Integration by Clenshaw-Curtis Quadrature 

A first application of the discrete cosine transform, shown here, is numerical 
integration of a function on a bounded interval. 

Let be given a continuous 2T -periodic real-valued even function f . The  k-th 
coefficient  ak . of the DCT I with samples yn = f (nT /m)., m ∈ N., n = 0, . . . , m. 

is an approximation for the integral 2
T

T́

0
f (t) cos(kπt/T )dt . with the trapezoidal 

rule. If f belongs to the vector space Vm . introduced before, this quadrature with 
the trapezoidal rule yields the exact Fourier coefficients of f according to the 
interpolation theorem of p. 99. 

Let us now find an approximation for the integral 

. I =
b
ˆ

a

g(t)dt

of a function g assuming it is continuous and piecewise continuously differentiable 
on [a, b].. Mapping the interval [−1, 1]. to [a, b]. with u(x) = b−a

2 x + a+b
2 . and 

defining f by f (x)=g(u(x))u (x)., we obtain 

. I =
+1
ˆ

−1

f (x)dx.

Substituting x = cos(ϕ)., ϕ ∈ [0, π ]., we have with the notation I = I (f ).: 

.I (f ) =
π̂

0

f (cos(ϕ)) sin(ϕ)dϕ.
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The function f (cos(ϕ)). can be extended to a continuous even 2π .-periodic function 
represented by its Fourier series pointwise. We obtain from the Fourier series 

. f (cos(ϕ)) =
a0

2
+

∞ 

k=1

ak cos(kϕ),

therefore through integration by parts (cf. p. 48) a representation of the integral as a 
series 

. I (f ) = a0 +
∞ 

k=1

ak

π̂

0

cos(kϕ) sin(ϕ)dϕ = a0 +
∞ 

k=1

ak
(−1)k + 1

1− k2
,

. I (f ) = a0 +
∞ 

k=1

2a2k
1− (2k)2

.

With quadrature after Clenshaw and Curtis (1960), one approximates the function 
f (cos(ϕ)). in [0, 2π ]. by the even trigonometric interpolation polynomial 

. P(ϕ) =
 a0
2

+
N−1 

k=1

 ak cos(kϕ)+
 aN
2

cos(Nϕ)

with the 2N samples P(nπ/N) = f (cos(nπ/N)). for n = 0, . . . , 2N − 1.. It is  
uniquely determined by the theorem of p. 99. We require now that N = 2m. is even. 

Then the corresponding approximation SN (f ) =
π́

0
P(ϕ) sin(ϕ)dϕ . for the integral 

I (f ). is 

. SN (f ) = a0 +
m−1 

k=1

2 a2k
1− 4k2

+
 a2m

1− 4m2
.

The approximations  ak . for the Fourier coefficients ak . of f (cos(ϕ)). are now 
computed with the N + 1 = 2m+ 1. samples f

  
cos
  
nπ
N

  
. for 0  n, k  N =

2m., according to the trapezoidal rule with the DCT I: 

.  ak =
2

2m

 
f (1)

2
+

N−1 

n=1

f
 
cos
 nπ
N

  
cos

 
πkn

N

 
+

f (−1)

2
(−1)k
  
.

The necessary coefficients  a2k . can be obtained by cos
 
(N−n)π

N

 
= −cos

  
nπ
N

 
. 

already from a DCT I with m+ 1. summands. For 0  n, k  m. and 

.yn = f
 
cos
 nπ
N

  
+ f
 
− cos
 nπ
N
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we find 

.  a2k =
1

m

 
y0

2
+

m−1 

n=1

yn cos

 
πkn

m

 
+

ym

2
(−1)k
  
.

With xn = cos(nπ/N)., the obtained quadrature rule is usually written in the form 

. SN (f ) =
m 

n=0

wn(f (xn)+ f (−xn)) = wT y.

With precomputed weights wn ., various functions f can quickly be integrated 
numerically by inserting their samples at the nodes ± xn .. 

To specify the weights wn ., we write the quadrature formula in vector notation 
with the matrix D belonging to the DCT I as follows: 
D = (dkn)0 k,n m . is the DCT I matrix with row index k and column index n 

. dkn =

⎧
⎪⎪⎨
⎪⎪⎩

1
2m cos

  
πnk
m

 
for n = 0, n = m

1
m

cos
  
πnk
m

 
otherwise.

With the vector of the necessary samples y= (y0, . . . , ym)
T

., w= (w0, . . . , wm)
T ,. 

with a= ( a0, a2, a4, . . . , a2m)T .—T stands for the transposition as usual— and the 
column vector 

. b = (βk/(1− 4k2))0 k m, β0 = βm = 1, βk = 2 otherwise,

we get 

. SN (f ) = b T a = b T (Dy) = (DT b)T y = w T y, and thus w = DT b.

DT b. can also be regarded as a DCT I with only slightly different normalization 
factors. 

All the weights wn . are positive and their sum is one. 

To see this, we consider for n = 0, . . . , m. and α0 = 2m = αm ., αn = m. otherwise, 

. αnwn = 1−
 
m−1 

k=1

2

4k2 − 1
cos

 
πnk

m

 
+

1

4m2 − 1
cos(πn)

  
= 1− s.

We estimate the bracketed sum s 

.|s|  
m−1 

k=1

2

4k2 − 1
+

1

4m2 − 1
= 1−

2m

4m2 − 1
< 1.
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The last equation is readily seen from 2
4k2−1

= 1
2k−1 − 1

2k+1 . (exercise for readers). 
Thus, the positivity of the weights wn . follows. With the constant function f = 1., it  
follows from I (f ) = SN (f ). that their sum is one. 

As an alternative to the approximation of the Fourier coefficients by a DCT I, you 
could also use a DCT II with the shifted sampling points considered before. Such a 
quadrature was already given by L. Fejér. From the interpolation theorem of p. 99, 
it follows that the Clenshaw-Curtis quadrature with the N+1. given nodes is exact 
for trigonometric polynomials f (cos(ϕ)). and thus, according to known addition 
theorems for trigonometric functions, also for polynomials f up to degree N . For  
this, it is necessary that the weights wn . above are positive with the sum equal to 
one. The same assertions are valid for quadrature according to Fejér with the N + 1. 
nodes as given before for the DCT II. 

Error estimates can be obtained from the known estimate for the trapezoidal rule, 
according to which the DCT I integrates. Literature with such estimates was already 
referred to before. Convergence of the approximations SN (f ). to I (f ). for N → ∞. 

follows from the convergence of the Fourier series of f (cos(ϕ)).. Since we had 
used 2N samples above, the alias relation between the Fourier coefficients ck . of 

the periodic function f (cos(ϕ)). and its DFT coefficients is ck =
+∞ 

n=−∞
ck+2Nn .. We  

see that the smoother the integrand is, the better the method converges. 
It is remarkable that the Clenshaw-Curtis method is a so-called universal 

quadrature method, i.e., for any k ∈ N. and all k-times continuously differentiable 
functions f the maximum errors of SN (f ). are of order N−k

. for N  k − 1.. 
To clarify this statement, in the following we denote by F k

. the set 

. F k = { f ∈ Ck([−1, 1]) : ||f (k)||∞  1 }.

Here ||f (k)||∞ . denotes the supremum norm of the k-th derivative of f , Ck([−1, 1]). 
the vector space of k-times continuously differentiable real-valued functions on 
[−1, 1].. By PN . we denote the set of all polynomials of degree  N .. The  
above statement about SN (f ). then follows by a theorem of Jackson (1912) from 
approximation theory: 

Theorem 6.5 (Theorem of Jackson) For every k ∈ N. there exists a constant αk . so 

that for all N ∈ N.withN  k−1. and all f ∈ Ck([−1, 1]). the following inequality 
is true: 

. EN (f ) = inf
P∈PN

||f − P ||∞  αkN
−k||f (k)||∞.

A proof with a sharper upper bound can be found in Rivlin (1974, 2010). 

Theorem 6.6 The maximum errors of the Clenshaw-Curtis quadrature SN (f ). on 

the sets F k
. fulfill for any k ∈ N.and for allN = 2m  k−1. the following inequality 

with a constant γk . depending only on k: 

. sup{ |I (f )− SN (f )| : f ∈ F k }  γkN
−k.
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Proof We consider as before the quadrature formula SN (f ) =
m 

n=0
wn(f (xn) +

f (−xn)). with nodes xn = cos(nπ/N). for a function f on [−1, 1]. with N = 2m., 
m ∈ N.. Since the weights w0, . . . , wm . are positive and their sum is one, we obtain 
for all f ∈ F k

.and all polynomials P from PN ., due to I (P ) = SN (P )., the inequality 

. |I (f )−SN (f )| = |I (f−P)−SN (f−P)|  |I (f−P)|+|SN (f−P)|  4||f−P ||∞.

With this, forN k−1. the assertion follows from Jackson’s theorem with γk = 4αk .. 
  

An analysis and comparison of the Clenshaw-Curtis quadrature with the Gaussian 
quadrature can be found in Trefethen (2008), a fast algorithm for computing the 
weights wn . of the method in Waldvogel (2003). For a detailed reading about 
quadrature methods the textbook of Brass and Petras (2011) is recommended. 

The Clenshaw-Curtis method is also used in the construction of interpolatory 
algorithms for numerical integration of functions on high-dimensional cuboids. For 
an introduction to the topic, interested readers are referred to the work of Novak 
et al. (1999) and further sources mentioned there. However, for large dimensions 
d  10. one will rather prefer Monte Carlo methods for numerical integration. A 
reference to these methods is the textbook of Leobacher and Pillichshammer (2014). 

6.6 Approximation and Interpolation by Chebyshev 

Polynomials 

To conclude our first excursion into numerical mathematics, it should be pointed 
out the close relation of the Clenshaw-Curtis quadrature to interpolation and 
approximation of a considered function f on [−1, 1]. by Chebyshev2 polynomials. 
This gives us examples for approximations of functions on bounded intervals 
with a system of orthogonal functions different from the trigonometric functions 
considered so far. 

The Chebyshev polynomials of the first kind are defined on [−1, 1]. for n  0. by 

. Tn(x) = cos(n arccos x).

With addition theorems for the cosine function, we obtain for n ∈ N., with T0(x) = 1. 
and T1(x) = x ., the recursion equation (Exercise: Substitute arccos(x) = ϕ ∈
[0, π ].) 

.Tn+1(x) = 2xTn(x)− Tn−1(x).

2 Russian mathematician Chebyshev is written in Cyrillic as Pafnuti i .Qebyxëv (1821– 
1894). 
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Thus Tn . is a polynomial of degree n, also defined on all of R. and C.. Tn . is even for 
even n, for odd n an odd polynomial of degree n. Tn . has n different zeros in [−1, 1]. 
and always satisfies |Tn|  1. on [−1, 1].. The coefficient an . in anx

n
.with the largest 

power of x in Tn . is an = 2n−1
.. The Chebyshev polynomials form an orthogonal 

system over the interval [−1, 1]. with respect to the inner product with the weight 
function w(x) = 1/

√
1− x2,. 

.  Tn, Tm w =
+1
ˆ

−1

Tn(x)Tm(x)
1

√
1− x2

dx

=

⎧
⎨
⎩

0 for n  = m

π for n = m = 0
π/2 for n = m  = 0.

In the exercises at the end of the chapter, readers can work out on their own these 
and some other properties of Chebyshev polynomials. 

In our context, because of Tn(cos(ϕ)) = cos(nϕ)., we see that the Fourier series 
expansion of f (cos(ϕ)). on p. 104, with the substitution x = cos(ϕ)., corresponds 
to a series expansion of f with respect to the orthogonal system of Chebyshev 

polynomials. For continuous, piecewise continuously differentiable functions f on 
[−1, 1]., this series converges uniformly to f . When we normalize the Chebyshev 
polynomials Tk . to  Tk .with respect to the introduced inner product, i.e.,   Tk, Tk w =
1. for all k, we obtain for x ∈ [−1, 1]. 

. f (x) =
a0

2
T0(x)+

∞ 

k=1

akTk(x) =
∞ 

k=0

 f, Tk w Tk(x).

The coefficients ak . are ak = αk f, Tk w . with the orthonormalized Chebyshev 
polynomials  Tk ., α0 = 2/

√
π ., and αk =

√
2/π . for k  = 0., and they are the Fourier 

coefficients of the cosine series representation of f (cos(ϕ))., due to the choice of the 
weight function w = 1/

√
1− x2 . in the inner product. 

If functions that differ only on a null set (cf. p. 54) are identified, then the 
inner product is positive definite. We obtain series representations as above for all 
functions f : [−1, 1] → R. with  f, f  w < ∞.. In general, these series no longer 
converge pointwise, but in the norm generated by the inner product. We denote 
the real vector space of the functions f with  f, f  w < ∞. by L2

w([−1, 1]).. . For  
f ∈ L2

w([−1, 1]). this norm is given by 

.  f  w =
 
 f, f  w.

Analogous to the theorem on p. 62, we get the following theorem that states the 
completeness of the orthogonal system of Chebyshev polynomials in this vector 
space (cf. Mason & Handscomb, 2002):
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Fig. 6.4 The Chebyshev 
polynomials T1 ., T2 ., T3 ., 
and T4 . 

Fig. 6.5 Sign function σ ., 
and S5 ., S9 ., S19 ., Gibbs 
phenomenon 

Theorem 6.7 Each function f ∈ L2
w([−1, 1]). has the series representation 

. f =
a0

2
T0 +

∞ 

k=1

akTk,

with coefficients ak = αk f, Tk w . as above. The series converges in the norm of 

L2
w([−1, 1]). to f . The coefficients ak . are the Fourier coefficients ak = ck + c−k ., 

k ∈ N0 ., of f (cos(ϕ)).. 

The smoother the function f is, the faster the above series converges (cf. p. 51). An 
algorithm going back to Clenshaw and Curtis (1960) permits a fast computation of 
partial sums of that series representation of f . 

For series expansions of functions f on [−1, 1]. with Chebyshev polynomials, 
because of their relation to the corresponding Fourier series expansion of f (cos(ϕ))., 
we obtain analogous statements on pointwise convergence, convergence of arith-
metic means as in Fejér’s theorem, the Gibbs phenomenon, and on approximations 
by partial sums as in Chap. 3, in Sect. 5.1 or in the following Chap. 6. 

The following Figs. 6.4 and 6.5 show the Chebyshev polynomials T1 . to T4 . on 
[−1, 1]. and three approximations to the sign function σ . by partial sums Sn . of the 
series expansion as in the last theorem with polynomial degrees n = 5., n = 9., and 
n = 19.. As in Fourier series expansions, we also observe the Gibbs phenomenon, 
i.e., an overshoot in the neighborhood of the jump discontinuity at x = 0.. 

Remark The Gibbs phenomenon also occurs in approximations with other or-
thogonal systems. Examples are the systems of Legendre, Hermite, or Laguerre 
polynomials, and for several variables the spherical harmonics. For improvement of 
approximations by Fourier series expansion in the neighborhood of jump disconti-
nuities of a function f , we had used arithmetic means of partial sums according
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to Fejér. More general, convolution of a function f with a suitable summation 
kernel is a useful method, providing weights to the spectrum of the function f (cf. 
Sects. 7.2 and 10.3). Analogous methods are used for orthogonal systems other than 
the trigonometric one. Details and further references can be found in Gottlieb and 
Shu (1997). Helmberg and Wagner (1997) have shown a method to mitigate the 
Gibbs phenomenon for trigonometric interpolation polynomials by appropriately 
changing the function value at a jump discontinuity, when this point is a node of the 
interpolation polynomial. 

Interpolation with Chebyshev Polynomials 

We consider real-valued continuous, piecewise continuously differentiable func-
tions f on [−1, 1].. Interpolation of f (cos(ϕ)). with the trigonometric polynomials 
P2 . and P3 . of p. 99 and p. 102 directly implies corresponding formulas for the 
interpolation of f with Chebyshev polynomials. Sampling f so that yn = f (xn)., 
xn = cos(πn/m)). for the DCT I, alternatively xn = cos(π(2n + 1)/(2m + 2)). for 
the DCT II with n = 0, . . . , m., we obtain the following polynomials P2,T . and P3,T . 

interpolating f at the points xn .: 

. 

with DCT I coefficients ak : P2,T (x) =  a02 +
m−1 
k=1
 akTk(x)+  am2 Tm(x),

with DCT II coefficients ak : P3,T (x) =  a02 +
m 

k=1
 akTk(x).

Approximation errors of the trigonometric interpolation of a periodic function f 

can be seen as alias effects, i.e., amplitudes of oscillatory components of f with 
frequencies higher than the maximum frequency of the interpolation polynomial 
are added in the amplitudes of the approximation due to aliasing. The error of the 
interpolation with Chebyshev polynomials can be described correspondingly. For 
example, let us consider the case of interpolation with the DCT II and the m +
1. nodes xn = cos(π(2n + 1)/(2m + 2))., which are the zeros of the Chebyshev 
polynomial Tm+1 . (0  n  m.). These nodes are also called Chebyshev abscissae. 
We see from Tk(cos(xn)) = cos(kxn)., using the trigonometric addition theorems, 
that the polynomials Tk . and (−1)lTl(2m+2)±k . are indistinguishable at the nodes xn .. 
Thus, for k = 0, . . . , m., for n = 0, . . . , m., and for arbitrary l ∈ N. we find the 
relation (to be proven as an exercise for readers): 

. Tk(xn) = (−1)lTl(2m+2)±k(xn).

For the coefficients  ak . of the interpolation polynomial P3,T ., this means:
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DCT II Alias Formula The coefficients ak . of f = a0
2 T0+

∞ 
k=1

akTk . and the DCT II 

coefficients  ak, k = 0, . . . , m., with samples of f at the Chebyshev abscissae, are 

related by 

.  ak = ak +
∞ 

l=1

(−1)l(al(2m+2)+k + al(2m+2)−k).

Readers can themselves find an analogous alias relation for the case of interpolation 
with a DCT I and the nodes xn = cos(πn/m). (0  n  m.). In particular, we have 
to pay attention to such effects when, for instance, in nonlinear problems a term of 
the form f (x)3 . shall be approximated by Chebyshev interpolation of f . 

To illustrate this (Fig. 6.6), we interpolate the function f = 2T10 + T20 . with 
5 Chebyshev abscissae as nodes. The coefficients a10 = 2. and a20 = 1. yield the 
interpolation polynomial P3,T = −T0 = −1., due to the alias effect with m = 4.. 

There are many studies on convergence of interpolation polynomials for the 
increasing numbers of nodes, depending on the norm used to measure the approx-
imation errors. In the following some statements are given, and hints to details 
in the literature. A reference is, for example, Rivlin (2010). In the following 
theorem, C([−1, 1]). and Cn([−1, 1]). are the spaces of continuous and of n-times 
continuously differentiable real-valued functions on [−1, 1]., provided with the norm 
 . ∞ . of uniform convergence. By Sn(f ).we denote the interpolation polynomial of 
degree  n− 1.with the n zeros of the Chebyshev polynomial Tn . as nodes. 

Theorem 6.8 

1. For every function f ∈ C([−1, 1])., the polynomials Sn(f ). converge to f for 

n → ∞.with respect to the norm of L2
w([−1, 1]).. 

2. For any array of interpolation nodes x
(n)
k . in [−1, 1]., −1  x

(n)
1 <. . .<x

(n)
n  1,. 

n ∈ N., k = 1, . . . , n., there exists a function f ∈ C([−1, 1]). so that the sequence 
of the associated interpolation polynomials Pn . does not uniformly converge to f 

for n → ∞.. 

3. For Lipschitz continuous functions f on [−1, 1]., i.e., functions f satisfying 

. |f (x)− f (y)|  L|x − y|

Fig. 6.6 Alias effect with 
Chebyshev polynomialsf and 
P3,T . have the same values at 
the Chebyshev abscissae 
xn = cos(π(2n+ 1))/10. for 
n = 0, . . . , 4.. The Chebyshev 
abscissae are approximately 
− 0.951., − 0.588., 0, 0.588., 
and 0.951.
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for x, y in [−1, 1]., and a suitable constant L, in particular for continuously 
differentiable functions f , the sequence of Sn(f ). converges uniformly to f for 

n → ∞.. 

4. The polynomials Sn(f ). with the Chebyshev abscissae as nodes have the follow-

ing minimax property: For all f ∈ Cn([−1, 1]). with n-th derivative f (n)
. the 

following estimate is true: 

. − Sn(f )∞  
21−n

n!
 f (n) ∞.

For any other choice of nodes for interpolation polynomials, this bound for the 

maximum error of the interpolation on Cn([−1, 1]). is exceeded, i.e., the choice 
of the Chebyshev abscissae as nodes is the optimal choice with respect to the 

worst case error on Cn([−1, 1]).. 

The first statement is proven in Erdös and Turàn (1937), the second in Faber 
(1912), the others in the already given literature on approximation theory. Compar-
ing different strategies for node selection, we note that the third statement of the 
theorem for equidistant nodes does not hold true even for analytic functions f . A  
well-known example for this by Runge (1901) is the function f (x) = 1/(1+ 25x2). 
on [−1, 1]. (cf. Exercise A23). 

Different choices of nodes can also be compared by the norms of the operators 
An . on C([−1, 1]). that map for n nodes a function f to the interpolation polynomial 
An(f ). of degree  n − 1.. These norms  An = sup{ An(f ) ∞ :  f  ∞  1}. 
can be shown to grow with n like log(n). when Chebyshev abscissae are chosen as 
nodes, but grow exponentially for equidistant nodes. Details on this can be found in 
Rivlin (2010). 

Altogether it results from the theorem that an interpolation with polynomials 
of high degree, without known smoothness properties of the interpolated function, 
in general is not reasonable. Therefore it should be pointed out that by piecewise 
polynomial interpolation with the so-called splines uniform convergence can be 
accomplished under relatively mild smoothness requirements for the interpolated 
function. Interpolation with splines is also indicated if the nodes cannot be chosen 
deliberately but are predefined. For more, please see the literature on approximation 
theory. 

An Extremal Property of Chebyshev Polynomials Useful in Filter Design 

Finally, we review an extremal property of Chebyshev polynomials which explains 
why these polynomials are often used in electrical engineering in lowpass filter 
design. In transmission systems, such filters should be able to filter signal com-
ponents up to a cutoff frequency as undistorted as possible and to attenuate as well 
as possible signal components with frequencies higher than the cutoff frequency.
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Theorem 6.9 

1. For any x0 /∈ [−1, 1]. and among all polynomials P of degree n with P(x0)=1., 
the polynomial Pn = Tn/Tn(x0). has minimum supremum norm on [−1, 1].. 

2. Compared to all polynomials P of degree n with |P(x)|  1. on [−1, 1]., the  

Chebyshev polynomial Tn . grows fastest outside [−1, 1]., i.e., for x /∈ [−1, 1]., we  
have 

. |Tn(x)|  |P(x)|.

Proof 

1. Choose x0 /∈ [−1, 1].. Since all zeros of Tn . are in [−1, 1]., Tn(x0)  = 0. for x0 /∈
[−1, 1].. At the n + 1. points tk = cos(kπ/n). for k = 0, . . . , n., by definition Tn . 
successively has the alternating extremal values ± 1. beginning with + 1.. 

If we assume that there is a polynomial P of degree n with P(x0) = 1., 
and with smaller norm  P  ∞ . on [−1, 1]. than Tn/Tn(x0)., then |P(tk)| <

|Tn(tk)/Tn(x0)|. would also be true at all points tk .. Therefore Tn/Tn(x0) − P . 

would have at least n sign changes and thus zeros: For example, for Tn(x0) > 0. 
it would follow that 

. P(t0) < Tn(t0)/Tn(x0) = 1/Tn(x0),

P (t1) > Tn(t1)/Tn(x0) = −1/Tn(x0) and so on.

The difference polynomial would have another zero in x0 .. Contrary to the 
assumption, P and Tn/Tn(x0).would then be equal. 

2. For any x0 . outside [−1, 1]. and for polynomials P with |P(x)|  1. on [−1, 1]., 
again with the supremum norm on [−1, 1]., it follows from the first part of the 
theorem 

. 
1

|P(x0)|
 

    
P

P(x0)

    
∞
 

    
Tn

Tn(x0)

    
∞

=
1

|Tn(x0)|
,

if P(x0)  = 0.. There is nothing to prove for the case P(x0) = 0.. 
  

Chebyshev Lowpass Filters 

Chebyshev lowpass filters in electrical engineering possess frequency responses  h., 
which fulfill the equation 

.| h(ω)| = K/

 
1+ ε2T 2

n (ω/ωc).
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Such filters let pass signal components with low frequencies largely undistorted 
and strongly attenuate components with angular frequencies ω > ωc .. The cutoff 
frequency ωc/(2π)., the order n of the filter, and the constants ε . and K are chosen 
according to an attenuation plan (compare again the lowpass example on p. 66, 
Exercise A15 at the end of the chapter and subsequently Chap. 11). 

The statement of the last Theorem 6.9 shows that Chebyshev lowpass filters have 
advantages in attenuation for ω > ωc . compared to other lowpass filters with rational 
frequency responses. This advantage comes at the expense of a distortion in the 
passband of the filter due to the ripple of the Chebyshev polynomials Tn . with n 

zeros in [−1, 1].. 
For a discussion of further applications of Chebyshev polynomials, we re-

fer to the textbook of Mason and Handscomb (2002) devoted entirely to these 
polynomials. With the Chebyshev polynomials we have acquired, besides the 
trigonometric functions, a second system of orthogonal functions with respect to 
an inner product with a weight function, and we have seen series expansions of 
functions by orthogonal projections onto subspaces of L2

w([−1, 1]). spanned by 
these polynomials. 

By rescaling, all results can be applied to functions over intervals other than 
[−1, 1]. (cf. Exercise A15 at the end of the chapter). The same concept permits 
representations of functions with many other families of functions which form a 
complete orthogonal system in a space with inner product. We will discuss this 
aspect later on in Chap. 14. Readers who want to deepen their knowledge of this 
are recommended to study the book of Folland (1992) and the rich literature on 
functional analysis. 

6.7 Further Application Examples for the DFT 

From the abundance of technical applications, which are not possible without the 
DFT or its closely related methods, only a few further examples shall be outlined 
here with some appropriate references for further reading. Every prospective 
engineer or scientist will get to know such applications in his or her studies. 

Discrete Linear Filters 

A discrete, causal linear filter with a rational transfer function ( cf. later Chap. 11) 
processes a sequence of input values xk ., k  0., into a sequence of output values yn ., 
n  0., according to the formula 

. yn =
N 

k=0

akxn−k +
M 

l=1

blyn−l,

with xk, yk = 0. for k < 0., N  0., M  1..
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Such filters occur in linear transmission systems in electrical engineering, and 
indeed in discretization of linear systems in any other scientific field. 

TheN+1. coefficients ak . and the M coefficients bl .have constant values for time-
invariant systems and determine the filter response depending on the input values. 
If the values xk . are samples of a time-dependent function f at time interval T , 
xk = f (kT )., k = 0, 1, 2, . . . ., then the output value yn . at time nT is calculated 
from xn ., the  N previous values xn−N , . . . , xn−1 ., and from the M previous output 
values yn−M , . . . , yn−1 .. This is called a causal filter because the current yn . is only 
determined by xn . and backward values x0, . . . , xn−1 .. It is assumed that the system 
is initially at rest. 

When the second sum in the formula is omitted, such filters are called non-
recursive filters. When M  1. and some of the coefficients bl . are nonzero, the 
filter is called a recursive filter. The  frequency response of the filter (cf. Chap. 11 
for details) is defined as the function 

.  h(ω) =

N 

k=0

ak e
−jkωT

1−
M 

l=1

bl e
−j lωT

.

In stationary state, the frequency response shows the amplitude and phase changes 
in samples of an oscillation, sampled at times kT , k ∈ N0 ., when passing through 
the filter as a function of the angular frequency ω. of the oscillation (|ω| < π/T .). 
An example for of a non-recursive filter is the following scheme with hold elements 
delaying the propagation of values by one time step T . 

With hold time T , the filter has the 2π/T .-periodic frequency response 

. h(ω)=
N 

k=0

ak e
−jkωT (Block diagram Fig. 6.7). 

Fig. 6.7 Schematic non-recursive discrete linear filter
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For example, if the input values of the filter are xk = cos(kωT ). for k  0., xk = 0. 
for k < 0., then for real coefficients ak . in stationary state (n > N .) the output value 
yn . is given by yn = | h(ω)| cos(nωT + φ)., φ = arg( h(ω)). (Exercise A1). 

We note that the filter response is a convolution of the filter coefficients with 
the input values and in the recursive case also with the output values from behind. 
This requires per time step N + 1. or N + 1 + M . multiplications. It can be shown 
that the convolution theorem for the DFT (cf. Table on p. 97) in connection with 
fast algorithms for the computation of a DFT and IDFT—which we will come 
to in the following— yields a considerable reduction of the number of necessary 
multiplications. This is important in real-time applications with very high sampling 
frequencies and high filter degrees N . Examples for the use of such discrete filters 
are again DAB, DVB-T, DSL, WLAN, mobile broadcasting, etc. 

The DFT is applied also in filter design for an intended frequency response  h.. 
The filter coefficients are then calculated from prescribed samples of  h. so that the 
result yields a close approximation of the desired response. Such DFT calculations 
are embedded in iteration procedures for the stepwise optimization of the filter 
coefficients. 

Details of this, the so-called Remez-Parks-McClellan Exchange Algorithm, often 
used in the design of non-recursive filters, can be found in the textbook on discrete 
time signal processing by Oppenheim and Schafer (2013). We discuss other filter 
design techniques, both for recursive and for non-recursive linear filters, later in 
Sect. 11.6. 

Time Series Analysis 

The samples f (nT /N). of a function f are also called a time series. In wireless 
transmissions, also in the medicine in electroencephalograms or in seismography, 
one often has to deal with randomly noisy signals. Spectrum estimation can 
provide essential information about such signals. An electroencephalogram can be 
used in medicine to detect brain damage. For example, electroencephalograms of 
patients with epilepsy or Alzheimer’s disease show increased amplitudes compared 
to healthy patients in certain frequency ranges. 

In safety engineering of power plants, one uses wide-ranging systems of vibration 
detectors for monitoring. On the basis of the spectrum of mechanical vibrations, 
periodic components with certain frequencies can be detected. By analyzing 
amplitude and phase spectra with the aid of the DFT, loose vibrating components 
can be located and safety risks eliminated. 

Another field of DFT applications is, for example, radiation measurement in the 
high-frequency range for testing electromagnetic compatibility (EMC). The signals 
are typically in the range of up to 1 GHz. In order to avoid baseband sampling 
with more than 2 GS/s (GS=Gigasamples) and unacceptable data throughputs with 
required long measurement times, the observed frequency range is divided into 
segments by bandpass filters, and the spectra are calculated part by part with the
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DFT. The results are combined to form the overall image. In the segment passbands 
one can work with undersampling, few sampling points and short observation times 
(cf. Example 3 on p. 93). 

A key technology in modern communication systems such as WLAN networks, 
digital radio, and digital television (DAB, DVB-T), but also in wired techniques 
such as DSL or Powerline, is multicarrier transmission. The currently most 
widespread transmission method is based on the discrete Fourier transform and 
is known as OFDM (Orthogonal Frequency Division Multiplexing) in the context 
of communication applications, cf. later Sect. 12.1. In wired transmission it is also 
called DMT (Discrete Multitone). The transmission method takes its name from 
the basic idea of transmitting the user information as amplitudes of a trigonometric 
polynomial with orthogonal carriers. Besides the DFT also linear filters are used in 
combination with sampling, coding, and estimation algorithms. 

Details on communications engineering can be found in the textbook of Proakis 
and Salehi (2013). Multidimensional DFT variants are essential in medical imaging 
or in the generation of satellite images from SAR data (Synthetic Aperture 
Radar). The textbooks of Salditt et al. (2017) and Cumming and Wong (2005) are  
appropriate references for this. These and numerous other examples such as MP3 
players, mobile phones, etc., clearly show that much in today’s households and our 
technical society would not exist at all without the methods of Fourier analysis. 

In measuring applications and in filtering or prediction of noisy random signals 

f the autocorrelation function r(t) = lim
T→∞

1
2T

T́

−T

f (τ)f (t + τ)dτ . plays a 

fundamental role. With the help of DFT and IDFT, one obtains fast algorithms 
for numerical computation of the autocorrelation from the convolution rule, by 
multiplication of the Fourier coefficients belonging to f . 

Numerical Solution of Integral and Differential Equations 

The discrete Fourier transform can also be extended to the case of functions 
with several variables. It opens up possibilities for the numerical differentiation 
of analytic functions, for the numerical inversion of Laplace transforms as well 
as for the treatment of integral and differential equations. For example, use of the 
DFT in potential problems of the form Δu = f . is one of the fastest numerical 
solution methods in rectangular domains. Thereby, the discretization of the potential 
equation yields difference equations, which can be solved with the DFT. 

We do not go into any of the mentioned application fields in detail. As a 
recommendation, however, interested students should read the paper Fast Fourier 
Methods In Computational Complex Analysis by Henrici (1979), which deals with 
a part of the mentioned topics, or the textbook of Briggs and Van Emden Henson 
(1995). 

For all applications one needs an algorithm to calculate the DFT and IDFT. Naive 
calculation of a DFT for a sample vector (y0, y1, . . . , yN−1). requires N2

. operations 
(1 operation =. 1 complex multiplication +. addition). However, fast algorithms for 
the computation of the DFT by exploiting its symmetries can considerably reduce 
the number of necessary operations. Therefore, in the following the basic principle 
of such algorithms will be briefly presented.
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6.8 The Basic Principle of the Fast Fourier Transform (FFT) 

The history of fast algorithms for computing trigonometric series goes back to 
Gauss, who used the same approach, as early as 1805 even before Fourier’s work, 
as Cooley and Tukey (1965) in their famous article An Algorithm For The Machine 

Calculation Of Complex Fourier Series. Thereby, the number of operations for a 
DFT of lengthN = 2n . can be reduced from N2

. toN log2(N).. An overview is given 
in the paper Fast Fourier Transforms: A Tutorial Review and the State of the Art by 
Duhamel and Vetterli (1990). We follow a presentation in Nussbaumer (1982). 

The basic idea of all FFT algorithms is to compute a DFT of length N by a 
factorizationN = n1n2···nk (n1, n2, . . . , nk ∈ N)., so that it is recursively computed 
by DFTs of smaller lengths n1, n2, . . . , nk,. symbolically 

. DFTN = DFTnk (DFTnk−1(. . . (DFTn1) . . . )).

For the case k = 2, N = r · s, r, s ∈ N., the procedure shall be shown by example. 
We use the following notations here: 

. 

e(n) = e−j2πn

u = p0 + p1r, p0 = 0, . . . , r − 1
p1 = 0, . . . , s − 1

v = q1 + q0s, q0 = 0, . . . , r − 1
q1 = 0, . . . , s − 1.

We have 0  u  rs − 1 = N − 1., 0  v  N − 1., and 

. e(n+m) = e(n) e(m)

e(n) = 1 for n,m ∈ Z.

For a given vector of samples (y0, y1, . . . , yN−1),. N = r · s ∈ N. and its 
corresponding vector of DFT coefficients ( c0, c1, . . . , cN−1)., we write C(u). for  cu . 

and Y (v). for 1
N
yv.. 

Thereby, we find the following representation for the Fourier coefficients C(u).: 

. C(u) =
rs−1 

v=0

Y (v) e
 uv
N

 
=

rs−1 

q1+q0s=0

Y (q1 + q0s) e
 
(p0 + p1r)(q1 + q0s)

N

 

=
s−1 

q1=0

r−1 

q0=0

Y (q1 + q0s) e
 
(p0 + p1r)(q1 + q0s)

N

 
.

Observing N = r · s . and e
  p1rq0s

N

 
= e(p1q0) = 1., we see
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. C(p0 + p1r) =
s−1 

q1=0

r−1 

q0=0

Y (q1 + q0s) e
 p0q0

r

 
e
 p0q1

rs

 
e
 p1q1

s

 

=
s−1 

q1=0

e
 p1q1

s

 
⎛
⎝e
 p0q1

rs

 r−1 

q0=0

Y (q1 + q0s) e
 p0q0

r

 
⎞
⎠

    
“DFT”

r    
“DFT”

s

.

With this, we can formulate as algorithm: 

FFT Algorithm 

1. For p0 = 0, . . . , r − 1. and q1 = 0, . . . , s − 1., compute 

. C(p0, q1) = e
 p0q1

rs

 r−1 

q0=0

Y (q1 + q0s) e
 p0q0

r

 
.

2. For p0 = 0, . . . , r−1. and p1 = 0, . . . , s−1., i.e., for u = 0, . . . , N−1., compute 

. C(u) = C(p0 + p1r) =
s−1 

q1=0

e
 p1q1

s

 
C(p0, q1).

The necessary values of the exponential function are calculated and stored in 
advance for a given N = r · s .. Then the algorithm requires rs(r + 1). operations 
for the first step and rs2 . operations for the second step. 

Example For N = 103 = 10 · 100., naive calculation of the DFT needed N2 =
1,000,000. operations. With r = 10., s = 100. the above algorithm needed only 
N(r + s + 1) = 111,000. operations, i.e., we were approximately 9 times faster. 

As mentioned, the algorithm can be extended to the case of k factors, N =
n1n2 . . . nk ., and thus the computational effort can be further reduced. The choice 
of N as a power of two proves to be particularly advantageous for practical 
applications. We leave with the presented exemplary introduction of the basic 
idea. Concerning questions about optimal factorization of N , questions about 
error analysis (fast FFT algorithms are also more accurate than naive methods) 
etc., we refer to the given literature. If one counts a complex multiplication and 
addition together as one complex operation, then the following reductions of the 
computational effort can be achieved:
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If N = n1n2 · · · nk ., then an FFT does not require more than 2N
k 

i=1
(ni − 1). 

complex operations. If N is a power of two, then N log2(N). operations are 

sufficient. 
Also for calculations of discrete cosine transforms, there are fast algorithms. See 
for example Rao and Hwang (1996). In numerical software, such as Matlab, 
or computer algebra systems such as Mathematica or Maple, there are already 
implemented powerful fast algorithms for DFT and DCT computations. 

At the end of this short excursion into numerical mathematics, a few examples 
are given below to illustrate and to encourage for deepening: 

Examples 

1. Let a signal f be given whose signal frequencies ν . are in the range 0  ν < 50. 
Hertz. Assume that it is superposed with random noise. When sampling over 
a time interval [0, T [. with a sampling frequency νa = N/T > 100 .Hz, for 
example with T = 2 .s and N = 256., an interpolation of the signal by a polygon 
does not show which oscillations the signal is composed of (see Fig. 6.8). 

Application of DFT and computation of the magnitude spectrum | ck|., 0  
k  N − 1. (right figure below), show “Peaks” for k = 60. and k = 90.. From this  
we conclude that the signal essentially is a superposition of two noisy oscillations 
with frequencies ν1 = 60/T = 30 .Hz and ν2 = 45 .Hz, the first with amplitude 
of about one, and the second with about 0.7 as amplitude. The symmetry of the 
shown magnitude spectrum is a consequence of the alias effect. Looking at the 
signal shape, the noise appears also to have amplitudes up to about one, which 
were not detected by the DFT but can be explained by superposition effects of 
numerous noise components with small amplitudes. In the example, in fact it was 
used f (t) = cos(60πt) + 0.7 sin(90πt). and additive noise with random values 
in the interval [−0.7, 0.7]. (cf. Figs. 6.8 and 6.9). 

The clear detection of the frequencies in the example is due to the fact that 
they coincidentally agree with those computed in the DFT spectrum. Such luck 
will be rare in real practice. At this point we do not go into lack of luck and 
other practical problems but will focus on the discrete Fourier transform again 
in a later Chapter (Sect. 12.6). There, we will discuss some aspects which are 
important for applications in practice. 

Fig. 6.8 Signal progression 
in 2s
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Fig. 6.9 DFT magnitude 
spectrum 

Fig. 6.10 Original image of 
G. S. Ohm 

Fig. 6.11 Soft-focussed 
Ohm, 90% of pixels set to 
zero 

2. The next example shows the possibility of using Fourier methods for image data 
compression. The first Fig. 6.10 is a scanned image of G. S. Ohm (1789–1854). 
Each pixel of it was assigned to an integer gray value in the interval [0, 255].. 
These image data were stored in the associated grayscale matrix A. 

This matrix, conceived as a discrete signal of gray values, was subjected to a 
DFT (in two variables, see next example). Finally, all DFT coefficients, whose 
magnitude was smaller than 2M · 10−3

., M being the maximum magnitude of 
all occurring DFT coefficients, were set to zero. About 90%. of all coefficients 
of the example were thus replaced by zero. The second Fig. 6.11 shows the 
reconstruction with an inverse DFT applied to the modified coefficients. 

Since the modified DFT coefficients contain many zeros, their storage with an 
entropy encoding (e.g., Huffman encoding) requires significantly less space than
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the original data matrix A. The expense for this is a DFT, entropy encoding and 
decoding, and an IDFT. The coefficients belonging to higher frequencies rapidly 
become small and are set to zero with this kind of compression. Therefore, one 
has less steep slopes in the reconstruction and thus a blurring effect, which we 
can see in the right image. 

The widely used JPEG algorithms for image data compression (JPEG stands 
for Joint Photographic Experts Group) use the DCT II in a 2-dimensional variant, 
which is presented in the following example. In JPEG compression, pixel blocks 
of size 8× 8. or 16× 16. are transformed with the DCT and the results per block 
are quantized. This is done so that the according DCT coefficients of such blocks 
of a grayscale matrix, depending on their position in the coefficient matrix, are 
divided by accordingly positioned values of a so-called luminance table and 
rounded to integers. The values of the luminance table depend on the desired 
compression ratio. In the following example such a luminance table is shown 
and used. 

Since the DCT coefficients for higher frequency components usually decrease 
rapidly and the divisors of the table for such coefficients increase, one mostly 
gets many zeros in the high frequencies as a result of quantization. These 
quantized spectral data can be stored or transmitted in compressed form by 
entropy encoding. When transmitting a JPEG image, the used encoding method 
(e.g., Huffman table, not uniquely determined) is specified in the file header as 
necessary information for decoding. At the viewer, the data stream is decoded 
back into the DCT matrix and subjected to IDCT block by block. As a rule, the 
IDCT data for the image must also be rendered again if there are values, which 
do not belong to N0 ∩ [0, 255].. 

In color images, the color information is quantized analogously with chromi-
nance tables. The modified quantization can lead to undesired artifacts in the 
neighborhood of edges in combination with the Gibbs phenomenon, since the 
IDCT after compression usually yields a trigonometric interpolation polynomial 
different from that of the original DCT data. This can be quickly verified by 
zooming in on the edges in a JPEG image. Current standards in image data, 
audio and also video encoding can be found in Rao and Hwang (1996). Modern 
and sometimes more powerful mathematical methods for signal compression will 
be introduced in the final Sect. 14.2 about Wavelets. Such wavelet procedures— 
see for example Taubman and Marcellin (2001)—are used with the newer JPEG 
2000 standard or also in the file format DjVu. 

6.9 DCT-2D 

As announced in the example before, we first specify the 2-dimensional variant of 
DCT II, which we use below. For an (M ×N).-matrix A with components Amn ., the  
DCT-2D of A is the (M ×N).-matrix B with components Bpq . for 0  p  M − 1., 
0  q  N − 1., defined by
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. 

DCT− 2D : Bpq = αpαq

M−1 
m=0

N−1 
n=0

Amn cos
 
π(2m+1)p

2M

 
cos
 
π(2n+1)q

2N

 

IDCT− 2D : Amn =
M−1 
p=0

N−1 
q=0

αpαqBpq cos
 
π(2m+1)p

2M

 
cos
 
π(2n+1)q

2N

 
.

Thereby, the normalization factors are those of the numerics software Matlab given 
by 

. αp =
 
1/
√
M if p = 0,

√
2/M if 1  p  M − 1,

αq =
 
1/
√
N if q = 0,

√
2/N if 1  q  N − 1.

The DCT-2D is the concatenation of a DCT over the rows of the matrix A, followed 
by a DCT over the columns of the preceding transformation result. The larger p+q ., 
the higher frequency components in the signal the coefficient Bpq . is assigned to. 
Detailed information about the geometrical aspects of the DCT-2D can be found for 
example in the textbook of Briggs and Van Emden Henson (1995). 

For our demonstration example, the word “Geheimnis” (German for “Secret”) 
was initially stored as a suitably scaled black and white image. The values 0 for 
black, 1 for white pixels were sequentially encoded into the DCT matrix of the 
subsequent image so that one pixel value of information was stored per 8× 8. block. 
To identify the pixels, white pixels were encoded so that the relation B32 > B41 . 

was fulfilled. Where appropriate, these values were interchanged to achieve this 
result. Accordingly, an information pixel was encoded and identified as black by 
B32 < B41 .. If both values were equal, the block was skipped. 

The difference between the two values was increased by a threshold value 
to achieve better stability against attacks by noise and data compression. The 
coefficients B32 . and B41 .were chosen because they belong to the middle frequencies 
in the block and are quantized equally according to the following luminance table 
for JPEG. This lets expect a certain robustness against JPEG compression if both 
values are scaled equally. 

The example does not show a professional algorithm for watermark generation, 
but it demonstrates in a simple way how the frequency domain can be used to 
store information. Since a watermark constructed in this way is not stable against 
geometric attacks such as scaling or rotation of the image, different methods are 
used for professional purposes. One example is the spread spectrum method, in  
which the information is spread over the entire spectrum. These methods originated 
in radio transmission technology and were also used in military communications 
since about 1950. As with images, digital watermarks can also be introduced into 
audio and video data. Figs. 6.12, 6.13, and 6.14 illustrate the experiment.
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Fig. 6.12 8× 8.—luminance 
table 

Fig. 6.13 Image with 
watermark (197 KB) 

Fig. 6.14 JPEG compressed with additional noise (30 KB) 

We see the luminance table and the result of the described example3 in the 
following images reconstructed from the modified DCT spectra: 

There is extensive literature on the subject of digital watermarking and steganog-
raphy in the context of Digital Rights Management (DRM). Interested readers are 
referred to the specialized literature on this subject. A reference is the textbook by 
Cox et al. (2008). Also, by simply searching the Internet for the above-mentioned 
keywords, you can very quickly find numerous sources.

3 Readers are encouraged to create their own analog examples using a DCT with appropriate 
software. 
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6.10 Exercises 

(A16) For a non-recursive discrete filter with hold time T , real coefficients ak ., and 

2π/T .-periodic frequency response  h(ω) =
N 
k=0

ak e−jkωT
. (cf. p. 116), let 

the input values be given by xk = cos(kωT ). for k  0., xk = 0. for k < 0.. 
Compute the output values yn . for n > N .. 

(A2) Let be given the modified Dirichlet kernel 

. Wm(t) =
m 

k=−m

ejkω0t − cos(mω0t) for ω0 =
2π

T
.

Prove that for N = 2m. nodes the T -periodic trigonometric interpolation 
polynomial P2 . in the theorem on p. 99 can also be written in the form 

. P(t) =
1

2m

2m−1 

k=0

f (tk)Wm(t−tk) = P2(t), tk =
kT

2m
(k = 0, . . . , 2m−1).

(A3) For the function f (t) = cos(t)., 0  t < π ., carry out a DFT with N = 15. 
samples tn = nπ/N ., n = 0, . . . , N − 1.. Verify the alias formula of p. 87 on 

the DFT coefficients  c0 . and  c1 .. Why  is
7 

k=−7
 ck ej2kt .—with N -periodically 

extended  ck .—not odd? Set f (0) = 0., use it to repeat the DFT, and again 
form the associated trigonometric interpolation polynomial. What do you 
find? 

(A4) Approximation Quality of Trigonometric Interpolation Polynomials. 

Let be given a continuous 2π .-periodic function f : R→ C.with absolutely 
summable Fourier coefficients ck ., k ∈ Z.. For N = 2m. let P2 . be the 
interpolation polynomial of p. 99. Show that the following error estimate 
holds true for all t ∈ R.: 

. |P2(t)− f (t)|  2
 

|k| N/2

  |ck|.

The symbol
   

. means that the summands with indices N/2. and − N/2. 
are to be multiplied by the factor 1/2.. 

(A5) Consider a signal whose signal frequencies ν . are in the range 0  ν < 80. 
Hz. The signal is analyzed with the DFT. The observation time T is T = 2. 
seconds. How large the number N of samples must be at least, in order to 
avoid adverse alias effects in the spectral analysis? 

(A6) (a) For the oscillation cos(2πνt)., ν = 6. Hz, which values are nonzero in 
the amplitude spectrum of a DFT with N = 128. points in the period 
0  t  4. seconds?
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(b) For cos(2πνt)., ν = 100.Hz, let a DFT be given with N = 128. samples 
from a time window of one second. Which coefficients  ck ., 0  k  127., 
in the DFT spectrum are nonzero and why? 

(A7) For a real periodic signal f in the frequency band up to 600 Hz, a DFT 
is given with N = 512. samples from a time window of 2 seconds. Let be 
nonzero only the DFT coefficients  c90 . and  c422 .. Which signal frequencies 
can produce this DFT spectrum? 

(A8) Signal amplitudes in the frequency band F =]2GHz , 2GHz + 1MHz [. 
are to be detected by a DFT. Let the frequency resolution be 1/T =
5. kHz. Determine m and the sampling frequency N/T ., so that F ⊂
]mN/(2T ), (m+ 1)N/(2T )[.. Which DFT coefficients of a DFT, performed 
with these values, belong to f (t) = sin(2πνt). with ν = 2000150. kHz? (cf. 
Example 3, p. 93) 

(A9) A DFT is performed with the samples tn = n/8 + Δt ., n = 0, . . . , 7., and 
Δt = 0.05. of the function f (t) = 6 cos(2πt) + 3 sin(4πt) − 4 sin(6πt) +
5 cos(8πt).. How can the DFT spectrum be corrected, only with knowledge 
of the amplitude A = 6. of the “pilot carrier” cos(2πt)., so as to obtain the 
spectrum of the real-valued function f ? (Cf. Example 5, p. 94) 

(A10) Show that the DFT of 1/N · (xnyn)0 n N−1 . is the N-periodic convolution 
of the DFT coefficients of (xn)0 n N−1 . and (yn)0 n N−1 .. 

(A11) Program the Clenshaw-Curtis method for numerical integration and test your 
program on polynomials and in a comparison with the trapezoidal rule, using 

as example the integral
1́

0

1
1+x

dx = ln(2).. 

Compare the relative errors with an increasing number of nodes. 
(A12) Runge’s Example. Write a program to interpolate the function 

. f (x) = 1/(1+ 25x2)

on [−1, 1]. (example from Runge, 1901) with n equidistant nodes and with 
the Chebyshev abscissae as nodes for n = 8., n = 13., and n = 17.. 

Generate graphs of the results and discuss the quality of the polynomials 
obtained as approximations to the function f on [−1, 1].. 

(A13) Show the orthogonality of the Chebyshev polynomials Tk . on [−1, 1]. with 
respect to the inner product  ., . w .. Calculate the alias relation for the 
coefficients of the polynomials Tk . when interpolating with the nodes xn =
cos(nπ/m)., n = 0, . . . , m.. Test your result by interpolating the function 
f = T11 + T13 − 2T23 .with seven such nodes with a DCT I as on p. 110. 

(A14) Interpolation with Chebyshev polynomials on intervals other than [−1, 1].. 
Let the function f be given by f : [−3, 7] → R,. 

. f (t) =
1

1+ (t − 2)2
.

Map the interval [−1, 1]. with an affine mapping L to [−3, 7]., and compute 
with a DCT II the interpolation polynomial P of degree m = 12. for
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g(t) = f (L(t))., with the Chebyshev abscissae xn . (n = 0, . . . , m.) as nodes. 
Plot the function f , the interpolation polynomial P ◦ L−1

. with nodes 
tn = L(xn)., and the interpolation error f − P ◦ L−1

.. Use your program 
of exercise A12. 

(A15) Complex Chebyshev polynomials, design of Chebyshev lowpass filters. 

(a)  . If you are familiar with complex functions, then verify that for variable 
z ∈ C. the n-th Chebyshev polynomial is Tn(cos(z)) = cos(nz).. If 
you are not sufficiently familiar with complex functions to solve (a)–(c), 
please take (a)–(c) for granted and solve (d). 

(b)  . The Joukowsky transformation z = z(w) = (w + w−1)/2. maps the 
complement of the unit circle invertibly to C \ [−1, 1].. 

When the principal values 

. 

 
1− 1/z2 =

∞ 

n=0

 
1/2

n

 
(−1)n

z2n

. 

 
1− z2 =

∞ 

n=0

 
1/2

n

 
(−1)nz2n

are chosen for the roots, show that the inverse mapping is explicitly given 
by 

. w(z) =

⎧
⎪⎪⎨
⎪⎪⎩

z+ z
 
1− 1/z2 |z| > 1,

z+ j
√
1− z2 for |z|  1, (z) > 0,

z− j
√
1− z2 |z|  1, (z) < 0.

Prove that Tn(z) = wn+w−n

2 .. 

(c)  . Using the approach 

. Q(z) = H(z)H(−z) = 1/(1+ ε2T 2
n (z/(jωc))),

find the poles of Q with negative real part. Set z/(jωc) = cos(x + jy)., 
and show that for ε > 0. and ωc > 0. these poles are given by 

. zk = ωc sin(xk) sinh(y)+ jωc cos(xk) cosh(y) (k = 0, . . . , n− 1),

. xk =
(2k + 1)π

2n
, y = −

1

n
arsinh

 
1

ε

 
.

Use (b), trigonometric addition theorems, and the relations of 
complex trigonometric functions and complex hyperbolic functions: 
cos(jz) = cosh(z). and sin(jz) = j sinh(z)..
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(d) Write a program to solve the following problem. With the poles zk . from 
(c), k = 0, . . . , n − 1., the frequency response  h(ω) = H(jω). of a 
Chebyshev lowpass filter of order n with 

. | h(ω)|2 = 1

1+ ε2T 2
n (ω/ωc)

is given by 

.  h(ω) = h(0)
n−1 

k=0

−zk

jω − zk
.

The DC gain is h(0) = 1. for odd n and h(0) = 1/
√
1+ ε2 . for even n. 

With ωc/(2π). as cutoff frequency, the attenuation in dB (decibel) is 

. A(ω) = 10 log10(1+ ε2T 2
n (ω/ωc)).

Now, calculate a Chebyshev lowpass filter with lowest possible order 
n according to the following specification: 

Let the cutoff angular frequency ωc . be given by ωc = 2π · 1000.Hz; 
let the stopband edge beωs = 2π ·2500.Hz. The maximum attenuation at 
the passband edge ωc . shall be Amax = 0.2. dB, the minimum attenuation 
at the stopband edge Amin = 40. dB. 

First calculate ε . and the necessary filter order n ∈ N. by substituting 
the given attenuations at ωc . and ωs . in A(ω).. Then calculate the poles 
with negative real part as in (c) and build the frequency response of the 
filter. 

Plot the amplitude response | h|., the phase response Φ(ω) =
arg( h(ω))., the delay − Φ(ω)/ω., and the group delay D(ω) =
−dΦ(ω)/dω .. 
See also later in Sect. 11.3 the design of other analog filter types with 
rational frequency responses—such as Butterworth lowpass filters—and 
in Sect. 11.6 corresponding discrete filter variants. 

(A16) Transistor in emitter circuit. Suppose the collector current iC(t). is given by 

. iC(t) = e1.1+0.75 sin(ω0t) −1 [mA] (ω0 = 1rad/s).

Compute a DFT with sampling points iC(2πk/16)., k = 0, . . . , 15. and 
estimate the DC gain, the RMS value, and the distortion factor (cf. p. 33).



Chapter 7 

Convergence of Fourier Series 

Abstract This chapter is devoted to the proofs of the previously given theorems 

on pointwise convergence of Fourier series. The theorems of Dirichlet and Fejér 

with their implications are proven. The mitigation of the Gibbs phenomenon 

by summation kernels is shown as well as the Parseval equation for piecewise 

continuous periodic functions. As a summary of the acquired knowledge at that 

point, mathematical results are discussed, which have historically led from classical 

Fourier analysis and integration theory to the Lebesgue integral and distributions. 

The theoretical foundations of distribution theory and its countless practical appli-

cations are developed in the following chapters. 

In the last chapters we have learned about first examples and applications of Fourier 

series. In this chapter the central statements of convergence in the theorems of 

P. L. Dirichlet and L. Fejér from Sect. 3.2, and the Parseval equation are studied in 

more detail. The proofs are presented in such a way that the emphasis is not so much 

on their mathematical “justification character,” but rather that the reader learns a 

good portion of arithmetic technique in dealing with trigonometric functions, sums, 

and integrals. 

The common basic principle in studying approximations fN . to T -periodic 

functions f in the following sections is the representation of the approximations 

in the form 

. fN (t) =
1

T

T̂

0

f (s)KN (t − s) ds ,

with suitable integral kernels KN .. From the properties of the function f and the 

convolution kernels KN . result the properties of the approximating functions fN .. 

With regard to convergence of the approximations we distinguish between pointwise 

convergence, uniform convergence, and convergence in quadratic mean. 
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7.1 The Theorem of Dirichlet 

The subject of this section is the proof of Dirichlet’s theorem on pointwise 

representation of piecewise continuously differentiable periodic functions by their 

Fourier series (cf. S. 28). A detailed discussion of pointwise convergence of Fourier 

series of more general functions, for example monotone functions and functions 

of bounded variation, can be found for instance in Zygmund (2003). As a typical 

example of such a function, which is not piecewise continuously differentiable, 

only the famous Cantor function, also called devil’s staircase, may be mentioned 

here. Further examples for Fourier series expansions of functions, which are not 

piecewise continuously differentiable, are given in Exercise A6. 

Theorem 7.1 The Fourier series of a piecewise continuously differentiable periodic 

function f : R → C. converges at each point t to (f (t+)+ f (t−))/2.. 

Proof For the proof, assume that the function f is T -periodic with T = 1. and 

piecewise continuously differentiable. The partial sum of degree N of the Fourier 

series of f is denoted by fN .. The proof of the theorem is carried out in four steps: 

1. According to T = 1., we use the 1-periodic Dirichlet kernels DN ., given by 

. DN (t) =

N
 

k=−N

ej2πkt =

⎧

⎨

⎩

sin((2N + 1)πt)

sin(πt)
for t  ∈ Z,

2N + 1 for t ∈ Z,

and prove immediately 

. 

1
ˆ

0

DN (t) dt =

1/2
ˆ

−1/2

DN (t) dt = 2

1/2
ˆ

0

DN (t) dt = 1.

2. DN . and f are 1-periodic. As already shown in 3.2 it holds 

. fN (t) =

N
 

k=−N

1
ˆ

0

f (s) e−j2πks ds ej2πkt =

1
ˆ

0

DN (t − s)f (s) ds

=

1/2
ˆ

−1/2

DN (s)f (t − s) ds=

1/2
ˆ

−1/2

sin((2N + 1)πs)

sin(πs)
f (t − s) ds .

3. We can write the last integral in the form:
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. fN (t) =

0
ˆ

−1/2

sin((2N + 1)πs)
f (t − s)− f (t+)

sin(πs)
ds

    

I1(N,t)

+f (t+)

0
ˆ

−1/2

DN (s) ds

+

1/2
ˆ

0

sin((2N + 1)πs)
f (t − s)− f (t−)

sin(πs)
ds

    

I2(N,t)

+f (t−)

1/2
ˆ

0

DN (s) ds

=
1

2
[f (t+)+ f (t−)] + I1(N, t)+ I2(N, t).

4. Since f is piecewise continuously differentiable, the right- and left-sided 

derivatives of f at t exist, and thus also the limits (cf. Exercise A8): 

. lim
s→0−

f (t − s)− f (t+)

sin(πs)
= −

f  (t+)

π
and lim

s→0+

f (t − s)− f (t−)

sin(πs)
= −

f  (t−)

π
.

Therefore, both functions
f (t − s)− f (t±)

sin(πs)
. can be continuously extended 

from their integration intervals to s = 0. by these limits. Hence, by the 

Riemann-Lebesgue Lemma in 4.5, p.  50, we eventually obtain lim
N→∞

I1(N, t) =

lim
N→∞

I2(N, t) = 0 for every t.. 

Conclusion: The Fourier series of f converges everywhere to
1

2
[f (t+)+ f (t−)].. 

If f has the mean value property, then f (t) = lim
N→∞

1
ˆ

0

f (s)DN (t − s) ds . for 

every t ∈ R.. 

  

7.2 The Theorem of Fejér, Convergence by Smoothing 

Uniform Convergence of Fejér Means for Continuous Functions 

After P. Du Bois-Reymond (1831–1889) had shown that there are periodic functions 

f whose Fourier series diverge on a dense set in their domain of definition, L. 

Fejér succeeded in 1904, only as late as 100 years after Fourier’s work, to show 

the following theorem, already stated on p. 29:
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Fig. 7.1 The Fejér kernels 

F4 . and F10 . 

Theorem 7.2 (Theorem of Fejér) Let f : R → C. be a periodic continuous 

function. Then the arithmetic means of the partial sums Sk . of the Fourier series 

of f converge uniformly to f . 

Again, we assume T = 1. as period. Instead of the Dirichlet kernels Dn . we use 

for the proof of this result the Fejér kernels (see Fig. 7.1) 

. Fn(t) =
1

n
(D0 + . . .+Dn−1).

With period T = 1. and t ∈ R \ Z. we have for n ∈ N.: 

. Fn(t) =
1

n

n−1
 

k=0

sin((2k + 1)πt)

sin(πt)
for t  ∈ Z.

The Fn . are even functions, and

1/2
ˆ

−1/2

Dn(t) dt = 1. implies 

. 

1/2
ˆ

−1/2

Fn(t) dt = 2

1/2
ˆ

0

Fn(t) dt = 1.

With sin(x) =  (ejx). and with the formula for the sum of a finite geometric series, 

we obtain (Exercise) 

.Fn(t) =

⎧

⎨

⎩

1
n

sin2(nπt)

sin2(πt)
for t ∈ R \ Z,

n for t ∈ Z.
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Therefore, we find that all Fn  0.. The inequality Fn(t)  
1

n sin2(πt)
. for all 

t ∈ R \Z. shows that the function sequence (Fn)n∈N . converges uniformly to zero in 

each interval [δ, 1/2]., 0 < δ < 1/2.. 

Proof of Fejér’s Theorem After these remarks we now obtain for periodic continu-

ous functions f with period T = 1. and arbitrary t ∈ R. 

. 
1

n

n−1
 

k=0

Sk(t)− f (t) =
1

n

n−1
 

k=0

1/2
ˆ

−1/2

Dk(s)f (t − s) ds − f (t)

=

1/2
ˆ

−1/2

Fn(s)(f (t − s)− f (t)) ds .

The function g(s) = f (t − s) − f (t). is continuous with g(0) = 0.. Then for every 

ε > 0. there is a δ ∈]0,
1

2
]., so that |g(s)|  ε . for |s| < δ .. 

Hence, from the inequality
 
 
sin2(nπs)

sin2(πs)

 
  

1

sin2(πδ)
. for all s ∈ [δ,

1

2
]. we obtain 

. 

 
 
1

n

n−1
 

k=0

Sk(t)− f (t)
 
  

ˆ

|s|<δ

Fn(s)|g(s)| ds +

ˆ

δ |s| 1/2

Fn(s)|f (t − s)− f (t)| ds

 ε

ˆ

|s|<δ

Fn(s) ds + 2 max
0 t 1

|f (t)| ·
2

n

1/2
ˆ

δ

sin2(nπs)

sin2(πs)
ds

 ε +
2

n sin2(πδ)
· max

0 t 1
|f (t)|.

This yields the uniform convergence of the Fejér means
1

n
(S0 + . . .+ Sn−1). to f , 

since the right-hand side becomes arbitrarily small for n → ∞. independent of t . 

  

Convergence of Fejér Means for Piecewise Continuous 

Functions 

Theorem 7.3 For piecewise continuous periodic functions f : R → C., the Fejér  

means converge to (f (t0+)+ f (t0−))/2. at any point t0 ..
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Proof Analogous to the proof of Dirichlet’s theorem, we write the Fejér averaging 

in the form of a convolution integral. As period we assume again T = 1.. At a point 

t0 . we have 

. 

1/2
ˆ

−1/2

Fn(s)f (t0 − s) ds=

0
ˆ

−1/2

Fn(s)(f (t0 − s)− f (t0+)) ds

    

I1(n,t0)

+f (t0+)

0
ˆ

−1/2

Fn(s) ds

+

1/2
ˆ

0

Fn(s)(f (t0 − s)− f (t0−)) ds

    

I2(n,t0)

+ f (t0−)

1/2
ˆ

0

Fn(s) ds .

Setting g(s) = f (t0 − s) − f (t0+). in [−1/2, 0[., we have lim
s→0−

g(s) = 0., and 

therefore with an estimation as in the proof before lim
n→∞

I1(n, t0) = 0.. Analogously 

follows lim
n→∞

I2(n, t0) = 0., and thus the assertion.   

An already discussed consequence of Fejér’s theorem was the approximation 

theorem of Weierstrass. As further applications we now show the remaining 

statements from Sect. 3.2 on pointwise convergence of Fourier series. 

Convergence of Fourier Series of Piecewise Continuous 

Functions 

The theorem on pointwise convergence of the Fejér means has an important conse-

quence for Fourier series of piecewise continuous periodic functions f : R → C.. 

Theorem 7.4 If the Fourier series Sf . of a piecewise continuous periodic function 

converges at a point t0 . at all, then Sf (t0) = (f (t0+)+ f (t0−))/2.. Moreover, if f is 

continuous at t0 ., then Sf (t0) = f (t0).. 

Proof The assertion follows directly from the fact that the Fejér means at t0 . 

converge to the limit (f (t0+) + f (t0−))/2., and from the fact that each convergent 

sequence of numbers and its arithmetic means1 converge to the same limit.   

1 Arithmetic means in mathematical literature are also called Cesàro means. 
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Completeness of the Trigonometric System 

The following theorem is called the completeness theorem for the trigonometric 

function system. 

Theorem 7.5 A piecewise continuous periodic function f : R → C. with the mean 

value property, whose Fourier coefficients ck . all vanish, is the zero function. 

Proof If there were point t0 ∈ R. at which such a T -periodic function f were 

continuous with f (t0)  = 0., then f would satisfy f (t)  = 0. on a suitable interval 

around t0 .. Then there were a T -periodic Fejér kernel Fn . such that 

. 
1

T

T/2
ˆ

−T/2

f (t)Fn(t0 − t) dt  = 0.

But this is a contradiction to the assumption: From ck = 0. for all k ∈ Z. we get 
T/2
ˆ

−T/2

f (t)P (t) dt = 0. for each T -periodic trigonometric polynomial, thus also for 

Fn(t0 − t).. Therefore f must be zero under the conditions of the theorem.   

Applying the completeness theorem to the difference f − g . of two piecewise 

continuous periodic functions f and g, we immediately obtain the following 

theorem about uniqueness of Fourier series: 

Theorem 7.6 Two piecewise continuous periodic functions f and g with the mean 

value property and the same Fourier coefficients are equal. 

Fourier Series of Piecewise Continuously Differentiable 

Functions 

Theorem 7.7 If a piecewise continuously differentiable periodic f : R → C. is 

continuous, then its Fourier series converges uniformly to f . 

Proof If f is T -periodic and satisfies the assumptions, then we have for the Fourier 

coefficients ck . of f and c k . of f  
. 

. c k = jk
2π

T
ck and ck =

T

j2πk
c k for k  = 0 .

Since for complex numbers a, b we have 0  (|a| − |b|)2 = |a|2 + |b|2 − 2|a||b|., 

we obtain for k  = 0. the estimate
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. |ck|  
1

2

 
T 2

4π2|k|2
+ |c k|

2

 

.

From the convergence of

∞
 

k=1

1

k2
. and from the Bessel inequality for f  

. follows 

therefore that

+∞
 

k=−∞

|ck| < ∞., i.e., the Fourier series of f converges absolutely and 

uniformly to a continuous function g. According to the uniqueness theorem, then 

g = f ..   

Theorem 7.8 If a periodic piecewise continuously differentiable f : R → C. has 

discontinuities, the uniform convergence of the Fourier sequence Sf . still follows on 

any closed interval, which does not contain a discontinuity point of f . 

Proof It suffices to consider T -periodic, piecewise continuously differentiable 

functions f with a single discontinuity at t0 . in [0, T ].. We assume that f is 

continuous otherwise and possesses the mean value property f (t0) = (f (t0+)+

f (t0−))/2.. We write f in the form f (t) = g(t)+ r(t). with 

. g(t) = f (t)−
1

π
[f (t0+)− f (t0−)] S

 
2π

T
(t − t0)

 

,

r(t) =
1

π
[f (t0+)− f (t0−)] S

 
2π

T
(t − t0)

 

,

where S(2πt/T ). is the T -periodic sawtooth function of p. 24. Then the Fourier 

series of g uniformly converges to the continuous function g. The Fourier series of 

r converges uniformly on each closed interval not containing t0 ., as we have shown  

in Sect. 3.1. From this follows the convergence of Sf = Sg + Sr . as claimed.   

Vanishing of the Gibbs Phenomenon in Fejér Means 

For periodic piecewise continuously differentiable functions f (t) =

+∞
 

k=−∞

ck ejkω0t ., 

we had seen in Sect. 3.2 that using partial sums to approximate f causes the Gibbs 

phenomenon. Using such a partial sum 

. Sn(t) =

n
 

k=−n

ck ejkω0t =

n
 

k=−n

wn(k)ck ejkω0t

with
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. wn(t) =

 

1 for |t |  n

0 for |t | > n

corresponds to weighting the spectral values ck . with the rectangular window 

function wn .. At all jump discontinuities of the real or imaginary part of f , there 

is an overshoot of approximately 9%. of the respective jump height. We now show 

that the Fejér means of f do not exhibit the Gibbs phenomenon anymore. The Fejér 

means 

. 
1

n+ 1

n
 

k=0

Sk(t) =

n
 

k=−n

 

1 −
|k|

n+ 1

 

ck ejkω0t

prevent the Gibbs phenomenon through weighting the spectrum with the triangle 

window. 

. wn(t) =

 

1 − |t |/(n+ 1) for |t |  n+ 1

0 for |t | > n+ 1.

Proof It suffices to consider real-valued functions. We note that for any ε > 0., any  

0 < δ < 1/2., for 1-periodic Fejér kernels Fn .and 1-periodic, piecewise continuously 

differentiable real-valued functions f , we have the inequalities 

. − ε <

−δ
ˆ

−1/2

Fn(s)f (t − s) ds +

ˆ 1/2

δ

Fn(s)f (t − s) ds < ε,

if n is greater than a suitably chosen n0 ∈ N.. 

Now, if m  f (t)  M . for t ∈ [a, b]. and 0 < δ < min
 

1
2
, b−a

2

 

., then to give 

ε > 0. there is a n0 ∈ N., so that we obtain for n  n0 . and t ∈ [a + δ, b − δ]. the 

estimate 

. 
1

n+ 1

n
 

k=0

Sk(t) =

1/2
ˆ

−1/2

Fn+1(s)f (t − s) ds  

δ
ˆ

−δ

Fn+1(s)f (t − s) ds+ ε  M + ε,

because (t − s) ∈ [a, b]. for |s|  δ ., thus f (t − s)  M . and Fn+1  0., and 
δ
ˆ

−δ

Fn+1(s) ds  1.. 

Analogously one obtains m− ε  
1

n+ 1

n
 

k=0

Sk(t). for t ∈ [a + δ, b − δ]..   
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Fig. 7.2 Disappearance of 

the Gibbs phenomenon 

These inequalities show that the Fejér means can be kept in a specified tolerance 

zone B = B(a, b, ε, δ). with arbitrarily small ε . for sufficiently large n ∈ N., even  

in the neighborhood of discontinuities. Therefore, the Gibbs phenomenon cannot 

occur. To illustrate this, consider the following Fig. 7.2 and again Fig. 3.11 on p. 35. 

When partial sums of Fourier series are used for approximation and reconstruc-

tion of T -periodic functions from spectral values ck ., the Gibbs phenomenon, more 

generally speaking, the oscillatory behavior of the approximation plays an important 

role. The preceding considerations show that the approximations can be smoothed 

and kept within certain tolerance ranges if, for example, the Fejér means are used 

for the approximation. The proofs also show that other weight functions can be used 

instead of the spectral triangle window. A triangle window as a weighting function 

in the spectrum corresponds to convolution with a Fejér kernel Fn . in time domain. 

In all theorems the Fejér kernels Fn . can be replaced by arbitrary kernels Kn ., 

if these convolution kernels, here related to 1-periodic functions, are nonnegative 

continuous even functions with

1
ˆ

0

Kn(t) dt = 1., and if lim
n→∞

Kn(t) = 0. uniformly 

in each interval [δ, 1/2]., 0 < δ < 1/2.. Such kernels are called summation kernels. 

This finding is the starting point for the construction of other window functions 

and related kernels, which—depending on the purpose of application—produce 

more advantageous approximations than the Fejér means. Such advantages can be, 

for example, steeper slopes at jump discontinuities, thereby also higher power of 

the approximation, less smoothing—technically speaking a higher resolution—and 

much more. See also the later Sects. 12.5 and 12.6 on windowed Fourier transforms. 

The mentioned conditions on the sequence Kn . of convolution kernels can still be 

weakened, so that it is not necessary to require Kn  0.. An example is the de la 

Vallée Poussin kernel V2n = 2F2n+1 − Fn . with the Fejér kernel Fn .. For this and 

other convolution kernels, refer to Walker (1988) and further references cited there. 

7.3 The Parseval Equation 

We first show that periodic convolutions of piecewise continuous T -periodic 

functions f : R → C. are continuous, and then we deduce the Parseval equation
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for such functions: 

. If f has Fourier coefficients ck, then
1

T

T̂

0

|f (t)|2 dt =

+∞
 

k=−∞

|ck|
2.

Continuity of Periodic Convolutions of Piecewise Continuous 

Functions 

It is sufficient to consider 2π .-periodic functions f and h, each with only one jump 

discontinuity at t0 . and t1 . in [0, 2π ]., respectively, and otherwise continuous. They 

then have the form f = g1 + r1 . and h = g2 + r2 ., 

. f (t) = g1(t)+
1

π
(f (t0+)− f (t0−))S(t − t0) ,

h(t) = g2(t)+
1

π
(h(t1+)− h(t1−))S(t − t1) ,

where g1 . and g2 . are continuous on R. and S is the 2π .-periodic sawtooth function. 

The uniform continuity of g1 . and g2 . implies immediately the continuity of the 

convolutions (g1∗g2)2π ., (g1∗r2)2π ., and (g2∗r1)2π ., by deductions like, for example, 

. 

 
 
 

2π
ˆ

0

r1(s)(g2(t + δ − s)−g2(t − s)) ds

 
 
  

2π
ˆ

0

|r1(s)||g2(t + δ− s)− g2(t− s)| ds

< 2πε sup
0 s 2π

|r1(s)|.

The second term in the integrand of the right-hand side integral becomes for any s in 

[0, 2π ]. smaller than any ε > 0., if only δ > 0. is chosen small enough. So it remains 

to prove the continuity of the 2π .-periodic convolution of two sawtooth functions 

St0(t) = S(t − t0). and St1(t) = S(t − t1)., t0, t1 ∈ [0, 2π ].. In the equation 

. 

2π
ˆ

0

S(x − t0)S(t − t1 − x) dx =

2π
ˆ

0

S(u)S(t − t0 − t1 − u) du

we observe (St0 ∗St1)2π (t) = (S ∗S)2π (t − t0 − t1).. Therefore, we have to show the 

continuity of (S∗S)2π .. However, with S(t) =

 

(π − t)/2 for 0 < t < 2π,

(−t − π)/2 for − 2π < t < 0,
. 

we simply calculate for t ∈]0, 2π [.:
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. (S ∗ S)2π (t) =
1

8π

⎛

⎝

t
ˆ

0

(π − s)(π − t + s) ds +

2π
ˆ

t

(π − s)(−t − π + s) ds

⎞

⎠

= −
1

8
t2 +

π

4
t −

π2

12
.

The continuity of the 2π .-periodic extension then results from (S ∗ S)2π (0+) =

(S ∗ S)2π (2π−).. 

The Parseval Equation for Piecewise Continuous Periodic 

Functions 

If f is piecewise continuous on [0, T ]. with Fourier coefficients ck ., k ∈ Z., then the 

function f (−t). possesses the Fourier coefficients ck ., k ∈ Z., according to Sect. 4.1. 

Hence, we have for the T -periodic convolution g(t) =
1

T

T̂

0

f (u)f (u− t) du =

+∞
 

k=−∞

|ck|
2 ejkω0t . with ω0 = 2π/T . (cf. p. 64). 

Now, the function g is continuous, and its Fourier series converges uniformly to 

g by the completeness theorem on p. 135. In particular, the Parseval equation holds. 

. g(0) =
1

T

T̂

0

|f (u)|2 du =

+∞
 

k=−∞

|ck|
2.

This also shows that the Fourier series of f converges to f in quadratic mean 

Remark As already remarked on p. 63, one can prove the continuity of the 

convolution (f ∗ h)T . also for T -periodic functions f and h, which are square-

Lebesgue-integrable on [0, T ].. Hence, the Parseval equation and the convergence 

of their Fourier series in quadratic mean follow also for such functions f or h (cf. 

Zygmund (2003) and Exercise A8). 

7.4 Fourier Series for Functions of Several Variables 

With Fourier series expansions one can also represent many functions of several 

variables, which are defined on cubic domains Q in Rn
.. One obtains quite analogous
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results as in the one-dimensional case. We restrict ourselves to some statements for 

the case of two variables without proofs. 

In general, the theory for Fourier series of functions with several variables is far 

more complex and complicated than that for one-dimensional domains of definition. 

Think for example of different geometrical shapes as domains of definition, which 

are not axis parallel. If you are interested, you can find details of this field, e.g., in 

Tolstov (1976), Stein and Weiss (1971), or Zygmund (2003). 

Theorem 7.9 If f : Q → C. is square-integrable on Q =]−π, π [×]−π, π [., then 

Parseval’s equation 

. 
1

4π2

π̂

−π

ˆ π

−π

|f (x, y)|2 dx dy =

+∞
 

l,m=−∞

|clm|
2

is valid with the Fourier coefficients clm =
1

4π2

π̂

−π

ˆ π

−π

f (x, y) e−j (lx+my) dx dy .. 

The Fourier series

+∞
 

l,m=−∞

clm ej (lx+my)
. converges in quadratic mean to f , i.e., 

for N1, N2 → ∞. simultaneously, the error 

. 

π̂

−π

ˆ π

−π

 
 
 
 
f (x, y)−

 

|l| N1

 

|m| N2

clm ej (lx+my)

 
 
 
 

2

dx dy

becomes arbitrarily small. In that sense, f has a Fourier series expansion. 

If f is twice continuously differentiable with support supp(f ) ⊂ Q., then the 

Fourier series of f converges uniformly and represents f pointwise. 

The support supp (f ). is the closure of the set {(x, y) ∈ Q | f (x, y)  = 0}. in R2
.. 

It holds true the following extension of Fejér’s theorem: 

Theorem 7.10 If f : Q → C. is continuous in Q =] − π, π [×] − π, π [., and 

supp(f ) ⊂ Q., then the Fejér means 

. MN1,N2
(x, y) =

1

(N1 + 1)(N2 + 1)

N1 

k1=0

N2 

k2=0

Sk1,k2
(x, y)

converge uniformly to f , when simultaneously N1 → ∞. and N2 → ∞.. 

Here, the partial sums Sk1,k2
(x, y). are defined by 

.Sk1,k2
(x, y) =

 

|l| k1

 

|m| k2

clm ej (lx+my) .
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For the proof one uses the representation 

. MN1,N2
(x, y) =

1

4π2

π̂

−π

ˆ π

−π

f (u, v)FN1,N2
(x − u, y − v) du dv ,

where FN1,N2
. is the product of the 2π .-periodic Fejér kernels FN1

(x). and FN2
(y).. 

Then, the proof follows completely the line of the proof in the one-dimensional case 

(cf. 7.2). In particular, we obtain the following variant of Weierstrass’ approximation 

theorem: 

Theorem 7.11 (Theorem of Weierstrass) If f is continuous on Q =] − π, π [2 . 

and supp(f ) ⊂ Q., then there exists for each ε > 0. a polynomial P(x, y). such that 

the following inequality is valid for all (x, y) ∈ Q.: 

. 

 
 
 
 
f (x, y)− P(x, y)

 
 
 
 
< ε.

Thus, the function f can be uniformly approximated by polynomials. 

All theorems can be rephrased for rectangles other than Q as above and are also 

valid for more than two variables. As an example we consider a square-integrable 

function f on the rectangle Q =]0, L1[×]0, L2[., which can be expanded into a 

double sine series: 

Theorem 7.12 If f is square-integrable on Q =]0, L1[×]0, L2[., then the series 

. 

∞
 

n,m=1

bn,m sin

 
nπx

L1

 

sin

 
mπy

L2

 

,

bn,m =
4

L1L2

L2
ˆ

0

ˆ L1

0

f (x, y) sin

 
nπx

L1

 

sin

 
mπy

L2

 

dx dy ,

converges to f in quadratic mean. 

To give an idea for the theorem, without an exact proof, we expand f (x, y). for 

fixed y into a sine series (cf. p. 43) 

. f (x, y) =

∞
 

n=1

bn sin

 
nπx

L1

 

with bn =
2

L1

L1
ˆ

0

f (x, y) sin

 
nπx

L1

 

dx .

If we consider bn . as a function of y, which in turn can be expanded into a sine series, 

then
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. bn =

∞
 

m=1

bn,m sin

 
mπy

L2

 

with bn,m =
2

L2

L2
ˆ

0

bn sin

 
nπy

L2

 

dy ,

and thereby 

. f (x, y) =

∞
 

n=1

∞
 

m=1

bn,m sin

 
nπx

L1

 

sin

 
mπy

L2

 

,

bn,m =
4

L1L2

L2
ˆ

0

ˆ L1

0

f (x, y) sin

 
nπx

L1

 

sin

 
mπy

L2

 

dx dy .

Applications of Fourier series of several variables arise in linear partial differential 

equations with constant coefficients in cubic domains. One can then try to solve such 

equations with a separation of variables approach, analogous to the procedure for the 

string vibration. For such problems the series expansions had just been introduced 

by Bernoulli and Fourier. First applications were the solution of heat conduction 

problems and also the treatment of vibrating membranes. Here, the eigensolutions 

(cf. p. 5) lead to the trigonometric function system. We consider an example to 

which we refer later on in Sect. 9.5 in more detail. 

A Dirichlet Boundary Value Problem for a Rectangle Membrane 

Let an elastic membrane be fixed at the boundary of the rectangle Q = [0, L] ×

[0, L]. in the plane. Load by a force, perpendicular to the plane, causes a dis-

placement of the membrane. Let the tension, which is exerted by the fastening, be 

isotropic, so that it is described by a scalar k (of physical dimension N/m). If f is 

the area density of the force, then small displacements u in equilibrium state are 

described approximately by the differential equation 

. − kΔu = −k

 
∂2u

∂x2
+

∂2u

∂y2

 

= f in Q \ ∂Q, u = 0 on the boundary ∂Q of Q.

This is called a Dirichlet boundary value problem. The functions 

. un,m = sin
 nπx

L

 

sin
 mπy

L

 

are eigenfunctions of − Δ. for the eigenvalues λn,m =
 nπ

L

 2

+
 mπ

L

 2

., i.e., for 

all n,m ∈ N. holds
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. −Δun,m = λn,mun,m.

If the force density f is a linear combination of these eigenfunctions un,m ., 

. f (x, y) =

N
 

n=1

M
 

m=1

bn,m sin
 nπx

L

 

sin
 mπy

L

 

,

then the displacement u with u(x, y) = 0. on the boundary ∂Q. is given by 

. u(x, y) =
1

k

N
 

n=1

M
 

m=1

bn,m

λn,m
sin

 nπx

L

 

sin
 mπy

L

 

,

verified by inserting it into the differential equation. 

Right-hand sides f in the differential equation, which are of the form of a 

trigonometric polynomial as above, are best understood as approximations for the 

exact physical force action. The solution u is then an approximation of the real 

membrane displacement. For this, cf. exercise A7 at the end of this section and later 

on Sect. 9.5, p. 253. 

In order to obtain good approximations for different physical situations one 

would like to have a solution theory for right-hand sides f being as general 

as possible. This is achievable with Fourier series expansions of f and u. The  

higher the order of the partial sums of these series expansions is, the better 

approximations can be expected. For square -integrable f on Q with the Fourier 

series representation 

. f (x, y) =

∞
 

n,m=1

bn,m sin
 nπx

L

 

sin
 mπy

L

 

,

we obtain by the approach 

. u(x, y) =
1

k

∞
 

n,m=1

bn,m

λn,m
sin

 nπx

L

 

sin
 mπy

L

 

with term-by-term differentiation of the Fourier series of u 

. − kΔu = −

∞
 

n,m=1

bn,m

λn,m
Δ
 

sin
 nπx

L

 

sin
 mπy

L

  

= f (x, y).

Thus u is the desired solution. The method is elegant, but it requires a mathe-

matically exact reasoning: The Fourier series of f does not converge pointwise in 

general, but in quadratic mean to f , the term-by-term differentiation of the Fourier 

series of u is a questionable procedure (cf. Sect. 4.3), and the question arises in
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which sense this series converges and takes on the zero boundary values. Satisfying 

answers are provided by the distribution theory, in literature also called the theory 

of generalized functions. Therefore, in the next chapter we work out some basics 

of distribution theory and take up again the Dirichlet problem of the membrane in 

Chap. 9. 

A detailed discussion of the cited theorems about Fourier series of several 

variables and their application to partial differential equations can be found, e.g., in 

Shapiro (2019). Analogously to the just given example, questions of mathematical 

physics often lead to function systems arising as eigensolutions, having similar 

properties as the trigonometric system. Then, one can find solutions for such prob-

lems through replacing the trigonometric system by series expansions according to 

the eigenfunction system. This more general concept, which has its roots in classical 

Fourier analysis, is outlined in Chap. 14. 

A Warning Example 

As a warning against a purely formal approach, consider the following example: 

Given is the differential equation y  (x) = x − π/2. on [0, π ]. with the boundary 

conditions y(3)(0) = y(3)(π) = 0.. We try to find a trigonometric series solution, 

i.e., we assume y(x) = a0/2 +

∞
 

k=1

(ak cos(kx) + bk sin(kx)).. By differentiating 

twice term by term, we obtain with the uniformly convergent Fourier cosine series 

of x − π/2. on the right-hand side 

. −

∞
 

k=1

(akk
2) cos(kx)+ bk sin(kx)) = −

4

π

∞
 

k=0

cos((2k + 1)x)

(2k + 1)2
.

Comparing the coefficients yields: ak = 0. for even k, bk = 0. for all k, and a2k+1 =

4/(π(2k + 1)4). for k ∈ N.. The coefficient a0 . can be arbitrary. We thus obtain 

. y(x) =
a0

2
+

4

π

∞
 

k=0

cos((2k + 1)x)

(2k + 1)4
.

This also satisfies the boundary conditions, since y(3)(x) =
4

π

∞
 

k=0

sin((2k + 1)x)

(2k + 1)
., 

which is zero at the endpoints 0 and π .. However, with this formal procedure we did 

not pay attention whether or not all operations made sense. Namely, the procedure 

must involve a serious mistake, because the problem does not have a solution at all. 

Actually, differentiation of y  (x) = x − π/2. implies y(3)(x) = 1. for all x ∈ [0, π ]., 

and thus the boundary conditions cannot be fulfilled by any solution. The point is 

that the series given for y(3) . is the Fourier series of the sgn function. It is zero at
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x = 0. and x = π ., while the limits from the left and right at those points are one. The 

series itself is not any first derivative, and thus not a third derivative of any function 

on the entire interval [0, π ].. 

7.5 Reasons for the Transition to Distributions 

A Reviewing Summary 

We have seen that Fourier series are appropriate to solve wave and heat equations 

and potential problems in suitable domains. They also permitted to describe time-

invariant linear systems in electrical engineering or mechanics for periodic inputs 

or forces. At studying such examples, we have found an approach to frequency and 

spectral concepts, which are fundamental for many fields of physics and technology. 

We have learned the most important calculation rules in dealing with trigonometric 

sums and series and have worked with the discrete Fourier transform. With DFT, 

DCT, Chebyshev polynomials, interpolation, and Clenshaw-Curtis quadrature, we 

have also made first steps in numerical applications, and we have studied some 

essential convergence properties of Fourier series. 

Most of these results can be applied to more general classes of functions than 

piecewise continuous or continuously differentiable functions. For example, the 

Parseval equation or the continuity of periodic convolutions can still be proven 

for all T -periodic functions f with

T̂

0

|f (t)|2 dt < ∞.. The transition to such 

more general functions, connected with the transition from the traditional Riemann 

integral to the more modern Lebesgue integral, which is more flexible in decisive 

points, and finally to distribution theory is not only a mathematical pastime. In fact it 

goes back to the objections against Fourier’s approach in 1807, and to requirements, 

which arose from real-world application problems and necessitate such a further 

development of the mathematical tools. This can easily be explained by some 

examples with the knowledge we have acquired so far. 

Transition to Distributions and Lebesgue Integral 

For example, let us choose initial conditions f (x). of the following forms for the 

vibrating string problem to study a computationally straightforward mathematical 

model for a plucked string. Then, we immediately recognize at D’Alembert’s form 

of the solution (cf. p. 74) that the formally calculated solution u(x, t). is by no means 

a twice differentiable function. But what should it then mean, since we want to use 

it in a second-order differential equation? (see Fig. 7.3 for simple initial conditions).
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Fig. 7.3 Non-differentiable 

initial conditions 

We have also seen that term-by-term derivatives of the Fourier series of periodic 

functions with jump discontinuities usually no longer converge. Nevertheless, the 

partial sums of the Dirichlet kernels can be well understood as approximations of a 

periodic impulse sequence (cf. p. 16). Couldn’t we then consider the corresponding 

Fourier series as an ideal impulse sequence and also calculate mathematically 

correct with it, although it diverges everywhere? Answers to such questions, and also 

reliable methods of calculation, result from the theory of distributions. Moreover, 

these methods permit much easier computations compared with classical differential 

calculus. 

In the treatment of stable time-invariant linear systems given by ordinary dif-

ferential equations, in Sect. 5.2 for periodic right-hand sides f of such equations, it 

was assumed that f should be continuous and piecewise continuously differentiable. 

For many applications this is a very restrictive condition. An example would be a 

periodic switch-on and switch-off process, described by a discontinuous rectangle 

meandering function f . The reason for this restriction was the Riemann integral 

used with the traditional notion of primitive functions. 

The Bessel inequality and the Parseval equation have been shown without theory 

effort only for piecewise continuous periodic functions. The Parseval equation for 

functions f from L2([0, T ]). (cf. S. 62) removes this restriction and opens up 

practicable application of Fourier series in the study of linear systems (cf. also the 

remark on p. 66). 

In these generalizations, the Riemann integral is replaced by the Lebesgue 

integral. The Lebesgue integral completes the set of integrable functions in a similar 

way as the real numbers complete the set of rational numbers. There are examples 

where a sequence (fn)n∈N . of Riemann integrable functions on [a, b] ⊂ R. for 

n → ∞. converges to a function f which is no longer Riemann integrable. In 

particular, then it does not hold 

. lim
n→∞

b
ˆ

a

fn(t) dt =

b
ˆ

a

lim
n→∞

fn(t) dt .

V. Volterra (1860–1940) gave an example of a differentiable function f on [0, 1]. 

whose derivative f  
. is bounded but not Riemannian integrable. In particular, it does 

not hold 

.

1
ˆ

0

f  (t) dt = f (1)− f (0).
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With the Riemann integral in the case of functions of several variables, the 

interchange of the order of integration and the equality 

. 

d
ˆ

c

 
ˆ b

a

f (x, y) dx

 

dy =

b
ˆ

a

 
ˆ d

c

f (x, y) dy

 

dx

in general is only true if, besides the existence of the integrals 

. 

b
ˆ

a

f (x, y) dx and

d
ˆ

c

f (x, y) dy ,

it is required that f is bounded. The interchangeability of the integration order is 

therefore not ensured for improper Riemann integrals without additional conditions. 

Moreover, the existence of the improper Riemann integral of a function f is not 

equivalent to the existence of the corresponding integral of the function |f |.. 

Now, a practitioner wants to work on his actual problem without having to worry 

about convergence problems all the time. In fact, he would like to differentiate 

and integrate series term by term, convolve, interchange limit processes in integrals 

and series—and usually does so without too much concern. Why such questionable 

procedures, nevertheless, and often just because of this, produce meaningful results 

will be discussed in the next chapter on distribution theory. 

From now on we use the integration theory, established in 1902 by H. Lebesgue 

(1875–1941), which is already taught today in beginners’ lectures and which is 

more efficient with respect to interchange of integrals with limits and therefore 

computationally simpler than the Riemann integral. 

For application-oriented readers, there will be no additional difficulties in the 

following chapters compared to the usually acquired integral calculus. Mathemat-

ically interested readers will find the used theorems from integration theory with 

corresponding literature references in Appendix B. 

7.6 Exercises 

(A1) Prove that

n−1
 

k=0

sin((2k + 1)πt) =
sin2(nπt)

sin(πt)
.. 

(A2) Compute approximately by Taylor series expansion Si(π) =

π̂

0

sin(t)

t
dt ..
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(A3) Compute the gradient of the Fejér means at the point t0 = 0. for the sawtooth 

function S(t) = (π − t)/2. in ]0, 2π [., S(t + 2kπ) = S(t)., k ∈ Z.. Compare 

the corresponding gradients of the partial sums of the Fourier series of S. 

(A4) Show that the approximations
1

T

T/2
ˆ

−T/2

f (t − s)Kn(s) ds . converge uniformly 

to f for continuous T -periodic functions f and T -periodic summation 

kernels Kn ., which were introduced on p. 138. 

(A5) Show that the Fourier series of the 2π .-periodic function 

. f (t) =

 

−1 for t ∈] − π , 0],

+1 for t ∈]0 , π ],

has strictly positive partial sums in ]0, π [., and strictly negative partial sums 

in ] − π, 0[.. Consider for sufficiently large n ∈ N. the Fejér means and the 

tolerance region around the graph of f , where they can be restricted to. 

(A6)  . A Fourier Series Representation of an Unbounded Periodic Function. 

(a) Show that the Fourier series of a 2π .-periodic function, which is abso-

lutely integrable on [0, 2π ]., converges to f (t0). provided f is differen-

tiable at t0 .. 

(b) Show that f (t) = ln

 
 
 
 
2 sin

 
t

2

  
 
 
 
,. t  = 2kπ ., k ∈ Z., is absolutely 

integrable on [0, 2π ].. 

(c) Show that f (t) = −

∞
 

n=1

cos(nt)

n
. for t  = 2kπ ., k ∈ Z., and f from (b). 

(d) Show ln

 
 
 
 
2 cos

 
t

2

  
 
 
 
=

∞
 

n=1

(−1)n+1 cos(nt)

n
. for t  = (2k + 1)π ., k ∈ Z.. 

Hint: Examine the proof of Dirichlet’s theorem on p. 130 and use S(0+) =

π/2. for the sawtooth function S (cf. p.. 26). 

(A7)  . Let a square Q = [0, L]2 . be given, at the boundary of which a loaded elastic 

membrane is fixed. The side length is L = 1.m, the tension k = 2.N/m. The 

area density of the external force is constantly f (x, y) = 1.N/m 2 .. 

Calculate an approximation of the displacement u(x, y). of the membrane in 

the equilibrium state, i.e., solve − kΔu = f in Q,u = 0. on the boundary of 

Q, replacing the function f by the partial sum 

.

3
 

n,m=1

bn,m sin
 nπx

L

 

sin
 mπy

L
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of its Fourier series expansion. What is the calculated displacement at the 

point with coordinates x = y = L/2 .? Generate a graphical representation 

of this approximate solution and compare it with the figure on p. 258. 

(A8)  . Show that the periodic convolution of f , g ∈ L2[−π, π ]., is continuous. Use 

Hölder’s inequality (cf. Appendix B) and limh→0  f (.+ h)− f (.) 2 = 0.. 

Implication: Parseval’s equation in L2[−π, π].! Elementary proofs of the 

given assertions can be found in Zygmund (2003).



Chapter 8 

Fundamentals of Distribution Theory 

Abstract The fundamentals of distribution theory are developed. The Dirac 

impulse is introduced motivated with a circuit that causes a derivation of an input 

signal. Starting from this example, the space of distributions is defined and examples 

of its elements are given. Such elements are, for example, all locally integrable 

functions, the principal value, and other pseudofunctions like rational functions or 

1/|t|. The calculus of distributions is developed to the extent as necessary in the 

further text. This includes generalized derivatives and convolution of distributions. 

The results are generalized for multidimensional parameters and test functions 

over the complex scalar field. Examples for every topic and exercises complete the 

chapter. 

8.1 Characterizing Functions by Their Means 

In basic mathematics or physics lectures we have learned to describe, for example, 

oscillations or voltages, current, etc., by functions f (t)., t ∈ R., and to calculate 

with them. The idea associated with such a mathematical model is that the values 

of physical quantities of interest, for a time parameter t , are known exactly at any 

time. 

But this is an idealized approach. In real practice, physical quantities are known 

mainly from measurements. If, for example, f (t) = v(t) = ẋ(t). is the velocity of a 

train, then it is common to estimate the instantaneous velocity v(t0). at a time t0 . by 

the average velocity in a certain time interval [t0 − ε, t0 + ε].: 

. v(t0) ≈
+∞
ˆ

−∞

v(t)ϕε(t)dt =
1

2ε
(x(t0 + ε)− x(t0 − ε)) ,
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with ϕε(t) =
1

2ε
. for |t − t0|  ε ., ϕε(t) = 0. for |t − t0| > ε .. With ε = 1/n. follows 

. v(t0) = lim
n→∞

+∞
ˆ

−∞

v(t)ϕ1/n(t)dt.

The instantaneous velocity is a (ideal) limit of mean values, and in practice a 

velocity is never pointwise accessible at all. More generally, an ideal measurement 

of the value f (t0). of a continuous function f at a time t0 . can be described 

schematically by Fig. 8.1. 

However, a realistic measuring device, e.g., an electrical circuit, will show a 

rise and fall output during this sampling. A real measurement will therefore never 

exactly yield the sampled value f (t0)., but a weighted average

+∞
ˆ

−∞

f (t)ϕ(t) dt .of the 

function f with a weight function ϕ . characteristic for the measuring device. This is 

schematically shown in Fig. 8.2: 

However, mathematically we can show that any continuous function f can also 

be reconstructed pointwise by its weighted means

+∞
ˆ

−∞

f (t)ϕ(t)dt . with sufficiently 

many weight functions ϕ .. 

Fig. 8.1 Schematic sampling 

Fig. 8.2 Schematic measurement
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Pointwise Reconstruction of Continuous Functions by Means 

We consider the following smooth weight function (see Figs. 8.3 and 8.4): 

. ϕ(t) =
 
c · e−1/(1−t2) for |t | < 1

0 for |t |  1 ,

where the constant c is chosen so that

+∞
ˆ

−∞

ϕ(t)dt = 1.. 

With this infinitely often differentiable function ϕ ., we define for t0 ∈ R. and 

n ∈ N. 

. ϕt0,n(t) = nϕ(n(t − t0)).

We then obtain ϕt0,n(t) = 0. for |t − t0|  
1

n
. and

+∞
ˆ

−∞

ϕt0,n(t)dt = 1. for all n ∈ N.. 

(ϕt0,n . concentrates for increasing n more and more around t0 ..) 

Fig. 8.3 A smooth weight function, called Sobolev’s mollifier 

Fig. 8.4 A scaled version of Sobolev’s mollifier
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For a continuous function f , we therefore observe that 

. 

   
+∞
ˆ

−∞

f (t)ϕt0,n(t)dt − f (t0)

   =
   
t0+1/n
ˆ

t0−1/n

(f (t)− f (t0))ϕt0,n(t)dt

   

 sup
|t−t0| 1/n

|f (t)− f (t0)|
t0+1/n
ˆ

t0−1/n

ϕt0,ndt

    
=1

−→
n→∞

0.

Thus, the function value of f at any point t0 . can be recovered from the weighted 

means

+∞
ˆ

−∞

f (t)ϕt0,n(t)dt .: 

. f (t0) = lim
n→∞

+∞
ˆ

−∞

f (t)ϕt0,n(t)dt.

The term “mean” is appropriate according to the mean value theorem of integral 

calculus, since

+∞
ˆ

−∞

f (t)ϕt0,n(t) dt = f (tn). for a certain point tn . close to t0 . with 

distance |t0 − tn|  1/n.. 

Attentive readers notice the mathematically same procedure as in the represen-

tation of continuous periodic functions by limits of their Fejér means. The Fejér 

kernels as weight functions have been replaced here only by the smoothing kernels 

ϕt0,n . (cf. Chap. 7). 

Summary We normally obtain information on a physical function f by measure-

ments, i.e., the object f is determined by certain weighted mean values of f . Instead 

of giving physical functions f (t)., t ∈ R., point by point, we can describe them by 

their means: Each weight function ϕ . from a suitable vector space D . is mapped to 

the mean value

+∞
ˆ

−∞

f (t)ϕ(t)dt .. If the  set  D . of weight functions ϕ . is rich enough, 

then we can find continuous functions f also pointwise by the linear mapping 

Tf : D → R., Tf (ϕ) =
+∞́

−∞
f (t)ϕ(t)dt.. 

This is one of the basic ideas of distribution theory. In the following section we 

introduce a suitable, i.e., a sufficiently large, set of infinitely often differentiable 

weight functions. Instead of weight functions we speak of test functions. All  

functions are assumed to be real-valued until further notice.
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8.2 The Space of Test Functions 

We consider functions ϕ : R → R. which are arbitrarily often differentiable and 

zero outside a bounded interval [a, b]. (depending on ϕ .). The support supp(ϕ). of ϕ . 

is the closure of the set { t ∈ R | ϕ(t)  = 0 }.. A bounded support of ϕ . is compact, 

i.e., a closed and bounded set in R.. 

Definition The set D .of all functions ϕ .having a compact support is called the space 

of test functions. 

We immediately see that D . is a vector space over R., i.e., λϕ1 ∈ D . and ϕ1+ϕ2 ∈
D . for any ϕ1, ϕ2 ∈ D,.λ ∈ R.. The space D . contains very many functions: Examples 

are the functions ϕ(t). and ϕt0,n(t) = nϕ(n(t − t0)). used in the last section; the 

support supp(ϕt0,n). of ϕt0,n . is the closed interval [t0−1/n, t0+1/n].. Also products 
of these functions with arbitrary, infinitely often differentiable functions generate 

again test functions in D .. 

Convergence of Test Functions 

Two weight functions ϕ1 . and ϕ2 . in D . are only “slightly different,” if besides ϕ1 . 

and ϕ2 . also all their derivatives ϕ
(k)
1 . and ϕ

(k)
2 ., k ∈ N., differ only slightly. The 

experience shows that approximately the same measuring devices, i.e., those with 

only slightly different weight functions ϕ1 . and ϕ2 . at measurement of f , yield 

only slightly different measured values

+∞
ˆ

−∞

f (t)ϕ1(t)dt . and

+∞
ˆ

−∞

f (t)ϕ2(t)dt .. This  

observation finds its mathematical equivalent in a continuity requirement for the 

mapping Tf (ϕ) =
+∞
ˆ

−∞

f (t)ϕ(t)dt.. For this we need an appropriate definition of 

convergence in D ., which expresses what “only slightly different” test functions are. 

Definition A sequence (ϕn)n∈N . of test functions converges against ϕ . in D . if there 

is a bounded interval containing the supports of all ϕn . and ϕ ., and if furthermore the 

ϕn . converges uniformly to ϕ ., and all derivatives of ϕ
(k)
n . converge uniformly to ϕ(k)

., 

k ∈ N., in other words if for all n ∈ N. and a suitable r > 0. hold true 

. ϕn(t) = 0 and ϕ(t) = 0 for |t |  r ,

and if for all k ∈ N0 . 

. sup
t∈R

   ϕ(k)
n (t)− ϕ(k)(t)

   −→
n→∞

0.
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We then denote ϕ = D-lim
n→∞

ϕn . to clearly distinguish this convergence definition 

from other types of convergence. 

Example The function ϕ(t) =
 
c · e−1/(1−t2) for |t | < 1

0 for |t |  1
. is infinitely often 

differentiable and zero for |t |  1.. The support of ϕ . is the interval [−1, 1].. This  
is valid also for all derivatives ϕ(k)

.. 

The sequence ϕn =
1

n
ϕ . converges in D . to the null function: D-lim

n→∞
ϕn = 0.. 

Since all derivatives ϕ(k)
. are bounded, it follows 

. ϕ(k)
n (t) =

1

n
ϕ(k)(t) −→

n→∞
0 uniformly.

In contrast, the sequence ψn(t) = 1
n
ϕ
 
t
n

 
=

⎧
⎪⎨
⎪⎩

c
n
e−n2/(n2−t2) for |t | < n

0 for |t |  n

. and all 

the derivatives ψ
(k)
n . likewise converge uniformly to zero, but this sequence does not 

converge in D ., because there is no bounded interval containing jointly the supports 

of all the functions ψn .. 

The distribution theory involves the study of linear, continuous mappings 

on the vector space D . of test functions, thus the study of physical objects by 

means of weighted averages. This theory goes back to P. Dirac (1902–1984) and 

was developed about 1935 by S. L. Sobolev (1908–1989), in the years 1945– 

1950 by L. Schwartz (1915–2002) and others. It makes possible, for example, a 

mathematical model for impulses and a differentiability notion also for functions 

with discontinuities. 

8.3 The Dirac Impulse 

Impulses in Electrical Engineering 

In electrical engineering, there are circuits that have a differentiating effect 

(Fig. 8.5): 

An ideal operational amplifier in the above circuit yields for the currents In =
Ip = 0. and for the voltages Un = Up .. From Kirchhoff’s law for the currents and 

voltages, we have the following nodal equations: 

.K1 :
Ua − Un

R
− C

dUn

dt
= 0 ,
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Fig. 8.5 A circuit that 

differentiates the input 

voltage Ue . to output 

voltage Ua . 

K2 : C 
d(Ue − Up) 

dt 
− 

Up 

R 
= 0. 

With Un = Up .we obtain by equating the left sides 

. Ua = RC
dUe

dt
.

The circuit realizes a (approximately ideal) differentiator. 

As input Ue(t).we now choose a DC voltage U0 . beginning at t = 0.: 

. Ue(t) = U0s(t) , s(t) =
 
0 for t  0

1 for t > 0.

Ue(t). is not differentiable at t = 0.. This voltage function is again a simplified 

model with an ideal switch, which raises the problem how Ua(t) = RC
dUe(t)

dt
. is 

to be understood. We approach the answer by considering the step function Ue(t). 

as a limit of a sequence of smooth (more realistic) voltage functions Un(t). with 

increasingly steep slopes: 

. Ue(t) = lim
n→∞

Un(t) for t ∈ R.

As a model, we could start with the smooth function 

. ψ(t) =
 
e−1/(1−t2) for |t | < 1

0 for |t |  1

and build smooth voltage functions Un(t). (see Fig. 8.6) 

.Un(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 for kt  0

U0 · e ·ψ(n(kt − 1/n)) for 0 < kt < 1/n

U0 for kt  1/n
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Fig. 8.6 Elements U1 ., U3 . of a sequence of smooth voltages converging to U0s(t). 

Fig. 8.7 The smooth output voltages RCU  
1 ., RCU  

3 . of the circuit 

( e = e1 . is Euler’s number, kt physically dimensionless with the value of t). 

We would expect that the output voltages RCU0fn(t) = RCU  
n(t)., associated 

with inputs Un(t)., approximate for increasing n ∈ N. the response Ua(t). of the 

differentiator to the step function input Ue(t).. We illustrate the functions RCU  
n(t). 

for R = 1Ω ., C = 1 F. in Fig. 8.7: 

For fixed n ∈ N. and input Un(t)., we thus find as the differentiator’s output 

the voltage surge RCU0fn(t) = RCU  
n(t)., approximating a voltage impulse for 

increasing n. We always have 

. 

+∞
ˆ

−∞

RCU0fn(t)dt = RC(Un(1/n)− Un(0)) = RCU0.

On the other hand, since fn(t) = U  
n(t)/U0 = 0. for kt  0. and kt  1/n., the  

following holds true in the sense of pointwise convergence, since we get kt  1/n. 

for every t > 0.with sufficiently large n: 

. lim
n→∞

fn(t) = 0 for all t ∈ R.

If we would use in the idealized limit case Ua(t) = lim
n→∞

RCU0fn(t)., then we 

would have Ua(t) = 0. for each t , whereas interchanging the limiting process with 

integration we would find:
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. 

+∞
ˆ

−∞

Ua(t)dt =
+∞
ˆ

−∞

lim
n→∞

RCU0fn(t)dt = lim
n→∞

+∞
ˆ

−∞

RCU0fn(t)dt = RCU0.

Such a function Ua(t). cannot exist in classical sense. Mathematically, the situation 

is as follows: Given is a sequence of infinitely often differentiable functions fn(t). 

such that 

. lim
n→∞

fn(t) = 0 for all t ∈ R and

+∞
ˆ

−∞

fn(t)dt = 1 for all n ∈ N.

Definition of δ .-Impulses 

There is no classical function δ(t). so that pointwise δ(t) = lim
n→∞

fn(t)., fn(t). as 

above, and

+∞
ˆ

−∞

δ(t)dt = lim
n→∞

+∞
ˆ

−∞

fn(t)dt = 1.. 

Although δ(t). as a function of t ∈ R. cannot be defined, it is however quite 

reasonable, to build the limit of the integrals

+∞
ˆ

−∞

fn(t)ϕ(t) dt . for n →∞. and each 

test function ϕ .. Therefore, we do not define the δ .-impulse pointwise for t ∈ R., but  

by integral values with test functions ϕ ∈ D .. The functions fn . in our example are 

given by fn(t) = U  
n(t)/U0 .. 

Definition The δ .-impulse is defined by the mapping 

. ϕ ∈ D → δ(ϕ) = lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t)dt.

In many cases the notation δ(t) = lim
n→∞

fn(t). is used in literature and δ(ϕ). is 

denoted by an integral symbol: 

. δ(ϕ) =
+∞
ˆ

−∞

δ(t)ϕ(t)dt = lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t)dt.

The included argument t in the notation δ(t). for the δ .-impulse only serves as a 

reference to the parameter of the right side and does not mean that function values 

can be assigned at individual points t . The integral on the left side is not an integral 

in the common sense, but merely a symbol, whose meaning is determined by the



160 8 Fundamentals of Distribution Theory

right side. If one writes symbolically δ(t) = lim
n→∞

fn(t)., then the above corresponds 

formally to an interchange of the limit with the integration. An integral by definition 

is also the result of a limiting process. This interchange of limit processes leads 

to contradictions in the sense of classical functions. δ(t). is not a function of t in 

common sense but becomes a generalized function or synonymously a distribution. 

This distribution is also called Dirac distribution, Dirac impulse, or briefly δ .-

impulse. 

We also use the mentioned notations and learn how to work correctly with 

generalized functions. 

Evaluation of Dirac Impulses, δ . as Sampling Functional 

Despite the still common notation δ(t)., this generalized function itself has no value 

at any single point t. The use of δ(t). is always understood in the sense that only 

applying 

. δ(ϕ) =
+∞
ˆ

−∞

δ(t)ϕ(t)dt

with a test function ϕ . yields a numerical value. We want to calculate this value and 

show that it results in 

. δ(ϕ) =
+∞
ˆ

−∞

δ(t)ϕ(t)dt = ϕ(0).

We had in our example fn(t) = U  
n(t)/U0 .with 

. Un(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 for kt  0

U0 · e ·ψ(n(kt − 1/n)) for 0 < kt < 1/n

U0 for kt  1/n

and 

.ψ(t) =
 
e−1/(1−t2) for |t | < 1

0 for |t |  1.
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For every n ∈ N., we have fn  0.; fn . is infinitely often differentiable with support 

supp(f ) = [0, 1/n]., and
+∞
ˆ

−∞

fn(t)dt =
ˆ 1/n

0

fn(t)dt = 1..For ϕ ∈ D . now follows 

. 

   
+∞
ˆ

−∞

fn(t)ϕ(t)dt − ϕ(0)

    sup
0 t 1/n

|ϕ(t)− ϕ(0)|
1/n
ˆ

0

fn(t)dt −→
n→∞

0.

The assertion is thus already shown: 

. 

   
+∞
ˆ

−∞

δ(t)ϕ(t)dt − ϕ(0)

   =
   lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t) dt − ϕ(0)

   = 0.

If now δ(t − t0). denotes the δ .-impulse shifted by t0 ., defined for ϕ ∈ D . through 

. 

+∞
ˆ

−∞

δ(t − t0)ϕ(t) dt = lim
n→∞

+∞
ˆ

−∞

fn(t − t0)ϕ(t) dt ,

it holds true correspondingly that 

. 

+∞
ˆ

−∞

δ(t − t0)ϕ(t)dt =
+∞
ˆ

−∞

δ(t)ϕ(t + t0)dt = ϕ(t0).

Such a shifted impulse appears as output at our (ideal) differentiating circuit, if the 

input voltage U0s(t). is shifted to U0s(t − t0).. 

The introduction of δ . by the above chosen sequence fn . shows that we obtain not 

only for test functions, but for arbitrary continuous functions f : R→ R. and every 

t0 ∈ R. the outcome 

. 

+∞
ˆ

−∞

δ(t − t0)f (t)dt = f (t0).

Result Applying δ .-impulses is an appropriate mathematical model in describing 

pointwise evaluation or sampling processes of continuous functions. We also say 

that δ(t). is a sampling functional.
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Dirac Distributions as Generalized Density Functions 

In physics (generalized) δ .-functions are often used to specify discrete distributions, 

for example of masses or charges. One uses for example  (x) =
n 

i=1
miδ(x − xi). 

as generalized mass density to denote n point masses mi . at the points xi . (on the real 

axis). Then, the same formulas can be used for calculations with continuous and 

discrete distributions. For example, the center of gravity S of the n point masses mi . 

in xi . fulfills with that notation 

. S =

+∞́

−∞
x (x)dx

+∞́

−∞
 (x)dx

=

+∞́

−∞
x

n 
i=1

miδ(x − xi)dx

+∞́

−∞

n 
i=1

miδ(x − xi)dx

=

n 
i=1

mi

+∞́

−∞
xδ(x − xi)dx

n 
i=1

mi

+∞́

−∞
δ(x − xi)dx

=

n 
i=1

mixi

n 
i=1

mi

.

Remark Comparing Appendix B, we recognize that integrals of the form 

. 

+∞
ˆ

−∞

f (x) (x) dx =
n 

i=1
mif (xi)

define the discrete measure m, which gives the mass m(I) =
 

xi∈I
mi . to an interval 

I in R.. Thereby, m(I).measures the mass distributed in I . Often also 

. dm =  (x) dx =
n 

i=1
miδ(x − xi) dx

is denoted as description of the measure m with generalized density  .. The  

introduced term “distribution” is deduced from this aspect. 

The δ .-Impulse as Derivative of the Unit Step Function 

For our example with the simplified input voltage Ue(t) = U0s(t)., the distribution 

RCU0δ(t). means the (ideal) impulse, which appears at the time t = 0. as output of 

the treated differentiator with the impulse strength RCU0 . (Fig. 8.8):
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Fig. 8.8 Schematic 

differentiator 

Fig. 8.9 Graphical representation of an impulse with strength RCU0 . 

Therefore δ(t). can be seen as the generalized derivative of the unit step function. 

We can illustrate δ(t). by an arrow in Fig. 8.9, whose height corresponds to the 

impulse strength. 

Remark If U0 . is a voltage in V, and s(t). is a physically dimensionless function of 

time t in seconds, then δ(t). can be given the physical unit 1/s. The impulse strength 

then has the unit Vs, and the impulse RCU0δ(t)., appearing as output of our ideal 

differentiator, has consistently again the voltage unit V. 

Summary We recognize that the map 

. ϕ ∈ D → δ(ϕ) =
+∞
ˆ

−∞

δ(t)ϕ(t) dt = ϕ(0)

is a linear continuous operator from the space D . of test functions into the reals. 

Thus, our first distribution δ(t). is an example of the concept outlined in Sect. 8.1 

of describing physical quantities—in this case an impulse—by mean values. The 

impulse δ(t). cannot be directly measured at any time, but averaging with weight 

functions ϕ ∈ D . provides numerical values. As some readers probably already 

know from basic lectures, it is possible to describe linear time-invariant systems in a 

simple way by means of its impulse response. In this context, the Dirac distribution 

can be interpreted as a right-hand side and possibly as a solution part of linear 

ordinary differential equations with constant coefficients. We will discuss this in 

more examples later. 

These few remarks alone indicate a variety of possible applications. In the 

following sections the concept of distributions and their use will be explained in 

more detail.
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Note From now on in all subsequent text, a function f is called integrable, if it is 

Lebesgue -integrable; in particular, then |f |. is integrable. If the improper Riemann 
integrals exist on R. or on an open or half-open non-empty interval for measurable 

f and |f |., then f is also Lebesgue-integrable there and its Riemann and Lesbesgue 

integrals are equal (cf. Appendix B for more details). 

8.4 Distributions 

Definition of Distributions 

Quite analogous to consider the δ .-impulse as a linear mapping from the vector 

space D . of test functions to the real numbers, we define distributions in general. 

Distributions are also called synonymously generalized functions. 

Definition A distribution T is a linear continuous map T : D → R., i.e., for a, b. in 

R., ϕ1, ϕ2 ∈ D . and ϕ = D-lim
n→∞

ϕn . in D . hold true: T (aϕ1+bϕ2) = aT (ϕ1)+bT (ϕ2). 

and T (ϕ) = lim
n→∞

T (ϕn).. The set of all distributions is denoted by D
 
.. 

Remarks 

1. It is immediately seen from the definition that D 
. is a real vector space. 

2. For the value T (ϕ). of a distribution T with a given test function ϕ ., in literature 

also the following notations are found: 

. T (ϕ) =  T , ϕ =  T (t), ϕ(t) =
+∞
ˆ

−∞

T (t)ϕ(t)dt.

We will use them as well. The motivation for these notations are based on the 

subsequent theorem and the following examples of distributions. We write T (t). 

instead of T , if we want to indicate the variable of the underlying parameter 

space, even if T (t). is not to be understood in the sense of a function value at a 

point t . 

3. For concretely given linear mappings T : D → R., it is usually easy to show 

the required continuity. There are also no physical linear mappings T : D → R. 

known, which are not continuous on D .. Readers interested in the topological 

structure of D . and D 
. are referred to the books of Schwartz (1957) or Rudin 

(1991). 

The δ .-distribution can be represented as a limit of a sequence of infinitely many 

differentiable functions fn . as we had seen before. The following is likewise true in 

general:
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Theorem 8.1 For each distribution T there is a sequence (fn)n∈N .of infinitely often 

differentiable functions, so that for each test function ϕ ∈ D . holds 

. T (ϕ) = lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t)dt.

The functions fn . can be chosen so that they have bounded support, i.e., that they are 

test functions. 

Notation We write T = D -lim
n→∞

fn . and call T the distributional limit of fn . or the 

weak limit of them, in other words, the fn . are weakly convergent to T . 

A distribution T is thus the limit of a sequence of classical functions (fn)n∈N .. 

In general such a limit is not a limit in the sense of pointwise convergence of the 

function sequence, as we have already seen for the δ . impulse. However, according 

to the above theorem: The weighted means of fn . with a test function ϕ . converge to 

a real number for n → ∞.. This number T (ϕ). can be obtained in arbitrarily good 

approximation by an integral

ˆ

fn(t)ϕ(t)dt .with an approximating function fn . for 

the distribution T , if only n is sufficiently large. We prove this fact later (p. 201) by  

theorems on convolutions and turn to examples first. 

Basic Examples of Distributions 

All functions in this and the next section are assumed to be real-valued. The 

extension of definitions and examples to the case of complex-valued functions and 

distributions is given in Sect. 8.6: 

1. The impulse δ : D → R. is a distribution in the sense of the definition above. 

With c1, c2 ∈ R., ϕ ., and ϕn . in D . for n ∈ N., ϕ = D-lim
n→∞

ϕn .we have 

.  δ, c1ϕ1 + c2ϕ2 = c1ϕ1(0)+ c2ϕ2(0) = c1 δ, ϕ1 + c2 δ, ϕ2 ,

lim
n→∞

 δ, ϕn = lim
n→∞

ϕn(0) = ϕ(0) =  δ,D-lim
n→∞

ϕn .

Therefore, δ . is linear and continuous on D .. The same holds true for a shift of δ . 

by t0 . to δ(t − t0).. 

2. Every locally integrable function f (i.e., f and |f |. are integrable on every 
bounded interval) can be considered as a distribution Tf . by 

.Tf (ϕ) =  f, ϕ =
+∞
ˆ

−∞

f (t)ϕ(t)dt (ϕ ∈ D).
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This also motivates the notation, mentioned in the previous remark, for distribu-

tions in general. The definition shows immediately that Tf . is linear on D .. 

If ϕ = D-lim
n→∞

ϕn . and [a, b]. an interval containing the supports of all ϕn . and ϕ ., 

then we obtain 

. |Tf (ϕn)− Tf (ϕ)|  sup
t∈[a,b]

|ϕn(t)− ϕ(t)|
ˆ

[a,b]

|f (t)|dt −→
n→∞

0.

Therefore, the continuity of Tf . on D . follows by the uniform convergence of the 

ϕn . to ϕ . on [a, b].. Thus, with f a distribution is given through 

. Tf (ϕ) =
+∞
ˆ

−∞

f (t)ϕ(t)dt.

For example, the function ln(|t |). can be considered as a distribution. The aspect, 
to consider locally integrable functions now also as distributions, corresponds 

exactly to the concept, presented in Sect. 8.1, that a function can be represented 

by its mean values with weight functions ϕ . from D .. Thus, we already know a 

very large set of distributions. 

Distributions which are such classical, locally integrable functions are called 

regular. Distributions which are not locally integrable functions, e.g., the δ .-

distribution, are called singular. For regular distributions Tf . it is common to 

write again only f instead of Tf ., and to specify their values for ϕ ∈ D . by the 

common alternative notations 

. Tf (ϕ) =  Tf , ϕ =  f, ϕ =
+∞
ˆ

−∞

f (t)ϕ(t)dt.

Two functions f and g on R. are equal if and only if f (t) = g(t). holds true 

for all t in R.. Equivalently, two distributions T and G are equal if and only if 

T (ϕ) = G(ϕ). for all test functions ϕ ∈ D .. For two regular distributions Tf . and 

Tg . and any test function ϕ . all integral values Tf (ϕ). and Tg(ϕ). are equal, if f and 

g differ, e.g., only at finitely many points, in general at most on a null set (cf. 

Appendix B). In such a case we have Tf = Tg ., i.e., these both distributions are 

identified. 

3. Principal Values, Pseudofunctions, Regularization of Divergent Integrals. 

In addition to regular distributions there are, besides the δ . distribution, many 

singular distributions. Typical examples arise with divergent integrals of func-

tions with singularities such as rational functions. Rational functions and their 

Fourier transforms play a major role in linear systems theory and circuit design 

(for applications cf. Chap. 11). We therefore consider such examples of singular 

distributions:
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(a) The Cauchy Principal Value. Starting point is the function f (t) = 1/t ., t  =0., 

which is not locally integrable on R.. The improper integral

ε
ˆ

−ε

f (t)dt ., ε > 0., 

is divergent. On the other hand, for a > 0. there exists the limit 

. lim
ε→0+

 −ε
ˆ

−a

f (t)dt +
+a
ˆ

ε

f (t)dt

 
= 0.

The Cauchy principal value vp(f ). of f is defined by 

. vp(f )(ϕ) = lim
ε→0+

 −ε
ˆ

−∞

f (t)ϕ(t)dt +
+∞
ˆ

ε

f (t)ϕ(t)dt

 
.

To prove that this is a distribution, we observe that we have for ϕ ∈ D . with 

supp(ϕ) ⊂ [−a, a]., a > 0., 

. vp(f )(ϕ) = lim
ε→0+

 −ε
ˆ

−a

ϕ(t)− ϕ(0)

t
dt +

−ε
ˆ

−a

ϕ(0)

t
dt

+
a
ˆ

ε

ϕ(0)

t
dt +

a
ˆ

ε

ϕ(t)− ϕ(0)

t
dt

 
.

By the mean value theorem |ϕ(t)−ϕ(0)|  |t |max−a t a |ϕ (t)|., the limits 

of the two integrals at the left and right exist for ε → 0., ε > 0.. The  

two integrals between add up to zero. From this it follows that vp(f )(ϕ). 

is defined for all ϕ ∈ D .. 

Linearity of vp(f ). on D . follows immediately; its continuity on D . is implied 

by the last inequality: It suffices to prove continuity for D-lim
n→∞

ϕn → 0., 

by virtue of linearity. The continuity of vp(f ). is thus seen by the estimate 

|vp(f )(ϕn)|  2amax−a t a |ϕ n(t)|. for supp(ϕn) ⊂ [−a, a]., n ∈ N.. 

The principal value vp(f ). is a singular distribution (valeur principale, in  

English literature also denoted by pv(f ). for principal value). It is also 

called a regularization of the divergent integral of 1/t .. For ϕ ∈ D . with 

0 /∈ supp(ϕ)., vp(f )(ϕ). is simply the (convergent) integral of f (t)ϕ(t). 

over R.: 

.vp(f )(ϕ) =
∞̂

−∞

ϕ(t)

t
dt =

∞̂

0

ϕ(t)− ϕ(−t)

t
dt.
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Analogously, the principal values vp(f ). are defined for other functions with 

singularities like f (t) = tan(t). or f (t) = cot(t)., provided the involved 

integrals are convergent (cf. pp. 213 and 299). 

(b) The Pseudofunctions pf(t−m)., m ∈ N.. For the functions t−m
.with m  2. the 

integrals

∞̂

ε

t−m

 
ϕ(t)+(−1)mϕ(−t)

 
dt . are in general divergent for ε → 0.; 

the principal values as in a) therefore do not exist. 

In order to compensate the singularity at t = 0., one can subtract in the 

regularization from each test function ϕ . its Taylor polynomial Tm−1ϕ . of 

degree m − 1. about the singularity t = 0. and substitute for ϕ . the Taylor 

remainder Rmϕ = ϕ − Tm−1ϕ .. The divergent part of the integral is thereby 

thrown away. The resulting distribution is called a pseudofunction and is 

denoted by pf(t−m).. 

According to Hadamard (1932), this is the finite part (partie finie) of the  

divergent integral. The pseudofunction pf(t−m). is thus defined for ϕ ∈ D ., 

m  1., with the Taylor remainder Rmϕ(t) = ϕ(t)−
m−1 

k=0

ϕ(k)(0)

k!
tk ., by  

. pf(t−m)(ϕ) =
∞̂

0

t−m

 
Rmϕ(t)+ (−1)mRmϕ(−t)

 
dt.

By Taylor’s formula we have |Rmϕ(t)|  |t |m
m! max{|ϕ(m)(t)| : t ∈ supp(ϕ)}.. 

The improper integral pf(t−m)(ϕ). is therefore convergent for all ϕ ∈ D .. 

Linearity and continuity of pf(t−m). on D . follow immediately. For m = 1. 

we have pf(t−1) = vp(t−1).. An advantage of this regularization according 
to Hadamard is that the considered Taylor polynomial about t = 0. vanishes 

for ϕ ∈ D .with 0 /∈ supp(ϕ).. Then Rmϕ = ϕ . and pf(t−m)(ϕ). coincides with 

the convergent integral of t−mϕ(t).: 

. pf(t−m)(ϕ) =
+∞
ˆ

−∞

ϕ(t)

tm
dt =

∞̂

0

ϕ(t)+ (−1)mϕ(−t)

tm
dt (0 /∈ supp(ϕ)).

As an explicit example, we have pf(t−2)(ϕ) =
∞̂

0

ϕ(t)− 2ϕ(0)+ ϕ(−t)

t2
dt.. 

(c) The Pseudofunctions pf(t−m
+ )., pf(t−m

− )., and pf(|t |−m). for m ∈ N.. 

For t−m
+ = s(t)t−m

., s(t). the unit step function (Heaviside function), ϕ ∈D . 

and Rm . the Taylor remainder as before, we first consider



8.4 Distributions 169

. 

∞̂

ε

t−mRmϕ(t)dt=
1
ˆ

ε

t−mRmϕ(t)dt+
∞̂

1

t−mRm−1ϕ(t)dt−
ˆ ∞

1

ϕ(m−1)(0)

(m− 1)t
dt,

where R0ϕ(t) = ϕ(t).. The first two integrals of the right-hand side are 

convergent for all ϕ ∈ D . with ε → 0.. The third integral of the right-hand 

side is divergent. 

A possibility for a regularization of t−m
+ . is therefore to replace this divergent 

part by zero, and to define the pseudofunction pf(t−m
+ ). by: 

. pf(t−m
+ )(ϕ) =

1
ˆ

0

t−mRmϕ(t)dt +
ˆ ∞

1

t−mRm−1ϕ(t)dt

=
∞̂

0

t−m

 
Rm−1ϕ(t)−

ϕ(m−1)(0)

(m− 1)!
tm−1s(1− t)

 
dt.

Linearity and continuity on D . are easily seen and left to the reader. 

Analogously we can define the pseudofunctions pf(t−m
− ). and pf(|t |−m). with 

t−m
− = s(−t)t−m

.: 

. pf(t−m
− )(ϕ) =

∞̂

0

t−m

 
(−1)mRm−1ϕ(−t)+

ϕ(m−1)(0)

(m− 1)!
tm−1s(1− t)

 
dt

pf(|t |−m) = pf(t−m
+ )+ (−1)mpf(t−m

− ).

From this we get pf(t−m) = pf(t−m
+ )+pf(t−m

− )., and for evenm ∈ N.we also 

obtain pf(|t |−m) = pf(t−m).. 

Regularizations as above are extensions of bounded linear functionals on the 

subspace of test functions with a support not containing a singularity like t = 0. 

in the examples. Therefore, such extensions are not uniquely determined. Think 

of a linear functional T of the form T (x) = a1x1 + a2x2 . for a vector x =
(x1, x2) ∈ R

2 ⊂ R
3
.. Even in the finite-dimensional case you have infinitely 

many possible extensions of T to a functional on R3
.. There is extensive literature 

on regularizations of divergent integrals, in particular for the case of several 

variables in physics. For more it is referred, e.g., to Schwartz (1957), Gel’fand 

et al. (1964), Horváth (1966), or Zemanian (2010). 

4. For a measure m on R.with a density function  ., often denoted by dm =  (x) dx ., 

a distribution 

.T (ϕ) =
ˆ

ϕ dm =
ˆ +∞

−∞
ϕ(x) (x) dx (ϕ ∈ D)
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is defined. Generally, any measure m (cf. Appendix B) defines also a distribution 

by T (ϕ) =
ˆ

ϕ dm. (ϕ ∈ D .). Distributions therefore are generalizations of 

functions and of measures as well. 

The measure m above, with an integrable density function  ., corresponds to 

the regular distribution T ., and the discrete measure  m =
n 

i=1
miδ(x − xi). (cf. 

p. 162) is identified with the singular distribution S 

. S(ϕ) =  
n 

i=1
miδ(x − xi), ϕ(x) =

ˆ

ϕ d m =
n 

i=1
miϕ(xi).

Remark In application problems also expressions of the form T (ϕ).must be evalu-

ated, where ϕ . is not necessarily a test function from D .. However, given distributions 

T can often be defined as continuous linear functionals on a larger class of functions 

than D .. The space D . is a set of functions on which all such linear functionals T 

operate together. For example, the Dirac distribution δ(ϕ). can be defined for all 

ϕ . which are continuous around zero; regular distributions Tf . can be extended to 

all ϕ ., for which the product f ϕ . is integrable. The pseudofunctions pf(t−m
± ). can be 

applied to all sufficiently fast decaying, arbitrarily often differentiable functions ϕ ., 

etc. Restricting the functionals T to the common domain D ., the distribution theory 

provides a calculus that can be used for all such functionals T . 

In later chapters about the Fourier transform we will take up this remark, and 

work also with another common test function space which is larger than D . (cf. 

Chap. 10, p.  288). 

Summary Besides the classical concept of functions, it seems reasonable to the 

engineer or scientist understanding weighted averages from measurements of an 

object T as a distribution. The object of interest is the distribution T with its 

properties. Its values T (ϕ). on test functions are numerical values, which are single 

weighted means from single measurements of T . 

An engineer can, as in the preceding example 2, straightforwardly consider 

locally integrable functions f as the corresponding distributions Tf .. He or she  

knows from experience that a periodic rectangular function f in practice is realized 

approximately by a finite superposition of harmonic oscillations. Thereby, the 

ideal rectangular function f is to be regarded as a distribution, namely as the 

distributional limit of the infinitely often differentiable partial sums of the Fourier 

series of f . The approximation can be so close that, e.g., power differences 

in comparison to the ideal function f (these are also integral means) become 

arbitrarily small; and calculating with f as a simple model is much easier than 

calculating with a Fourier expansion or a possibly more realistic smooth function as 

in our differentiator example from the beginning, which is complicated to describe 

analytically.
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Analogously, we can imagine every distribution as such a limit of classical 

functions, limit in the sense of existence of limits for weighted means and not 

necessarily pointwise. Often enough in practice only such averages of physical 

quantities are of interest. Attentive reading of technical literature shows that in many 

cases it is calculated “distributionally,” without this being explicitly noted. 

The advantages of this concept regarding differentiation and other mathematical 

limit processes will become apparent in the following sections, where calculating 

with distributions will be explained. 

8.5 Calculating with Distributions 

Distributions are characterized by the fact that you can much easier compute 

with than with conventional functions. For this it is necessary to introduce some 

operations in D 
.. For the derivative of a differentiable function f , we use  the  

notation f  .. For the following introduced generalized derivative of a distribution 
T (t)., we use the notation Ṫ (t)., later again also T  (t).. 

Differentiation of Distributions 

Distributions can be differentiated as often as you like without any restrictions. 

To see this we consider a distribution T = D -lim
n→∞

fn ., all  fn . arbitrarily often 

differentiable, and ϕ ∈ D . with support supp(ϕ) ⊂ [a, b].. Then it follows through 
integration by parts that the following limit exists: 

. lim
n→∞

+∞
ˆ

−∞

f  n(t)ϕ(t)dt = lim
n→∞

 
fn(t)ϕ(t)

  b
a    

=0

−
b
ˆ

a

fn(t)ϕ
 (t)dt

 
.

You also have 

. lim
n→∞

+∞
ˆ

−∞

f  n(t)ϕ(t)dt = − lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ
 (t)dt = −T (ϕ ).

Therefore, the derivative Ṫ . of a distribution T can be introduced as follows: 

Definition The derivative Ṫ . of a distribution T = D -lim
n→∞

fn . is defined by 

.Ṫ = D
 -lim

n→∞
f  n.
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For ϕ ∈ D .we have 

. Ṫ (ϕ) = −T (ϕ ).

For regular distributions Tf . we also write again ḟ . instead of Ṫf .. Linearity and 

continuity of Ṫ . on D . are easily proven. For ϕ = D-lim
m→∞

ϕm . and a, b ∈ R. it holds 

true that 

. lim
m→∞

Ṫ (ϕm) = − lim
m→∞

T (ϕ m) = −T (ϕ ) = Ṫ (ϕ)

Ṫ (aϕ1 + bϕ2) = −T (aϕ 1 + bϕ 2) = aṪ (ϕ1)+ bṪ (ϕ2).

Higher derivatives of order k are analogously defined by 

. T (k) = D
 -lim

n→∞
f (k)
n .

Applying to ϕ ∈ D ., this means for the k-th derivative of T 

. T (k)(ϕ) = (−1)kT (ϕ(k)).

Example For the step function 

. σ(t) =

⎧
⎨
⎩

0 for t < 0,
1
2
for t = 0,

1 for t > 0

(considered as a regular distribution) and arbitrary ϕ ∈ D ., we obtain with the 

notations Tσ = σ . and Ṫσ = σ̇ . 

.  Ṫσ , ϕ =  σ̇, ϕ = − σ, ϕ  = −
+∞
ˆ

0

ϕ (t) dt = ϕ(0) =  δ, ϕ .

σ̇ (ϕ). and δ(ϕ). thus yield for any ϕ ∈ D . the same value; we therefore have as result 

the equation σ̇ = δ . in D 
., also denoted by σ̇ (t) = δ(t)., if we still want to indicate 

the initial function variable t . 

Thus, we can now differentiate a discontinuous step function. This has not been 

possible within the framework of classical analysis. Correspondingly, we have for a 

translation σ̇ (t − t0) = δ(t − t0).. 

Changing σ(t). at t = 0. to s(t) =
 
0 for t  0

1 for t > 0
. does not have an effect on 

integrals of σ(t). or s(t)., i.e., σ(t). and s(t). are the same distribution: Tσ = Ts ., 

and we have the equation ṡ = δ . in D 
.. This is also found symbolically denoted by 

t
ˆ

−∞

δ(τ )dτ = s(t). (Fig. 8.10).
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Fig. 8.10 Derivative of a unit step 

We easily verify the following facts: 

1. D 
. is a vector space. 

2. For T ∈ D 
. and infinitely often differentiable functions f, the product f · T . is a 

distribution, defined for ϕ ∈ D . by  f · T , ϕ =  T , f · ϕ .. 

Further Rules for Derivatives 

The derivative is linear, and the product rule is valid for products with infinitely 

often differentiable functions: 

. (cT )(k) = cT (k), (S + T )(k) = S(k) + T (k),

. (f T )(k) =
k 

n=0

 
k

n

 
f (n)T (k−n)

for k ∈ N0 ., c ∈ R., S, T ∈ D 
. and infinitely often differentiable functions f. 

To confirm these relations, we observe for ϕ ∈ D . and k = 1.: 

.  (cT )(1), ϕ = −c T , ϕ  =  cṪ , ϕ ,

 (S + T )(1), ϕ = − S, ϕ  −  T , ϕ  =  Ṡ, ϕ +  Ṫ , ϕ ,

 (f T )(1), ϕ = − f T , ϕ  = − T , f ϕ  = − T , f ϕ + f  ϕ +  T , f  ϕ 

=  Ṫ , f ϕ +  T , f  ϕ =  f Ṫ + f  T , ϕ .

For derivatives of higher order k > 1., we then obtain the rules by induction. 

Understanding now locally integrable functions as distributions, we can differ-

entiate them without any restriction, even if they are discontinuous. To indicate 

differentiation in this distributional sense, one speaks of generalized derivatives. 

For a regular distribution Tf . belonging to a differentiable function f , we have
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.  Ṫf , ϕ =  ḟ, ϕ = −
+∞
ˆ

−∞

f (t)ϕ (t)dt =
+∞
ˆ

−∞

f  (t)ϕ(t)dt =  f  , ϕ =  Tf  , ϕ .

This means that for differentiable f the classical notion of a derivative and the 

notion of the generalized derivative are equivalent in terms of integrating derivatives 

with test functions. 

Remark Note that a multiplication T · G. in D 
. of distributions T and G is not 

defined in general. For example, the locally integrable function f (t) = 1/
√
|t |. is 

a regular distribution; on the other hand f 2(t) = 1/|t |. is not locally integrable, 
and the product f 2

. can only be interpreted as a distribution by the regularization 

pf(|t |−1).. Also not defined in D 
. are expressions like δ(t) · δ̇(t)., δ2(t)., or f (t)δ(t). 

for functions f which are not infinitely often differentiable. However, it should be 

noted that products like s(t)δ(t). or δ2(t). can be explained on an extended class of 

generalized functions containing D 
.. Such an extension of the distribution theory 

has fundamental importance in studying nonlinear equations between generalized 

functions. For this it is referred to Oberguggenberger (1992) and further references 

cited there. 

Further Examples 

1. For infinitely often differentiable functions f, the following important relation is 

true: 

. f (t)δ(t − t0) = f (t0)δ(t − t0).

Again we have to show that the equation is true applying both sides to an arbitrary 

test function ϕ ∈ D .: 

.  f (t)δ(t − t0), ϕ(t) =  δ(t − t0), f (t)ϕ(t) 

= f (t0)ϕ(t0) =  f (t0)δ(t − t0), ϕ(t) .

A remarkable consequence of this relation is that the equation tT (t) = 1. in D 
. 

has the solutions T (t) = vp(1/t) + kδ(t). with arbitrary constants k, by virtue 

of ktδ(t) = 0.. In the following example 8 we show that there are no further 

solutions. 

2. For f (t) = |t |.we get 

.ḟ (t) = sgn(t) =

⎧
⎨
⎩

−1 for t < 0

0 for t = 0

1 for t > 0.
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Fig. 8.11 A function with a kink and its generalized derivative 

Namely, for ϕ ∈ D .we obtain through integration by parts 

.  ḟ, ϕ = − f, ϕ  = −
+∞
ˆ

−∞

|t |ϕ (t)dt =
0
ˆ

−∞

tϕ (t)dt −
ˆ +∞

0

tϕ (t)dt

= −
0
ˆ

−∞

ϕ(t)dt +
ˆ +∞

0

ϕ(t)dt =
+∞
ˆ

−∞

sgn(t)ϕ(t)dt =  sgn, ϕ .

Illustratively in Fig. 8.11 

We thus can differentiate functions with “kinks” considering them as distribu-

tions. The examples demonstrate the following: 

Rule for Generalized Derivatives. If a function f (t). has a kink at t0 ., a jump  

at t1 ., and is otherwise differentiable, the generalized derivative ḟ (t). results in a 

jump from f  (t0−). to f  (t0+). at t0 . and in a δ .-impulse of strength f (t1+)− f (t1−). 

at t1 .. 

3. Let f be given by 

. f (t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 for t < 0

at for 0  t < t0
at0
2

for t = t0

0 for t > t0.

f (t) = at[σ(t)− σ(t − t0)]., considered as a distribution (see Fig. 8.12), yields 

.ḟ (t) = a[σ(t)− σ(t − t0)] + at[σ̇ (t)− σ̇ (t − t0)]

= a[σ(t)− σ(t − t0)] + a · 0 · δ(t)− at0δ(t − t0).
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Fig. 8.12 A function with a kink and a jump and its generalized derivative 

Therefore we have ḟ (t) = a[σ(t)− σ(t − t0)] − at0δ(t − t0).. 

4. With f (t) = t .we have for m ∈ N. and ϕ ∈ D . by the product rule for derivatives 

.  f δ(m), ϕ = (−1)m δ, (f ϕ)(m) = (−1)mmϕ(m−1)(0), thus

f δ(m) = −mδ(m−1).

5. The Derivative of ln(|t |).. We show that the derivative of T (t) = ln(|t |). is the 
principal value (cf. p. 167). Through integration by parts, it follows for ϕ ∈ D . 

with support supp(ϕ) ⊂ [−a, a]., a > 0., 

.  vp
 
1

t

 
, ϕ = lim

ε→0+

 −ε
ˆ

−a

ϕ(t)

t
dt +

a
ˆ

ε

ϕ(t)

t
dt

 

= lim
ε→0+

 
(ϕ(−ε)− ϕ(ε)) ln(ε)+ (ϕ(a)− ϕ(−a)) ln(a)    

=0

−
−ε
ˆ

−a

ln(|t |)ϕ (t) dt −
a
ˆ

ε

ln(|t |)ϕ (t) dt
 
.

By the mean value theorem, we have ϕ(−ε) − ϕ(ε) = 2εϕ (x)., x ∈ [−ε, ε]. 
suitable; thus we obtain lim

ε→0+
(ϕ(−ε) − ϕ(ε)) ln(ε) = 0.. Since ln(|t |). is locally 

integrable, it turns out the result 

. vp
 
1

t

 
, ϕ = −

a
ˆ

−a

ln(|t |)ϕ (t) dt = −
+∞
ˆ

−∞

ln(|t |)ϕ (t) dt =  Ṫ , ϕ .
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The distribution T (t) = ln(|t |). is regular, and its derivative Ṫ (t) = vp(1/t). is a 

singular distribution. 

6. Derivatives of the Pseudofunctions pf(t−m
+ ). and pf(t−m

− )., m ∈ N.. 

We compute the generalized derivative of pf(t−m
+ )., denoting it by pf(t−m

+ ) .. 

At first we observe that the derivative of Rmϕ(t) = ϕ(t)−
m−1 

k=0

ϕ(k)(0)

k!
tk ., ϕ ∈ D ., 

is 

. (Rmϕ(t))
 = Rmϕ

 (t)+
ϕ(m)(0)

(m− 1)!
tm−1 (ϕ ∈ D).

Rmϕ(t)− ϕ(m)(0)
m! tm = Rm+1ϕ(t). is therefore a primitive of Rmϕ

 (t)..This primi-

tive with the constant K = −ϕ(0). permits integration by parts of the following 

improper integrals. Using integration by parts, we compute with some patience 

for ϕ ∈ D . (cf. p. 168 and use

b
ˆ

a

u(t)v (t)dt) = uv
  b
a
−
ˆ b

a

u (t)v(t)dt . choosing 

u(t) = t−m
.) 

. pf
 
t−m
+
  
(ϕ)=−pf(t−m

+ )(ϕ ) = −
1
ˆ

0

t−mRmϕ
 (t)dt −

∞̂

1

t−mRm−1ϕ
 (t)dt.

With (  .) limε→0+
 
ε−mRm+1ϕ(ε)

 
= 0., we obtain for any ϕ ∈ D .: 

. − pf(t−m
+ )(ϕ ) = −

 
t−mRm+1ϕ(t)

    
1

0

−
1
ˆ

0

−mt−(m+1)Rm+1ϕ(t)dt

+ t−mRmϕ(t)

    
∞

1

−
∞̂

1

−mt−(m+1)Rmϕ(t)dt

 

=
by( )

ϕ(m)(0)

m!
−

1
ˆ

0

mt−(m+1)Rm+1ϕ(t)dt −
∞̂

1

mt−(m+1)Rmϕ(t)dt.

Observing
ϕ(m)(0)

m!
=

(−1)m

m!
 δ(m)(t), ϕ(t) ., we have found the result: 

.pf
 
t−m
+
  = pf

 
−mt−m−1

+

 
+

(−1)m

m!
δ(m)(t).
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Completely analogous we also obtain the following generalized derivatives: 

. pf
 
t−m
−
  =pf
 
−mt−m−1

−

 
−

(−1)m

m!
δ(m)(t),

pf
 
t−m
  =pf
 
−mt−m−1

+

 
+pf
 
−mt−m−1

−

 
= pf
 
−mt−m−1

 
,

pf
 
|t |−m
  =pf
 
−mt−m−1

+

 
+(−1)mpf

 
−mt−m−1

−

 
+ ((−1)m−1)

m!
δ(m)(t).

7. The Equation tnT(t) = 0 in D 
.. 

In subsequent chapters (Chaps. 10 and 11) related to calculating Fourier trans-

forms, we have to solve equations of the form tnT (t) = u(t). with u(t) = 1., 

u(t) = s(t)., or u(t) = sgn(t).. To find their general solutions in D 
. we first 

determine the general solution of the homogeneous equation: 

Theorem 8.2 The general solution of tnT (t) = 0. in D 
. for n ∈ N. is given by 

. T =
n−1 

k=0
ckδ

(k)

with arbitrary constants ck ., k = 0, . . . n− 1.. 

Proof From example 1 on p. 174 it follows tnδ(k)(t) = 0. for 0  k < n.; thus 

T =
n−1 

k=0
ckδ

(k)
. is a solution of tnT (t) = 0. for arbitrary constants ck .. We now  

show that conversely any solution of this equation in D 
. is a linear combination 

of the distributions δ(k) ., k = 0 . . . n− 1.: 

Let T fulfill tnT (t) = 0. for n ∈ N..By Taylor’s formula, we have for ϕ ∈ D :. 

. ϕ(t) =
n−1 

k=0

ϕ(k)(0)

k!
tk + tn (t)

with  (t) =
1

(n− 1)!

1
ˆ

0

(1− x)n−1ϕ(n)(xt)dx.. 

The function  (t). is infinitely often differentiable (differentiation under the 

integral is possible). Now let α . be a function in D . so that α(t) = 1. in an open 

interval U around zero. We define with the Taylor polynomial Tn−1ϕ . of ϕ . with 

degree up to n− 1. 

.ψ(t) =
1

tn
(ϕ(t)− α(t)Tn−1ϕ(t)) .
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Then both ψ(t). and tnψ(t). are again test functions in D ., since ψ . coincides with 

 . in U . Since ψ(t). is in particular infinitely often differentiable at t = 0., we get 

for arbitrary ϕ ∈ D . 

.  T , ϕ =  T , αTn−1ϕ +  T , tnψ .

The last addend is zero, due to tnT = 0.. With  δ(k), ϕ = (−1)kϕ(k)(0). and the 

constants ck = (−1)k
 T , tkα 

k!
. now follows the claimed assertion for T : . 

.  T , ϕ =
n−1 

k=0

ϕ(k)(0)

k!
 T , tkα =

n−1 

k=0
ck δ(k), ϕ .

  

8. The Equation tnT(t) = 1. in D 
. 

From the preceding results now follows for n ∈ N.: 

Theorem 8.3 The equation tnT (t) = 1. has in D 
. the general solution 

. T (t) = pf(t−n)+
n−1 

k=0
ckδ

(k)(t)

with arbitrary constants ck.. 

Correspondingly we obtain: 

Theorem 8.4 The equation tnT (t) = s(t). has in D 
. the general solution 

. T (t) = pf(t−n
+ )+

n−1 

k=0
ckδ

(k)(t).

The equation tnT (t) = s(−t). has in D 
. the general solution 

. T (t) = pf(t−n
− )+

n−1 

k=0
ckδ

(k)(t).

The equation tnT (t) = sgn(t). has in D 
. the general solution 

.T (t) = pf(t−n
+ )− pf(t−n

− )+
n−1 

k=0
ckδ

(k)(t).
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With the pseudofunctions pf(t−n
± ). we have got to know first examples for regu-

larizations of functions with singularities. Historically, the work of J. Hadamard 

on regularizations of divergent integrals, which appear in solutions of hyperbolic 

partial differential equations, contributed significantly to the development of the 

distribution theory. Readers who want to learn more about this are referred to the 

references Gel’fand et al. (1964) or Ortner and Wagner (2015). 

Primitives of Distributions 

The goal of this section is to show that the differential equation Ṫ = G.has a solution 

T ∈ D 
. for every G ∈ D 

. and that two solutions differ by at most a constant c. We  

call each such solution a primitive or synonymously an indefinite integral of G. 

First we observe that the integral

+∞
ˆ

−∞

ϕ (t)dt = 0. for all test functions ϕ ∈ D .. 

Conversely, it follows for all ψ ∈ D . with

+∞
ˆ

−∞

ψ(t)dt = 0. that ϕ(t) =
t
ˆ

−∞

ψ(x)dx . 

belongs to D . and is a primitive of ψ .. Therefore it holds true 

. D0 = {ϕ : ϕ ∈ D} = {ψ ∈ D :
+∞
ˆ

−∞

ψ(t)dt = 0}.

For the following two proofs, let α . be a test function in D . so that

+∞
ˆ

−∞

α(t)dt = 1., 

and for ϕ ∈ D . set Pϕ = ϕ − αI (ϕ). with I (ϕ) =
+∞
ˆ

−∞

ϕ(t)dt.. Then Pϕ ∈ D0 . and 

Pϕ(k) = ϕ(k)
. for all k ∈ N.. 

Theorem 8.5 For T ∈ D 
., the equation Ṫ = 0. is true if and only if T = c. with a 

constant c. 

Proof Evidently, Ṫ = 0. for T = c,. c constant. Conversely assume Ṫ = 0.. Then 

we have  T ,ψ = 0. for all ψ ∈ D0.. Since ϕ(t) = Pϕ(t) + α(t)I (ϕ)., it follows  

with c =  T , α . and  T , Pϕ = 0. that  T , ϕ =  T , αI (ϕ) =
+∞
ˆ

−∞

c ϕ(t)dt,. hence 

T = c..   
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Theorem 8.6 Every distribution G has a primitive T ∈ D 
., and every distribution 

S with Ṡ = G. fulfills S = T + c.with a constant c.. 

Proof For two primitives T and S of G holds Ṫ − Ṡ = 0., so T − S = c. with a 

constant c according to the previous theorem. To determine a distribution T with 

Ṫ = G., we define Fϕ(t) =
t
ˆ

−∞

Pϕ(x)dx . for ϕ ∈ D .. Then Fϕ . is a primitive of Pϕ,. 

and we observe that (Fϕ) ∈ D0 . and Fϕ ∈ D ., since Pϕ ∈ D . and

+∞
ˆ

t

Pϕ(t)dt = 0. 

for sufficiently large t . 

We define for a given distribution G 

.  T , ϕ = − G,Fϕ .

T is linear and also continuous on D :.Let ϕn .be a sequence in D .with D-lim
n→∞

ϕn = 0.. 

Due to Pϕ(k) = ϕ(k)
. and lim

n→∞
I (ϕ(k)

n ) = 0. for all k ∈ N., we get D-lim
n→∞

Pϕn = 0.. 

Now, let [a, b]. be an interval containing the supports of α . and of all Pϕn .. Then 

[a, b]. contains also all supp(Fϕn), n ∈ N,. and we have the estimate 

. sup
t∈R

|Fϕn(t)|  
+∞
ˆ

−∞

|Pϕn(t)|dt  (b − a) sup
t∈R

|Pϕn(t)|.

This implies Fϕn → 0. uniformly. Furthermore we have for k  1 : (Fϕn)
(k) =

(Pϕn)
(k−1)

. and (Pϕn)
(k−1) → 0. uniformly for n →∞..Thus, D-lim

n→∞
Fϕn = 0. and 

eventually lim
n→∞

 T , ϕn = − lim
n→∞

 G,Fϕn = 0.. Therefore, T is continuous on D ., 

i.e., it is a distribution. The distribution T is a primitive of G: In fact, with Fϕ = ϕ . 

we have accomplished 

.  Ṫ , ϕ = − T , ϕ  =  G,Fϕ  =  G,ϕ .
  

An important consequence of the two theorems is the conclusion that a homoge-

neous linear differential equation, whose coefficients are constant or infinitely often 

differentiable functions, considered as an equation in D 
., has no further solutions in 

D 
. than the known classical solutions (Exercise A20). 

Convergence of Sequences of Distributions 

Assume two approximately equal physical quantities are represented by distribu-

tions T1 . and T2 .. Experience shows that, when measuring with the same weight
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function ϕ ∈ D ., the values of  T1, ϕ . and  T2, ϕ . are approximately the same. This 

experience corresponds to the notion of convergence for distributions. 

Definition A sequence (Tn)n∈N . of distributions in D 
. converges to a distribution 

T ∈ D 
., if lim

n→∞
 Tn, ϕ =  T , ϕ . holds true for all ϕ ∈ D .. We then denote this by 

T = D -lim
n→∞

Tn .. 

Remark It can be shown that for every sequence Tn∈D 
., whose limits lim

n→∞
 Tn, ϕ . 

exist for every ϕ ∈ D ., there is indeed a linear continuous functional T on D . defined 

by  T , ϕ = lim
n→∞

 Tn, ϕ .. A proof for this completeness property of D 
. can be 

found, e.g., in Schwartz (1957), Zemanian (2010), or Vladimirov (2002). 

Examples 

1. For an arbitrary integrable function f , define fn(t) = nf (nt)., n ∈ N.. For ϕ ∈ D ., 

we then get by substituting x = nt . 

. 

+∞
ˆ

−∞

fn(t)ϕ(t) dt =
+∞
ˆ

−∞

nf (nt)ϕ(t) dt =
+∞
ˆ

−∞

f (x)ϕ(x/n) dx .

If

+∞
ˆ

−∞

f (t) dt = 1., then we get by |f (x)ϕ(x/n)|  |f (x)|maxx∈R |ϕ(x)|. with 

interchange of limiting n → ∞. and the integration (possible by the dominated 

convergence theorem of Lebesgue, cf. p. 496 in Appendix B) 

. lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t) dt =
+∞
ˆ

−∞

f (x) lim
n→∞

ϕ(x/n) dx = ϕ(0) =  δ, ϕ .

Therefore D -lim
n→∞

fn = δ .. Such a sequence of functions is called a δ .-sequence. 

The previously used notation is thus compatible with the defined notion of 

convergence. In particular, all approximating functions fn . themselves can 

be considered as distributions. As concrete examples, consider the functions 

f (t) = 1
ε
(s(t + ε/2)− s(t − ε/2)). or f (t) = 1

π(1+t2)
., s(t). the unit step 

function. These functions are often used to introduce the δ .-distribution as a limit 

of function sequences in the sense of the above defined convergence in D 
. (cf. 

p. 22 and p. 152). There are also δ .-sequences constructed from non-integrable 

functions as is seen in the following examples. 

2. We consider the functions fn(t) = n sin(nt)s(t)., s(t). the unit step function, 

n∈N.. Intuitively it is not obvious whether the sequence (fn)n∈N . converges in 

any sense. However, for ϕ ∈ D .we get with integration by parts:
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. 

+∞
ˆ

−∞

fn(t)ϕ(t)dt =
+∞
ˆ

0

n sin(nt)ϕ(t)dt = − cos(nt)ϕ(t)

    
+∞

0

+
+∞
ˆ

0

cos(nt)ϕ (t)dt

= ϕ(0)+
 
1

n
sin(nt)ϕ (t)

    
∞

0    
=0

−
1

n

+∞
ˆ

0

sin(nt)ϕ  (t)dt

 
.

By

   
+∞́

0

sin(nt)ϕ  (t)dt
    

+∞́

0

|ϕ  (t)|dt < ∞. follows 

. lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t)dt = ϕ(0) ,

i.e., we obtain the result: D -lim
n→∞

fn = δ .. 

On the other hand, the sequence gn(t) = n cos(nt)s(t). yields D -lim
n→∞

gn = 0.. 

3. For the functions sin(nt)
πt

., n ∈ N., ϕ ∈ D ., we prove 

. lim
n→∞

+∞
ˆ

−∞

sin(nt)

πt
ϕ(t)dt=ϕ(0).

The functions sin(nt)/t . are continuously extended to t = 0.with respective value 

n. The integrals converge, since ϕ . has a bounded support. Substituting x = nt ., 

we obtain 

. 

+∞
ˆ

−∞

sin(nt)

πt
ϕ(t)dt =

+∞
ˆ

−∞

sin(x)

πx
ϕ
 x
n

 
dx.

Substituting now x =
 
n+ 1

2

 
t ., we consider 

.In =

+(n+ 1
2 )π

ˆ

−(n+ 1
2 )π

sin(x)

πx
ϕ
 x
n

 
dx =

+π
ˆ

−π

sin(
 
n+ 1

2

 
t)

πt
ϕ ((1+ 1/(2n)) t) dt

=
+π
ˆ

−π

Dn(t)
sin(t/2)

t/2
ϕ((1+ 1/(2n))t)dt
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with the 2π .-periodic Dirichlet kernel 

. Dn(t) =
1

2π

+n 

k=−n

ejkt =

⎧
⎪⎪⎨
⎪⎪⎩

1

2π

sin((n+ 1
2
)t)

sin(t/2)
for t  ∈ 2πZ,

1
2π

(2n+ 1) for t ∈ 2πZ.

For all n ∈ N. it holds

+π
ˆ

−π

Dn(t)dt = 1., and for piecewise continuously differen-

tiable functions f : [−π, π ] → C., we have  

+π
ˆ

−π

Dn(t)f (t)dt −→
n→∞

1

2
(f (0−) +

f (0+))., by virtue of Dirichlet’s theorem. We thus obtain In −→
n→∞

ϕ(0)., i.e., 

. D
 -lim

n→∞
sin(nt)

πt
= δ(t).

From
1

2π

n
ˆ

−n

e−jωt dω =
sin(nt)

πt
.we get D -lim

n→∞
1

2π

n
ˆ

−n

e−jωt dω = δ(t).. 

In the subsequent Chap. 10, this relation will show us that the constant function 

f = 1. has 2πδ . as Fourier transform (cf. p. 292). 

We note that the approximation f1(t) = 100/(π(1 + 10000t2)). from the 

previous example 1 corresponds most closely to the usual idea of an impulse 

function, whereas function sequences like in examples 2 and 3 have little 

in common with the idea that a δ .-sequence converges to infinity at t =
0. and to zero otherwise. Consider the following Fig. 8.13 with illustrations 

of f1(t) = 100/(π(1+ 10000t2))., f2(t) = 100 sin(100t)s(t)., and f3(t) =
sin(100t)/(πt).. 

However, comparing the sampling properties of f1 ., f2 . and f3 ., for example 

with the function ϕ(t) = e−1/(1−t2)
. for |t |  1., zero otherwise, shows that 

Fig. 8.13 Three different functions as impulse approximations
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the functions f2 . and f3 . give by far better approximations for the sample  δ, ϕ . 
than the more impulse-like appearing function f1 .: For ϕ(0) = 1/ e ≈ 0.36788., 

numerical calculation of the integrals with a computer algebra system yields 

 fk, ϕ ., k = 1, 2, 3., as follows: 

.  f1, ϕ ≈ 0.36293,  f2, ϕ ≈ 0.36807,  f3, ϕ ≈ 0.36788.

4. We consider the distributions Tn =
n 

k=−n

δ(t − k)., n ∈ N.. For every ϕ ∈ D . exists 

. lim
n→∞

 Tn, ϕ = lim
n→∞

n 

k=−n

 δ(t − k), ϕ = lim
n→∞

n 

k=−n

ϕ(k) =
+∞ 

k=−∞
ϕ(k) ,

because the series at the right is indeed a finite sum, due to the bounded support 

of ϕ .. Therefore, by 

. T =
+∞ 

k=−∞
δ(t − k) = D

 -lim
n→∞

n 

k=−n

δ(t − k)

a distribution is defined. Linearity and continuity on D . are immediately seen. 

The series T =
 +∞

k=−∞ δ(t − k). is convergent in D 
.with T = D -lim

n→∞
Tn .. 

5. For Tn ., T ∈ D 
.with T = D -lim

n→∞
Tn .we get Ṫ = D -lim

n→∞
Ṫn ., because we have for 

ϕ ∈ D . 

.  Ṫn, ϕ =  Tn,−ϕ  −→
n→∞

 T ,−ϕ  =  Ṫ , ϕ .

Analogously we obtain for distribution series: 

. If

+∞ 

n=−∞
Tn = T , then

+∞ 

n=−∞
Ṫn = Ṫ .

Result Every distribution series, which converges in D 
., can be differentiated 

without any restriction. Differentiation can be carried out term by term. 

Such a result is extremely practical and not achievable in classical analysis. 

It means that differentiation, with the introduced notion of convergence, is a 

continuous operation on the vector space D 
. of the distributions.
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Coordinate Transformations for Distributions 

Substituting t = ax + b., a  = 0. in an integral of the form

+∞
ˆ

−∞

f (ax + b)ϕ(x)dx ., 

ϕ ∈ D ., f a locally integrable function, yields that 

. 

+∞
ˆ

−∞

f (ax + b)ϕ(x)dx =
+∞
ˆ

−∞

f (t)
1

|a|
ϕ

 
t − b

a

 
dt.

For non-regular distributions T we define analogously the transformed distribution 

TA .with a transform A(t) = at + b., a  = 0., and ϕ ∈ D . by 

.  TA, ϕ =  T , |(A−1) |ϕ ◦ A−1 ,

and use also the notation  T (at + b), ϕ(t) = 1
|a|

 
T (t), ϕ

 
t−b
a

  
.. 

Here, ϕ ◦ A−1
. is the composition of the two mappings A−1

. and ϕ .. 

Example For a  = 0.we have: 

. δ(at + b) =
1

|a|
δ

 
t +

b

a

 
,

because for ϕ ∈ D . 

.  δ(at + b), ϕ(t) =
1

|a|

 
δ(t), ϕ

 
t − b

a

  
=

1

|a|
ϕ

 
−b

a

 
.

By the above definition, we can describe some symmetry properties for distribu-

tions in the same way as for functions: 

T is even, if T (t) = T (−t)., i.e., if T = TA .with A(t) = −t .. 

T is odd, if T (t) = −T (−t)., i.e., if T = −TA .with A(t) = −t .. 

T is periodic with period p > 0., if T (t + p) = T (t)., i.e., if T = TA . with 

A(t) = t + p .. 

For example, δ(t). is an even distribution. Classical Fourier series can be 

regarded as periodic distributions. A consequence of the introduced transformations 

is for example that in case of symmetries, translations or frequency changes of 

Fourier series can be computed in the usual way, even if these represent non-

regular distributions. Such examples will be discussed in the next chapter (cf. 

Sect. 9.1).
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It can be shown that in the sense of the introduced rules for the derivative Ṫ . of a 

distribution T holds 

. Ṫ = lim
h→0

T (t + h)− T (t)

h
(Exercise).

For the derivative of a distribution S(t) = T (at + b)., a  = 0., we then have again the 

chain rule: Ṡ(t) = aṪ (at + b) ,. because with the chain rule for ϕ(
t − b

a
) ∈ D . we 

obtain 

.  Ṡ(t), ϕ(t) = − T (at + b), ϕ (t) = −
1

|a|

 
T (t), ϕ 

 
t − b

a

  

=
a

|a|

 
Ṫ (t), ϕ

 
t − b

a

  
=  aṪ (at + b), ϕ(t) .

In the following section we also introduce coordinate transformations more gener-

ally for distributions on multidimensional parameter sets. 

8.6 Test Functions and Distributions with Several Variables 

All discussed terms can be applied to functions with several variables. Readers 

who have experience with functions of several variables will quickly recognize the 

analogies. We sketch here only a few corresponding basic notions and work out a 

more familiar way of dealing with them in the following section on convolutions 

and in the next chapter with application examples of distributions. 

Before we define test functions and distributions for multidimensional parameter 

sets, it is useful to introduce a compact notation for partial differential operators. 

For a multi-index k = (k1, . . . , kn) ∈ N
n
0 . and x ∈ R

n
. one defines 

. |k| = k1 + k2 + . . . kn and x k = x
k1
1 x

k2
2 · · · xknn .

Then, the partial differential operators ∂i ., ∂
ki
i ., and ∂k . are defined for 1  i  n., 

ki ∈ N., and a multi-index k by 

. ∂i =
∂

∂xi
, ∂

ki
i =

∂ki

∂x
ki
i

und ∂k =
∂k1+k2+...+kn

∂x
k1
1 . . . ∂x

kn
n

= ∂
k1
1 ∂

k2
2 · · · ∂knn .

The space of test functions D(Ω). for a domain Ω ⊂ R
n
. is the set of all those 

functions ϕ : Ω → R., which are arbitrarily differentiable and have a bounded 

support supp(ϕ). in Ω .. The support of ϕ . in Rn
. is the closure of the set of all points 

x ∈ R
n
., where ϕ(x)  = 0..
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A sequence (ϕm)m∈N . converges inD(Ω). to the zero function, if and only if there 

is a compact, i.e., a closed and bounded subset of Ω ., which contains all the supports 

of the ϕm . and if all derivatives of the ϕm . converge uniformly to zero, i.e., if for 

arbitrary k = (k1, . . . , kn) ∈ N
n
0 . holds: 

. sup
x∈Ω

   ∂kϕm(x)
   −→

m→∞
0.

Now, we define the vector space D (Ω). of distributions on Ω . by 

. D
 (Ω) = {T : D(Ω) → R | T linear and continuous} .

A characterization of continuity for linear functionals on D . by estimates of | T , ϕ |., 
ϕ ∈ D ., is shown at the end of the section. 

Partial derivatives ∂kT . of distributions T ∈ D (Ω). for a multi-index k are 

defined by 

.  ∂kT , ϕ = (−1)|k| T , ∂kϕ .

The order of differentiations for distributions can always be chosen arbitrarily. 

According to the well-known theorem Schwarz, in general this is not the case for 

classical functions. 

Convergence in D (Ω). is defined as before: For T , Tm ∈ D (Ω). it holds 

. T = D
 -lim

m→∞
Tm, if lim

m→∞
 Tm, ϕ =  T , ϕ for all ϕ ∈ D(Ω).

All terms can be defined analogously for complex-valued test functions and 

distributions. A distribution T has the form T = T1 + jT2 . with T1, T2 ∈ D (Ω).. 

Application to a complex-valued test function ϕ = ϕ1 + jϕ2 ., ϕ1, ϕ2 ∈ D(Ω)., is  

defined by 

.  T , ϕ = ( T1, ϕ1 −  T2, ϕ2 )+ j ( T1, ϕ2 +  T2, ϕ1 ) .

Thus from now on, we can use complex-valued test functions and distributions with 

the scalar field C.. 

For coordinate transformations A and distributions T on Rn
., one defines the 

distribution TA . by generalization of the substitution rule for integrals (cf. p. 497). 

The inverse transformation A−1
. is assumed to be an infinitely often differentiable 

bijective mapping, whose Jacobian determinant det ∂A−1  = 0. in Rn
. (cf. p. 497). 

For T ∈ D (Rn). and a test function ϕ ∈ D(Rn). the distribution TA ∈ D (Rn). is 

defined by 

. TA, ϕ =  T , | det ∂A−1|ϕ ◦ A−1 .
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With that definition we can formulate symmetry properties, for example rotational 

invariance, for distributions and can make coordinate transformations. For example, 

a distribution T on Rn
. is rotationally invariant, if for all orthogonal (n×n).-matrices 

A with detA = 1. we have TA = T .. For those matrices A hold A−1 = A∗
., A∗

. 

the transposed matrix and det ∂A−1 = 1.. For any test function ϕ . and rotationally 

invariant T we obtain  TA, ϕ = T (x), ϕ(A−1x) = T , ϕ .. More examples can be 

found in the following sections. 

Examples 

1. The function h(x) = 1
|x| = (x2 + y2 + z2)−1/2 . for x = (x, y, z). is locally 

integrable in R3
., since the integrals 

. 

ˆ

0<ε |x| R

h(x) dλ3(x) =
2π
ˆ

0

π̂

0

R̂

ε

r sin(θ) dr dθ dφ

converge for ε → 0. to 2πR2
. ( dλ3(x) = dx dy dz. denotes the differential volume 

element on R3
.). Thus, the function h can be considered as a regular distribution 

on R3
.. 

2. Generalized δ .-functions with three variables, defined for ϕ . in D(R3). and x0 . in 

R
3
. by  δ(x − x0), ϕ(x) = ϕ(x0)., can be used as generalized density functions, 

for example to describe spatially discrete distributions. For example,  (x) =
n 

i=1
qiδ(x− xi). can be a generalized density function for n electric charges qi . at 

the points xi ∈ R
3..The distribution  .can be extended to a discrete measure in R3

. 

(see remark on p. 162). Conversely, each measure m in R3
. defines a distribution 

T by  T , ϕ =
ˆ

ϕ dm., ϕ ∈ D(R3). (cf. Appendix B). 

3. With ϕ ∈ D(R3)., R > 0., with the usual surface measure do. on a sphere of 

radius R around zero (cf. Appendix B) and a smooth density function  . there, 

a distribution T is defined by the surface integral  T , ϕ =
ˆ

|x|=R

 ϕ do .. That 

distribution is also denoted by T (x) =  (x)δ(|x| − R).. 

Characterization of Continuity of Distributions 

The following theorem describes continuity of linear functionals on D(Ω). by 

estimates of | T , ϕ |. for ϕ ∈ D(Ω).. There, ||ϕ||p . for an integer p  0. is the 

maximum norm 

.||ϕ||p = max{|∂kϕ(x)| : x ∈ Ω, |k|  p}
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of ϕ . in the space of p-times continuously differentiable functions with compact 

support in the domain Ω.. 

Theorem 8.7 A linear functional T on D(Ω). is continuous if and only if for every 

compact set K ⊂ Ω . there are a constant C > 0. and an integer p  0. such that for 

every test function ϕ .with support in K the following estimation applies: 

. | T , ϕ |  C||ϕ||p.

Proof 

(a) Let T ∈ D (Ω). and a compact set K ⊂ Ω . be given. To prove the necessity of 

the given condition, we assume that it is wrong. Then for each natural number 

p there is a test function ϕp .with support in K such that 

. | T , ϕp | > p||ϕp||p.

The functions ψp = ϕp/(p||ϕp||p). have their support in K and converge to zero 

in D(Ω). for p →∞., since for each fixed k ∈ N
n
0 . and all p  |k|. and x ∈ Ω . 

. |∂kψp(x)|  ||ψp||p =
1

p

is fulfilled. It then follows from the continuity of T that for p →∞. the numbers 

| T ,ψp |. also converge to zero. This contradicts the conclusion | T ,ψp | > 1. 

for all p according to the assumption made above. 

(b) For every null sequence ϕm . inD(Ω). there is a compact setK ⊂ Ω . that contains 

all supports of ϕm ., and the following holds lim
m→∞

||ϕm||p = 0. even for all p ∈
N0 .. From the given condition for a linear functional T on D(Ω). it therefore 

follows limm→∞ T , ϕm = 0., i.e., the continuity of T .   

8.7 Tensor Product and Convolution 

The aim of this section is the introduction of convolutions for distributions. 

Therewith the next chapter provides a basic solution procedure for inhomogeneous 

linear differential equations with constant coefficients. This central result, which 

allows the calculation of particular solutions of such equations, requires some 

preparations. Convolutions are also a fundamental theoretical tool for linear systems 

theory and its applications. We will go into this in more detail in Chap. 11.
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The Tensor Product of Distributions 

For locally integrable functions f and g on R. the function 

. f ⊗ g(x, y) = f (x)g(y)

is a locally integrable function on R2
.. Then by f ⊗ g . a distribution on the test 

functions ϕ . in D(R× R). is defined by 

.  f ⊗ g, ϕ =
ˆ

R

ˆ

R

f (x)g(y)ϕ(x, y) dy dx .

With regard to applications of distributions, we transfer all the following consider-

ations immediately to functions with several variables. In the following we denote 

with X = R
n
., Y = R

m
., Z = R

p
. and with dλp(z). the differential volume element 

in Rp
.. For locally integrable functions f on X, g on Y , and a test function ϕ . in 

D(X × Y )., a regular distribution f ⊗ g ∈ D (X × Y ). is defined by 

.  f ⊗ g, ϕ =
ˆ

X

ˆ

Y

f (x)g(y)ϕ(x, y) dλm(y) dλn(x) =  f (x),  g(y), ϕ(x, y)  .

The distribution f ⊗ g . is called the tensor product of f and g. The factor f only 

affects the parameters from X, and the factor g affects the parameters from Y . 

Instead of f ⊗ g ., we also write f (x) ⊗ g(y)., if we want to specify the integration 

variables for better orientation. Exchanging the order of integration corresponds to 

the permutation of the tensor product, i.e., the following holds: f (x) ⊗ g(y) =
g(y)⊗ f (x).. 

Definition For two distributions T ∈ D (X). and G ∈ D (Y ). the tensor product 
T ⊗G. is defined analogously with ϕ ∈ D(X × Y ). by 

.  T (x)⊗G(y), ϕ(x, y) =  T (x),  G(y), ϕ(x, y)  .

The definition is meaningful because for every fixed x ∈ X . the function ϕx(y) =
ϕ(x, y). belongs toD(Y )., and the function ψ(x) =  G,ϕx . can be shown to be a test 
function in D(X).. The tensor product is linear and continuous on D(X × Y )., i.e., 

T ⊗G. is a distribution fromD (X×Y ).. At this point and in the following statements 

about convolutions we refrain from very technical, detailed proofs and focus on the 

essential aspects for the applications. Interested readers will find a more detailed 

presentation of the contents of this and the following section on convolutions with 

proofs in Schwartz (1957), Vladimirov (2002), or Zemanian (2010).
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For test functions ϕ ∈ D(X × Y ). of the special form ϕ(x, y) = ϕ1(x)ϕ2(y).with 

ϕ1 ∈ D(X). and ϕ2 ∈ D(Y ). it follows from the definition of the tensor product 

.  T (x)⊗G(y), ϕ(x, y) =  T (x), ϕ1(x)  G(y), ϕ2(y) 

=  G(y)⊗ T (x), ϕ(x, y) .

With the theorem of Weierstrass (cf. p. 142) it can be shown that every test function 

ϕ . can be approximated by linear combinations of the special form 

. 

n 

k=1
ϕ1,k(x)ϕ2,k(y)

in D(X × Y ).. From the linearity and the continuity of T ⊗G. the commutativity of 

the tensor product on whole D(X × Y ). follows: 

. T (x)⊗G(y) = G(y)⊗ T (x).

In an analogous way, one also obtains the associativity of the tensor product of 

distributions T , G, and H on X, Y , and Z respectively: 

. T (x)⊗G(y)⊗H(z) = (T (x)⊗G(y))⊗H(z) = T (x)⊗ (G(y)⊗H(z)).

Examples 

1. The δ .-distribution δ(x) = δ(x, y, z). in R3
. for x = (x, y, z). is simply the tensor 

product δ(x)⊗ δ(y)⊗ δ(z).. Because for ϕ ∈ D(R3). it holds 

.  δ(x, y, z), ϕ(x, y, z) =  δ(x),  δ(y),  δ(z), ϕ(x, y, z)   

=  δ(x),  δ(y), ϕ(x, y, 0)  =  δ(x), ϕ(x, 0, 0) = ϕ(0, 0, 0).

2. If g is locally integrable on Y , then for ϕ ∈ D(X × Y ). 

.  δ(x)⊗ g(y), ϕ(x, y) =  g(y)⊗ δ(x), ϕ(x, y) 

=
ˆ

Y

g(y)ϕ(0, y) dλm(y) .

3. A mass or charge density  (z). on a thin rod of the length 2l, which is idealized 

by the (degenerate) interval {0} × {0} × [−l, l]. in R3
., is described with the help 

of the unit step function s(z). by the tensor product 

.δ(x)⊗ δ(y)⊗  (z)[s(z+ l)− s(z− l)].
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The Support of a Distribution 

In the following, we will describe what is meant by the support of a distribution. The 

support of a continuous function f contains all points at which f does not vanish. 

Since for distributions T it does not make sense to speak of values at individual 

points, we say T vanishes on an open set A, T = 0. in A, if  T , ϕ = 0. for all test 

functions ϕ .with supp(ϕ) ⊂ A.. For example, δ(x) = 0. on any open set A that does 

not contain the zero point. 

Conversely, a point x. is an essential point for T, if for every open neighborhood 

U of x. there is a test function ϕ . with supp(ϕ) ⊂ U . and  T , ϕ  = 0.. For example, 

the zero point is the only essential point for δ(x).. 

Definition The support supp(T ). of a distribution T is the closed set of all essential 

points for T. 

The support supp(T ). of a distribution T is therefore the smallest closed set on 

whose complement it holds T = 0.. 

Examples 

1. For regular distributions Tf . with continuous f , supp(Tf ) = supp(f ).. The  

support of locally integrable functions f is defined as the support of the 

distribution Tf .. The support of δ(x−x0). is the set {x0}., the support of δ(|x|−R). is 

the spherical surface |x| = R ., and the support of δ(x)⊗δ(y)⊗[s(z+l)−s(z−l)]. 
is the set {0} × {0} × [−l, l]. in R3

.. 

2. For a distribution T and a test function ϕ .,  T , ϕ . is only dependent on the values 
of ϕ . on the support of T . Namely, if ϕ . is changed outside of a neighborhood 

U of supp(T ). so that again a test function ψ . is obtained, then ψ = ϕ + h. 

with a test function h that vanishes on U . Because  T , h = 0., it follows that 

 T ,ψ =  T , ϕ + h =  T , ϕ .. 

The Convolution of Distributions 

The convolution f ∗ g . of two integrable functions f and g on Rn
. is defined by 

. (f ∗ g)(x) =
ˆ

f (x− y)g(y) dλn(y) .

By the theorem of Fubini-Tonelli (cf. Appendix B), the convolution f ∗ g . is again 

an integrable function (Exercise A14, Chap. 9). If one looks at it as a regular 

distribution, then for each test function ϕ . it follows with the substitution rule for 

integrals 

. f ∗ g, ϕ =
ˆ ˆ

f (x− y)g(y)ϕ(x) dλn(y) dλn(x)

=
ˆ ˆ

f (x)g(y)ϕ(x+ y) dλn(y) dλn(x) .
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With the help of the tensor product f (x) ⊗ g(y)., the convolution of f and g can 

then be described by the formula 

.  f ∗ g, ϕ =  f (x)⊗ g(y), ϕ(x+ y) =  f (x),  g(y), ϕ(x+ y)  .

With the reflection qϕ(x) = ϕ(−x). of ϕ . one equivalently obtains 

.  f ∗ g, ϕ =  f, qg ∗ ϕ .

As usual, the regular distribution Tf ∗g . is identified with the function f ∗ g .: 

. Tf ∗g = f ∗ g.

Definition For two arbitrary, not necessarily regular distributions T and G, the  

convolution T ∗G. is defined by the same approach: 

.  T ∗G,ϕ =  T (x)⊗G(y), ϕ(x+ y) =  T (x),  G(y), ϕ(x+ y)  .

With the reflection qT (ϕ) =  T , qϕ =  T (x), ϕ(−x) . of T , the convolution can 

also be written as above by 

.  T ∗G,ϕ =  T , qG ∗ ϕ .

However, it should be noted in the definition that ϕ(x + y). generally does not 

have a bounded support. The defining formula therefore usually only makes sense 

under additional assumptions. If the convolution T ∗G. of two distributions exists, 

then T ∗G. is again a distribution, and from the commutativity of the tensor product 

the commutativity of the convolution follows: T ∗G = G ∗ T .. 

The following theorem specifies conditions under which the convolution of 

distributions exists. Afterward the most important properties for calculations with 

convolutions are summarized. Some facts used in previous chapters about con-

volutions of classical functions are collected in Appendix B. Further statements 

about convolutions that are needed in connection with the Fourier transform are 

discussed in Chap. 10. For detailed proofs it is again referred to Zemanian (1995) or  

Vladimirov (2002). 

Sufficient Conditions for the Existence of Convolutions 

Theorem 8.8 (Existence of Convolutions) The convolution T ∗G. of two distribu-

tions T and G on Rn
. is meaningfully defined for all ϕ ∈ D(Rn). by  T ∗ G,ϕ =

 T (x)⊗G(y), ϕ(x+ y) . under each of the following conditions:
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1. T or G has a bounded support. 

2. The supports of T and G are both contained in a “quadrant” 

. Qc
+ = {x = (x1, . . . , xn)|xi  c, i = 1, . . . , n}

or both in one “quadrant” 

. Qc
− = {x = (x1, . . . , xn)|xi  c, i = 1, . . . , n},

c in  R. suitable. 

Thus, in the one-dimensional case n = 1., T ∗G. exists if the supports of T and G 

are bounded on the same side. This is the case, for example, if supp(T ) ⊂ [0,∞[. 
and supp(G) ⊂ [0,∞[.. 

Proof In the first case, for example, let G have a bounded support. Then the 

infinitely often differentiable function ψ(x) =  G(y), ϕ(x+ y) . disappears, if |x|. is 
so large such that the supports supp (G). and supp (ϕx)., ϕx(y) = ϕ(x+y). no longer 

intersect. So ψ . in that case is a test function, and T can be applied to ψ ., i.e., the 

convolution T ∗G. is possible (see Exercise 14). 

For the second condition, we consider the illustrative case n = 1.and distributions 

T and G with supports in [0,∞[.. For growing x the support of ϕx . shifts to the 

left, so that at some point supp (ϕx) ∩ supp (G) = ∅., i.e., the support of ψ(x) =
 G(y), ϕ(x+y) . is bounded to the right. Consequently, the intersection supp (T )∩
supp (ψ). is bounded. If one chooses a test function α . to be constantly α = 1. on this 

intersection,then the test function αψ . coincides with ψ . on the support of T . The  

convolution T ∗G. exists and it holds: 

.  T ∗G,ϕ =  T , αψ .

These arguments can be applied under the “quadrant conditions” from Point 2 also 

to the multidimensional case.   

Further theorems on the existence of convolutions, their properties, and detailed 

proofs can be found in Schwartz (1957) and Vladimirov (2002). Before we come to 

examples of convolutions, some basic properties of convolutions are listed below. 

Properties of Convolutions 

1. Distributivity of Convolutions. If the convolution of a distribution T with two 

distributions G and S exists, then the convolution is distributive, i.e., the 

following applies for any constants α . and β . 

. T ∗ (αG+ βS) = α(T ∗G)+ β(T ∗ S).

The following applies supp(αG+ βS) ⊂ supp(G) ∪ supp(S)..
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2. Commutativity, associativity of convolutions Since tensor products are commuta-

tive, this also applies to convolutions. If three distributions T , G, and S fulfill the 

quadrant condition with a common quadrant Qc
+ . or Qc

− . or at least two of them 

have a bounded support, then the convolution is associative, i.e., the following 

holds 

. T ∗ (G ∗ S) = (T ∗G) ∗ S.

3. Convolution with the Dirac distribution. For all distributions T there exists T ∗ δ . 
and for each test function ϕ . it holds 

.  T ∗ δ, ϕ =  T (x),  δ(y), ϕ(x+ y)  =  T (x), ϕ(x) .

From the definition of convolution and commutativity, it follows that δ . acts like 

the one in multiplication: 

. T ∗ δ = δ ∗ T = T .

4. Differentiation and translation of convolutions. If the convolution T ∗ G. exists, 

for a differential operator ∂i = ∂
∂xi

. and the derivative ∂i(T ∗G).of the convolution 

it holds 

. ∂i(T ∗G) = T ∗ ∂iG = ∂iT ∗G.

We exemplarily show the first equation: For each test function ϕ . it holds 

.  ∂i(T ∗G), ϕ =  T ∗G,−∂iϕ =  T (x),  ∂iG(y), ϕ(x+ y)  =  T ∗ ∂iG,ϕ .

Specifically, for all distributions T we have that ∂i(δ ∗ T ) = ∂i(T ∗ δ) = ∂iT .. 

In an analogous way, for a shift A(x) = x + a. and the translation (T ∗ G)A . of 

the convolution (cf. p. 186), we obtain (T ∗G)A = TA ∗G = T ∗GA.. 

This follows with (T ∗ G)A = (T ∗ G) ∗ δA . from the commutativity and 

associativity of convolutions. Therefore, when differentiating and translating a 

convolution product, one can arbitrarily choose among the factors. 

5. Convolution with infinitely often differentiable functions. For every distribution T 

and every test function g, the convolution T ∗g . is an infinitely often differentiable 

function. It holds (T ∗g)(x) =  T (y), g(x−y) .. The same applies if g is infinitely 

often differentiable and has no bounded support but T has a bounded support. As 

derivative ∂i(T ∗ g). of the convolution T ∗ g . for ∂i = ∂/∂xi ., we obtain T ∗ ∂ig . 

(see Point 4 and Exercise A14). 

6. The support of convolutions. For the support of a convolution T ∗G., the relation 

supp(T ∗G) ⊂ supp(T )+ supp(G) = {x+y | x ∈ supp(T ), y ∈ supp(G)}. holds 
true.
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7. Convergence of convolutions. For distributions G and T = D -lim
k→∞

Tk . it 

holds 

. T ∗G = D
 -lim

k→∞
(Tk ∗G) ,

if one of the following conditions is fulfilled: 

(a) There is a bounded set that contains all supports of the Tk .. 

(b) The support of G is bounded. 

(c) The supports of all Tk . and the support of G lie together in a “quadrant” Qc
+ . 

or Qc
− ., for suitable c ∈ R. (cf. p. 195). 

The proof is obtained analogously as in Theorem 8.8 by the imposed support 

conditions (Exercise). 

Examples of Convolutions 

1. According to Property 4, for any distributions T and G whose convolution exists, 

it holds T (t −a)∗G(t −b) = T (t)∗G(t − (a+b)).. For example, the following 

relations apply to the Dirac distribution δ(t). and the unit step function s(t).: 

. δ(t − a) ∗ δ(t − b) = δ(t − (a + b)),

δ(t − a) ∗ s(t − b) = δ(t) ∗ s(t − (a + b)) = s(t − (a + b)).

2. For integrable functions f (t). and the unit step function s(t). it is useful to 

remember 

. (f ∗ s)(t) =
+∞
ˆ

−∞

f (u)s(t − u) du =
ˆ t

−∞
f (u) du ,

((f s) ∗ s)(t) =
t
ˆ

−∞

f (u)s(u) du = s(t)

ˆ t

0

f (u) du .

The convolution s ∗ rn . of the unit step function with the rectangular function rn ., 

defined by rn(t) = s(t) − s(t − n)., results in (s ∗ rn)(t) = min(t, n)s(t).. With 

D -lim
n→∞

rn = s ., it follows 

.(s ∗ s)(t) = ts(t).
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3. The convolution as a continuous superposition. The potential U vanishing at 

infinity of a spatially bounded charge distribution with the density function  . is 

given by the Poisson formula (see later Sect. 9.4) ( supp ( ) ⊂ B ., B bounded in 

R
3
.): 

. U(x) =
1

4πε0

ˆ

B

 (y)

|x− y|
dλ3(y) .

The potential U is the convolution of  . with the regular distribution 1
4πε0|x| .. It 

is thus obtained by continuous superposition of the influences of all spatially 

distributed charges. 

4. If the convolution T ∗G. of two distributions T and G on R. exists, then for any 

linear differential operator L =
m 

k=0
ck

dk

dtk
., with constant coefficients ck . the 

equation L(T ∗G) = LT ∗G = T ∗LG. holds true. The same applies for several 

variables and corresponding partial differential operators. These equations follow 

immediately from Property 4 due to the linearity of convolutions. They represent 

a distributional analog of the interchange of differentiation and integration, which 

is not possible with classical functions without further assumptions. 

5. The support of a convolution T ∗G. is often enlarged compared to the supports of 

T and G. As a simple example consider the indicator function f = 1[−1,1] . of the 
interval [−1, 1].. It has the value one in [−1, 1]. and zero otherwise. It is a regular 
distribution with supp(f ) = [−1, 1]. and 

. (f ∗ f )(t) =
+∞
ˆ

−∞

1[−1,1](x)1[−1,1](t − x) dx =
1
ˆ

−1

1[−1,1](t − x) dx .

With 1[−1,1](t − x) = 1[−1,∞[(t − x) − 1]1,∞[(t − x) = 1]−∞,t+1](x) −
1]−∞,t−1[(x). one immediately computes 

. (f ∗f )(t)=
1
ˆ

−1

1]−∞,t+1](x) dx−
ˆ +1

−1
1]−∞,t−1[(x) dx =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for t≤−2
t + 2 for − 2 < t≤0

2− t for 0 ≤ t≤2

0 for t >2.

Therefore, supp(f ∗ f ) = supp(f )+ supp(f ) = [−2, 2].. 
From Property 6 it follows that for bounded supports of T and G, supp(T ∗G). 

is also bounded. For distributions T and G on R., whose support lie in [0,∞[., the  
support of T ∗G. is also contained in [0,∞[.. 

6. Convolutions of impulse sequences. The discrete convolution plays a central 

role in discrete signal processing, the basics of which we explain in Chap. 11.
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There, discrete time signals are modeled by an impulse sequence of the form 

x =
+∞ 

k=−∞
xkδk .. We use xkδk . to denote impulses δk = δ(t − ka). of the 

strength xk . at time ka, where 1/a > 0. is the sampling frequency, with which 

the discrete system operates. For discrete linear filters with the impulse response 

h =
+∞ 

k=−∞
hkδk . and discrete input signals x the convolution relation y = x ∗ h. 

then applies to the output signals y (cf. Chap. 11 later). 

The convolution of the impulse response h of the filter with the allowed input 

signals x must be possible for this relationship to make sense. We calculate the 

discrete convolution for two special filters, which we will return to in Chap. 11. 

In the first case, we assume that h has a bounded support, and in the second case, 

that the supports of h and x are bounded below. Then the convolution y = h ∗ x . 

exists in each case, and we show that y is of the form y =
+∞ 

m=−∞
ymδm ., where 

. ym =
+∞ 

k=−∞
hkxm−k =

+∞ 

k=−∞
hm−kxk.

(a) In the case hk = 0. for |k| > M . and suitable M ∈ N., it follows from the 

distributivity of the convolution with the index transformation k + n = m. 

. h ∗ x =

⎛
⎝  

k∈supp(h)
hkδk

⎞
⎠ ∗
 +∞ 

n=−∞
xnδn

 

=
+∞ 

n=−∞

 

k∈supp(h)
xnhkδk+n =

+∞ 

m=−∞

 

k∈supp(h)
xm−khkδm

and thus the representation of ym . claimed above. 

Example Let x =
+∞ 

n=−∞
xnδn . and h =

 1
k=−2 hkδk .with support {−2,−1, 0, 1}. 

be given. For example, to obtain y−2 . in x ∗ h =
+∞ 

m=−∞
ymδm ., write the mirrored 

sequence of hk . over the sequence of coefficients xn ., so that h0 . is above the x−2 . 
associated with δ−2 .. Then multiply all overlapping coefficients and add them 

together.
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So y−2 . is calculated in the example as follows: 

. 

. . . 0 h1 h0 h−1 h−2 0 0 0 . . .

. . . x−4 x−3 x−2 x−1 x0 x1 x2 x3 . . .

↑

. y−2 = x−3h1 + x−2h0 + x−1h−1 + x0h−2.

Note that the convolution y = h ∗ x . usually has a larger support than the 

convolution factors involved, even if h and x have finite supports. 

(b) In the second example, we assume that h =
+∞ 

k=k0

hkδk . and x =
+∞ 

n=n0

xnδn . 

have bounded below supports. Then the following equations hold for any 

test function ϕ . 

.  h, ϕ =
+∞ 

k=k0

hkϕ(ka) and  x, ϕ =
+∞ 

n=n0

xnϕ(na)

and both sums have only finitely many nonzero summands due to the bounded 

support of ϕ .. Therefore it follows from 

.  h ∗ x, ϕ =
+∞ 

k=k0

hk

 +∞ 

n=n0

xnϕ((n+ k)a)

 

by exchanging the summation order and index transformation m = n+ k . 

.  h ∗ x, ϕ =
+∞ 

n=n0

+∞ 

k=k0

hkxnϕ((n+ k)a)

=
+∞ 

m=k0+n0

⎛
⎝

+∞ 

k=k0

hkxm−k

⎞
⎠ϕ(ma).

In this case, too, the coefficient ym . of y = h ∗ x =
+∞ 

m=−∞
ymδm . is given by the 

following convolution formula (with hk = 0. for k < k0 ., xn = 0. for n < n0 .) 

.ym =
+∞ 

k=−∞
hkxm−k =

+∞ 

k=−∞
hm−kxk.
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The coefficient ym . is zero ifm < k0+n0 ., and the series for ym . is de facto a finite 

sum. Further examples and concrete applications of discrete convolutions will 

be elaborated in Sect. 10.5 and in the already mentioned Chap. 11 about linear 

filters. 

Approximations of Distributions by Smooth Functions 

The above properties of convolutions include the theorem that every distribution T 

of D (Rn). is the D 
.-limit of a sequence of smooth functions fk ., which can even be 

chosen as test functions. It is also said that D . is dense in D 
.. To see this, choose a 

sequence of test functions ϕk . with D -lim
k→∞

ϕk = δ ., as we did with the introduction 

of the δ .-distribution. Such a sequence is called a smoothing sequence. You can start 

from any test function ϕ .with

ˆ

ϕ(x) dλn(x) = 1., and define 

. ϕk(x) = knϕ(kx)

(cf. Ex. 1, p. 182). Then according to the previously mentioned Properties 3 and 7, 

it holds (p. 196) 

. D
 -lim

k→∞
(T ∗ ϕk) = T ∗ δ = T .

The sequence of the ϕk . is called smoothing sequence, because the convolutions 

T ∗ϕk . are infinitely often differentiable functions according to Property 5 of p. 196. 
Now choose an arbitrary test function g with g(x) = 1. in a neighborhood of zero, 

and define for k ∈ N. the function gk(x) = g(x/k).. For an arbitrary test function ψ . 

and sufficiently large k is then gk(x) = 1. for all x ∈ supp(ψ)., and thus 

. lim
k→∞

 gk(T ∗ ϕk), ψ =  T ,ψ .

The functions fk = gk(T ∗ ϕk). are the sought test functions for the approximation 

of T : D -lim
k→∞

fk = T .. Therefore it holds: 

Theorem 8.9 Each distribution T is the D 
.-times of a sequence of test functions. 

Remark For specific given functions or distributions, it can be quite difficult to 

“calculate” convolutions. As an important tool we will get to know the Fourier trans-

form in Chap. 10. In practical, numerical applications, convolutions of functions are 

often approximately calculated using the discrete Fourier transform.
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The Spaces E  
. and D

 

R
. , Continuity of Convolution Operators 

To conclude this section, an aspect of property 7 of p. 197 on the convergence of 

convolutions will be emphasized. For this purpose, we introduce two new vector 

spaces of distributions and define convergence terms for sequences in these spaces, 

which we will come back to later in the application examples in Chap. 11. 

Definition 

1. E  . denotes the space of distributions T ∈ D (R). with compact support. A 

sequence Tn . converges in E
 
. to a distribution T if T = D -lim

n→∞
Tn . and all Tn . 

and T have their supports in a common compact set K . 

2. With D 
r . we denote the space of all distributions T ∈ D (R). whose supports lie 

in the interval [r,∞[. for r ∈ R.. A sequence of distributions Tn . converges to a 

distribution T in D 
r . if T = D -lim

n→∞
Tn . and all Tn . and T have their support in 

[r,∞[.. 
The spaceD 

R =
 

r∈R
D
 
r . is called the space of causal distributions. A sequence of 

distributions Tn . converges in D
 
R . toward a distribution T if T = D -lim

n→∞
Tn . and, 

additionally, all supports of the Tn . and T for a suitable r ∈ R. lie in the interval 

[r,∞[.. Causal distributions are also called right-sided distributions. 

These definitions can also be applied to the case of multidimensional parameter 

sets in an obvious way. We restrict ourselves to the one-dimensional case and again 

briefly note only D 
. for D (R). below. 

If we now consider for a distribution G the convolution operator LG(T ) = G∗T . 

for distributions T in spaces that always allow the convolutions G ∗ T ., then 

the properties of convolutions from No. 7 of p. 197 are continuity statements 

for such convolution operators. We will refer to the following statements in 

Chap. 11: 

Theorem 8.10 For a distribution G, the convolution operator LG : Z →A. defined 

by LG(T ) = G ∗ T . is a linear translation-invariant continuous operator in the 

following cases: 

1. Z = E  . , A = D 
., and G ∈ D .. 

2. Z = D = A. and G ∈ E  .. 
3. Z = D 

R 
= A. and G ∈ D 

R.. 

The translation invariance means that the convolution operators LG . for transla-

tions A of the parameter set (on D 
. defined by AT = TA .), can be interchanged with 

the translation, i.e., if for all T ∈ Z . and LG(T ) = G ∗ T . it holds: 

.LG(AT ) = A(LG(T )) = (G ∗ T )A.
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The theorem is only a reformulation of No. 4 and No. 7 on p. 197, if the convergence 

notions introduced above for E  . and D 
R . are taken into account. In Chap. 11 we 

address the question, which translation-invariant linear operators L : Z → A. can 

be represented as convolution operators for certain given distribution spaces Z . and 

A.. There are also examples of convolution operators that are not continuous and 

examples of continuous translation-invariant operators, which are not convolution 

operators (p. 327 and p. 355). Preliminarily, we already formulate a fundamental 

result here, which goes back to Schwartz (1957). There one can also find the proof. 

Theorem 8.11 (Theorem of L. Schwartz) Every continuous translation-invariant 

linear operator L from E  . to D 
. is interchangeable with convolutions between 

elements of E  . and can be represented as a convolution with h = Lδ ., i.e., L(T ) =
L(δ ∗ T ) = L(δ) ∗ T = h ∗ T . for all T ∈ E  .. 

A detailed discussion of variants of this theorem for operators also on distribution 

spaces other than E  . can be found in Zemanian (2010) and Albrecht and Neumann 

(1979). 

8.8 Exercises 

(A1) Which of the following functionals on D . are distributions? 

. T (ϕ) = −
+∞
ˆ

0

ϕ (t) dt , G(ϕ) = max
t∈R

ϕ(t), H(ϕ) =
+∞
ˆ

−∞

|ϕ(t)| dt ,

R(ϕ) = |ϕ(0)|, S(ϕ) =
∞ 

k=0

ϕ(k)(0), U(ϕ) =
 

|k| p

∂kϕ(0) for ϕ ∈ D(Rn),

(p ∈ N.). 

(A2) Calculate t δ̇(t), t2δ̇(t). and t δ̈(t), t2δ̈(t).. 

(A3) Prove t pf(t−2) = pf(t−1), t pf(t−2
+ ) = pf(t−1

+ ), tδ(m)(t) = −mδ(m−1)(t). 

for m ∈ N.. 

(A4) Show that the principal value vp(t−1). can be represented in the form 

vp(t−1) = T (t)+f (t),.where T is a distribution with bounded support and 

f (t). is a square-integrable function. 

(A5)  . Show: For every ϕ ∈ D . it holds lim
ε→0

+∞
ˆ

−∞

ϕ(t)
t

t2 + ε2
dt = vp(t−1)(ϕ),. 

i.e., the regular distributions Tε(t) =
t

t2 + ε2
. converge for ε → 0. to the 

principal value vp(t−1)..
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(A6)  . Show that for − 1 < λ < 0. by 

. T (ϕ) = pf(λtλ−1
+ )(ϕ) =

∞̂

0

λtλ−1(ϕ(t)− ϕ(0))dt

a singular distribution is defined which regularizes the derivative of tλ+ =
tλs(t)., i.e., the generalized derivative of the regular distribution tλ+ . is T (cf. 

p. 168). As usual, s(t). is the unit step function. 

Example:
 
t
−1/2
+

  
= − 1

2
pf
 
t
−3/2
+

 
.. 

(A7) What is the generalized second derivative f̈ . of 

. f (t) = (sin(t)+ α)[s(t)− s(t −
π

2
)] + ((t −

π

2
)2 + α + 1)s(t −

π

2
) ,

s(t). the unit step function, α > 0 .? 

(A8)  . Show with the use of the transformation rules and the notion of convergence 

for distributions that the generalized derivative Ṫ (t). of a distribution T (t). 

reads as: 

. Ṫ (t) = lim
Δt→0

T (t +Δt)− T (t)

Δt
.

(A9) (a) Show for the improper integral

+∞
ˆ

−∞

sin(nt)

πt
dt = 1.. 

(b) Show for the 2π .-periodic Dirichlet-Kernels Dn(t) =
1

2π

+n 

k=−n

ejkt . and 

piecewise continuously differentiable f that 

. 

+π
ˆ

−π

Dn(t)f (t)dt −→
n→∞

1

2
(f (0−)+ f (0+)).

(A10) Check that
 ∞

k=1 k sin(kt). converges in D
 
., and calculate 

. 

 ∞ 

k=1

k sin(kt), ϕ(t −
1

2
)
 

for ϕ(t) =
 
e−1/(1−t2) for |t | < 1

0 otherwise.

(A11) Calculate for the Dirac distribution δ(t)., the unit step function s(t)., an  

integrable function f (t)., and real numbers a and b the convolutions
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. ̇δ(t − a) ∗ s(t − b), δ̇(t − a) ∗ δ̇(t − b), s(t − a) ∗ f (t),

s(t − a) ∗ s(t − b), and the convolution s(t) ∗ [ln(t + 1)s(t + 1)].

(A12) For Gaussian functions of the form Gm
σ (x) = 1

σ
√
2π

e−(x−m)2/(2σ 2)
. with 

m ∈ R. and σ > 0., verify that the convolution again results in a Gaussian 

function: 

. Gm1
σ ∗Gm2

τ = G
m1+m2√

σ 2+τ 2
.

Note: To do this, write the exponent of the integrand in the convolution 

integral G
m1
σ ∗ G

m2
τ (x). in the form u2 + v2 . with v = (x − (m1 +

m2))/
√
σ 2 + τ 2 . and substitute the integration variable with u. 

Remark The relationship G
m1
σ ∗ G

m2
τ = G

m1+m2√
σ 2+τ 2

. plays an important 

role in probability theory. Gm
σ . is the probability density of the so-called 

(m, σ). normal distribution with expected value m and standard deviation 

σ .. The standard deviation of the sum of n independently measured values of 

(m, σ).-normally distributed random variables is then σ
√
n., and that of the 

arithmetic mean of the measured values is therefore σ/
√
n.. Averaging from 

several measured values thus reduces the variance, and the arithmetic mean 

of the measured values provides a useful estimate of the expected value m. 

(A13) For integrable functions f and g, prove supp (f ∗ g) ⊂ supp (f ) +
supp (g).. 

(A14)  . Prove that the convolution T ∗ϕ .of a distribution T ∈ D 
.with a test function 

ϕ ∈ D . is an infinitely often differentiable function. 

(A15) Show that the support of the derivative Ṫ . of a distribution T ∈ D (R). is 

contained in the support of T . 

(A16)  . Give an example with three distributions whose convolution is not associa-

tive. 

(A17) What is the general solution of the equation tT (t) = G(t). for G ∈ D 
.with 

0 /∈ supp(G) ?. 

(A18) Specify a distribution T for n ∈ N.with supp(T ) = {0}. and tnT (t)  = 0.. 

(A19) The space D 
+ . of all distributions with support in R

+
0 . is a convolution 

algebra. 

Determine the convolution inverses T with T ∗G = δ . for the distributions 

G = δ̇ ., G = δ̇ − αδ . and the unit step G(t) = s(t). in D 
+(R).. 

(A20)  . Show that every distribution T ∈ D 
+ . has exactly one indefinite integral 

S ∈ D 
+ . and that S = s ∗ T . holds (s is the unit step function). 

(A21)  . Show that a homogeneous linear differential equation of n-th order 

.

n 

k=0

ak(t)x
(k)(t) = 0



206 8 Fundamentals of Distribution Theory

with infinitely often differentiable coefficients ak(t)., taken as equation in 

D ,. does not have any further solutions than the regular classical solutions 
in D 

.. 

Show that this also applies to a homogeneous first-order system 

. x  (t) = A(t)x(t)

with a componentwise infinitely often differentiable matrix A.



Chapter 9 

Application Examples for Distributions 

Abstract The chapter is devoted to practice applications of distributions in various 

fields. This includes generalized Fourier series, fundamental solutions for linear 

differential equations with constant coefficients in a myriad of applications. Linear 

circuits and input-output relations by convolution of input signals with the impulse 

or step response form general examples. For 3D problems, the fundamental solution 

for the potential equation is calculated and applied in examples. Furthermore, as one 

of the most important practice applications, the method of finite elements (FEM) is 

treated, and its solution in a suitable Sobolev space by the Lax-Milgram theorem 

is shown and applied in examples, e.g., the Poisson boundary value problem. The 

problem of the vibrating string from the beginning in Chap. 1 is now solved in the 

sense of distributions, i.e., weak solutions are obtained as in the FEM problems. 

9.1 Periodic Distributions are Generalized Fourier Series 

For p > 0., a distribution T of D . is called p-periodic, if for all k ∈ Z. it holds in the 

sense of translations for distributions: 

. T (t + p) = T (t).

For ϕ ∈ D . and k ∈ Z., it then follows 

.  T (t + kp), ϕ(t) =  T (t), ϕ(t − kp) =  T , ϕ .

Fourier Series as Distributions 

Theorem 9.1 Every trigonometric series

+∞ 

k=−∞
ck e

jkt
., whose coefficients ck . are 

polynomially bounded, i.e., |k|−n|ck| −→
|k|→∞

0. for suitable n ∈ N., converges in the 

distributional sense to a 2π .-periodic distribution T . 
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Proof For polynomially bounded coefficients, the series

+∞ 

k=−∞
k  =0

ck

(jk)n
ejkt . is uni-

formly convergent for sufficiently large n ∈ N. and thus represents a continuous, 

2π .-periodic function f . With the n-th generalized derivative f (n)
. of f , it then 

follows 

. T (t) =
+∞ 

k=−∞
ck e

jkt = c0 + f (n)(t).

Since for ϕ ∈ D . and k ∈ Z., it always  

. 

+∞
ˆ

−∞

ejkt ϕ(t)dt =
+∞
ˆ

−∞

ejkt ϕ(t − 2π)dt

holds, T is a 2π .-periodic distribution.   

An analogous statement also applies to other periods p  = 2π .. If a classical 

Fourier series is to converge pointwise almost everywhere or in the quadratic 

mean, its Fourier coefficients ck . must necessarily form a zero sequence. In the 

distributional sense, however, convergence is even achieved if the ck . only do not 

grow too fast. All these series now considered as distributions, to which we refer as 

generalized Fourier series, may also be differentiated term by term, which is not the 

case in classical analysis (cf. Sect. 4.3). 

Example (Periodic Impulse Sequences) The 2π .-periodic Dirichlet kernels 

. Dn(t) =
n 

k=−n
ejkt

converge for no t ∈ R. pointwise. For increasing n these functions oscillate on R. 

more and more (cf. p. 14). However, we now obtain convergence for n→∞. in the 

distribution sense: 

Theorem 9.2 The Dirichlet kernels converge in the distributional sense toward the 

periodic distribution 

. T (t) =
+∞ 

k=−∞
ejkt = 2π

+∞ 

k=−∞
δ(t − 2πk).

Proof It holds
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Fig. 9.1 The periodic 

sawtooth function 

Fig. 9.2 The derivative of 

the sawtooth 

. D
 -lim

n→∞
Dn(t) =

+∞ 

k=−∞
ejkt = 1+ 2

∞ 

k=1
cos(kt) = 1+ 2

d

dt

∞ 

k=1

sin(kt)

k
,

and 

. 

∞ 

k=1

sin(kt)

k
=

 
(π − t)/2 for 0 < t < 2π

0 for t = 0

represents the sawtooth function S(t)., S(t + 2kπ) = S(t). (Fig. 9.1). 

Distributional (term by term) differentiation yields (Fig. 9.2) 

. 

∞ 

k=1
cos(kt) = −

1

2
+ π

+∞ 

k=−∞
δ(t − 2πk).

So one obtains for the Dirichlet kernels Dn(t).: 

. Dn(t) =
n 

k=−n
ejkt = 1+ 2

n 

k=1
cos(kt)

D
 

−→
n→∞

2π

+∞ 

k=−∞
δ(t − 2πk).

This confirms the heuristic impression we had already gained from the Dirichlet 

kernels (cf. p. 14 and p. 50): The Dirichlet kernels converge to a periodic impulse 

sequence. This impulse sequence is a singular distribution.   

Theorem 9.3 For p-periodic impulse sequences (p > 0., ω0 = 2π/p .) apply 

accordingly 

.

+∞ 

k=−∞
δ(t−kp) =

1

p

+∞ 

k=−∞
ejkω0t and

+∞ 

k=−∞
δ̇(t−kp) =

1

p

+∞ 

k=−∞
jkω0 e

jkω0t .
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Periodic Distributions Are Generalized Fourier Series 

We now show that periodic distributions can always be represented by generalized 

Fourier series and that their Fourier coefficients ck . for |k| → ∞. do not grow faster 

than a power of |k|.. We only consider 2π .-periodic distributions. The reformulation 

for other period lengths may serve as an exercise for the reader. A standard proof of 

this result uses a so-called partition of unity. We construct such a partition: 

We choose any even test function ϕ  0. with ϕ(t)  1/2. in [−π, π ]. and 
support supp(ϕ) ⊂] − 2π, 2π [.. Therewith, we define the 2π .-periodic, infinitely 

often differentiable function Φ(t) =
+∞ 

k=−∞
ϕ(t + 2kπ).. The periodicity is obvious, 

the smoothness follows from the fact that the above series has only finitely many 

nonzero summands in each bounded interval, all of which are infinitely often 

differentiable. It always holds Φ(t)  1/2.. We introduce the following functions: 

. h(t) = ϕ(t)/Φ(t) ∈ D and H(t) =
+∞ 

k=−∞
h(t + 2kπ).

Then H(t) = 1. for all t ∈ R. and h(0) = 1.. The representation of H is called a 

partition of unity by means of a test function h. To illustrate these functions and to 

understand the calculation afterward, consider the following graphs, for which we 

choose as a concrete example ϕ . as follows (see Figs. 9.3 and 9.4): 

With ψ(t) = e−t
2/(1−t2)

. for |t |  1., ψ(t) = 0. otherwise, we define ϕ . by 

. ϕ(t) =

⎧
⎪⎪⎨
⎪⎪⎩

ψ
 
4t+1
19

 
for −∞ < t < −1/4

1 for − 1/4  t  1/4

ψ
 
4t−1
19

 
for 1/4 < t < +∞.

The image on the right shows h(t + 2π)., h(t)., h(t − 2π). and the sum H = 1. on the interval 

[−2π, 2π ].. The support of ϕ . and h is [−5.5].. 
One verifies that the Fourier coefficients fk . of a 2π .-periodic function f that is 

integrable on [0, 2π ]. are given by applying f to the test function h(t) e−jkt .: 

Fig. 9.3 

ϕ(t + 2π), ϕ(t), ϕ(t − 2π)., Φ .
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Fig. 9.4 Generated partition 

of unity 

.  f (t) , h(t) e−jkt  =
+∞
ˆ

−∞

f (t)h(t) e−jkt dt =
+∞ 

k=−∞

2(k+1)π
ˆ

2kπ

f (t)h(t) e−jkt dt

. =
+∞ 

k=−∞

2π
ˆ

0

f (x)h(x + 2kπ) e−jkx dx =
ˆ 2π

0

f (x)H(x) e−jkx dx = 2πfk.

Because h has a bounded support, the resulting series are de facto finite sums 

and may be interchanged with the integral. This relationship is independent of the 

specific choice we have made for h and thus H , and applies to any analogous 

partition of unity. If we replace f with a 2π .-periodic distribution T , the quantity 

 T (t) , h(t) e−jkt  . is also independent of the choice of h, since any such T can 

be represented with the help of a smoothing sequence (fn)n∈N . as on p. 201 as a 

distributional limit of regular and again 2π .-periodic distributions such as f . From  

this it follows that the Fourier coefficients f n
k . of fn . defined with any h as above 

always have the same limit  T (t) , h(t) e−jkt  /(2π). for n → ∞.. This expression 

can therefore be used to define the Fourier coefficients of periodic distributions in 

general. Therewith, we obtain the desired theorem on the representation of periodic 

distributions as generalized Fourier series. 

Definition The Fourier coefficients ck . of a 2π .-periodic distribution T are—with h 

constructed as above—for k ∈ Z. the complex numbers ck =
1

2π
 T (t) , h(t) e−jkt  .. 

Theorem 9.4 Every 2π .-periodic distribution T has the representation 

. T (t) =
+∞ 

k=−∞
cke

jkt

with the Fourier coefficients ck . given in the definition. The Fourier coefficients ck . 

are polynomially bounded, i.e., there exists a constant C and a natural number n 

such that for all k ∈ Z \ {0}. the inequality |ck|  C|k|n . holds.
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Proof 

(a) According to the previous example, we have 

. 
1

2π
h(t)

+∞ 

k=−∞
ejkt ∗T (t) = h(t)

+∞ 

k=−∞
δ(t − 2kπ) ∗ T (t).

Due to supp(h) ⊂]− 2π, 2π [. and h(0) = 1., we obtain the representation for T 

. T (t) = T (t) ∗ h(t)δ(t) = h(t)

+∞ 

k=−∞
δ(t − 2kπ) ∗ T (t).

(b) Because for every t ,  h(s) = h(t − s). gives a partition of unity  H . as above as 

well, ck . can also be calculated with  h. instead of h. Thus, it holds that 

. T (t) ∗ h(t) ejkt =  T (s) ,  h(s) ejk(t−s) = 2πck e
jkt .

(c) From (a) and (b), the desired representation of T as a generalized Fourier series 

follows: 

. T (t)=T (t) ∗
1

2π
h(t)

+∞ 

k=−∞
ejkt =

1

2π

+∞ 

k=−∞

 
h(t) ejkt ∗T (t)

 
=
+∞ 

k=−∞
ck e

jkt .

The second equation uses the convergence of convolutions (cf. p. 197), since 

h ∈ D .. 

(d) If I is an open interval containing the support of h, then according to the 

characterization of the continuity of T on p. 190, there exists a K > 0. and 

n ∈ N0 ., such that for all ϕ ∈ D .with support in I , the inequality | T , ϕ |  K . 

holds. Specifically, for k  = 0. with Leibniz rule for derivatives of h(t) e−jkt . up 
to order n, we obtain (for  h n . see p. 189) 

. 2π |ck| = | T (t) , h(t) e−jkt  |  K h(t) e−jkt  n  2nK h n|k|n.

Thus, the Fourier coefficients ck . are polynomially bounded. 

  

From the theorem, it particularly follows that two generalized Fourier series 

T (t) =
+∞ 

k=−∞
ck e

jkt
. and S(t) =

+∞ 

k=−∞
dk e

jkt
. are equal if and only if ck = dk . 

for all k ∈ Z., i.e., comparison of coefficients is possible.
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Remark Also for distributions over a multidimensional parameter space, which 

are 2π .-periodic in each variable, analogous representations as generalized Fourier 

series can be shown. Proofs can be found in Schwartz (1957) or Vladimirov (2002). 

Example (Generalized Fourier Series of the Tangent Function) With 

. T (t) = − ln |2 cos(t)| =
∞ 

k=1
(−1)k

cos(2kt)

k

for t  = (2k + 1)π/2., k ∈ Z. (Exercise 6 of Chap. 7), differentiation yields the 

generalized Fourier series for the regularized tangent function Ttan = Ṫ . considered 

as a periodic distribution. It represents as a weak limit the principal value vp(tan(t)).. 

. Ttan(t)=vp(tan(t))=2

∞ 

k=1
(−1)k+1 sin(2kt),  Ttan, ϕ = − T , ϕ  for ϕ ∈ D.

Remark Regularizations of functions with singularities, such as the tangent, are 

generally not possible in only one way. Therefore, it should be noted that the 

abovementioned distribution Ṫ . as a regularization of the tangent is the uniquely 

determined so-called canonical regularization in the sense of Gel’fand et al. (1964), 

Vol. I. 

The calculation rules for Fourier series treated in Sects. 4.1–4.3 apply to gener-

alized Fourier series as well due to the transformation rules for distributions. For 

example, a translation of the p-periodic impulse sequence

+∞ 

k=−∞
δ(t − kp). to the 

right by t0 > 0. results in 

. 

+∞ 

k=−∞
δ((t − t0)− kp) =

1

p

+∞ 

k=−∞
ejkω0(t−t0) (ω0 = 2π/p).

Two p-periodic distributions generally cannot be convolved in the way defined in 

Sect. 8.7. None of the conditions for the supports given there are met. However, the 

p-periodic convolution (T ∗ S)p . of 

. T (t) =
+∞ 

k=−∞
ck e

jkω0t and S(t) =
+∞ 

k=−∞
dk e

jkω0t (ω0 = 2π/p),

can be introduced analogously as in Sect. 5.2, p.  63 by (T ∗ S)p(t) =
+∞ 

k=−∞
ckdk e

jkω0t .. If, for instance, T = f (n)
. and S = g(m)

. are generalized 

derivatives of order n and m, respectively, of two continuous p-periodic functions 

f and g (cf. p. 208), then (T ∗ S)p = (f ∗ g)(n+m)
p ., i.e., the p-periodic convolution 

of T and S is the generalized derivative of order n+m. of (f ∗ g)p ..
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Application in Asymptotically Stable Differential Equations as in Sect. 5.2 

Therewith, the long-term behavior of the solutions of asymptotically stable ordinary 

linear differential equations with constant coefficients under periodic excitations can 

be described, as on p. 66, by the periodic transfer function. Continuity assumptions, 

as required there, can be dispensed with if periodic input signals, transfer functions, 

and output signals are considered as periodic distributions with generalized Fourier 

series representations. In particular, all Fourier series, regarded as distributions 

T , can always be differentiated term by term, and the result then represents the 

generalized derivative Ṫ .. 

The Impulse Method for Calculating Fourier Coefficients 

Understanding Fourier series as distributions can be used, for example, to calcu-

late the Fourier coefficients for “ simple” piecewise continuously differentiable 

functions not through integration, but through differentiation and comparison of 

coefficients with series that represent impulse sequences with known coefficients. 

We exemplarily show this with the following example: 

We choose, for instance, f (t) = cos(ω0t). for 0  t <
p
2
., ω0 = 2π

p
., 

f
 
t + k

p
2

 
= f (t)., k ∈ Z. (Fig. 9.5). 

For 0  t <
p
2
. it holds 

. ḟ (t) = 2δ(t)− ω0 sin(ω0t)

f̈ (t) = 2δ̇(t)− ω2
0 cos(ω0t) = 2δ̇(t)− ω2

0f (t). (9.1) 

On the other hand, f can be represented as a Fourier series, and term-by-term 

differentiation yields 

. f (t) =
+∞ 

k=−∞
ck e

j2kω0t

f̈ (t) = −
+∞ 

k=−∞
(2kω0)

2ck e
j2kω0t . . (9.2) 

Fig. 9.5 The p/2.-periodic 

f (t) = cos(ω0t).
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By periodic extension on R., it follows  from  (9.1) and (9.2) by substituting the 

Fourier series of f into (9.1): 

.2

+∞ 

k=−∞
δ̇(t − k

p

2
)− ω2

0

+∞ 

k=−∞
ck e

j2kω0t = −
+∞ 

k=−∞
(2kω0)

2ck e
j2kω0t . (9.3) 

With the series representation 2

+∞ 

k=−∞
δ̇(t − k

p

2
) =

4

p

+∞ 

k=−∞
j2kω0 e

j2kω0t . one 

immediately obtains from (9.3) the sought Fourier coefficients ck . by a comparison 

of coefficients: 

. 
4 · 2jkω0

p
= (ω2

0 − (2kω0)
2)ck , ck =

4 · 2jkω0

p(1− (2k)2)ω2
0

=
4k

jπ((2k)2 − 1)
.

Thus, f has the representation 

. f (t) =
+∞ 

k=−∞

4k

jπ((2k)2 − 1)
ej2kω0t .

If the series is written so that only positive k appears, 

. f (t) =
2

jπ

∞ 

k=1

 
2k

(2k)2 − 1
ej2kω0t −

2k

(2k)2 − 1
e−j2kω0t

 
,

one obtains with n = 2k . the series representation with sine functions 

. f (t) =
4

π

∞ 

n=2
neven

n

n2 − 1
sin(nω0t) =

4

π

 
2 sin(2ω0t)

3
+

4 sin(4ω0t)

15
+ . . .

 
.

9.2 Linear Differential Equations with Constant Coefficients 

Fundamental Solutions 

Consider a differential equation with constant coefficients ak . 

.Au(t) = f (t) , A =
n 

k=0
ak

dk

dtk
(n > 0, an  = 0).
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A well-known example is the equation for the displacement u. of a spring pendulum: 

. m
d2u

dt2
(t)+ k

du

dt
(t)+Du(t) = K(t).

The coefficients denote the mass m. of the pendulum, the damping coefficient k ., and 

the spring constant D .. The external force acting on the pendulum is K(t).. 

The differential operator A. in this example is 

. A = m
d2

dt2
+ k

d

dt
+D.

Every student is familiar with other equations of this type, whether from mechanics, 

electricity, or other fields of application. In agreement with typical examples, we 

denote the variable t . as a time parameter. For a continuous perturbation f (t). and 

vanishing initial values, the solution is regular and uniquely determined, and for a 

time translation of the right-hand side to f (t+t0)., the corresponding shifted solution 
u. of Au = f . gives the solution v(t) = u(t+ t0). of Av(t) = f (t+ t0).. The equation 

then describes a so-called time-invariant linear system. 

The central importance of convolutions lies in the following method for finding 

particular solutions of such differential equations, which we now regard as equations 

between distributions. 

Fundamental Solution Method First, one determines a fundamental solution g ., 

i.e., a distribution g ∈ D ., such that 

. Ag = δ.

If f . is a distribution for which the convolution g ∗ f . exists, then one obtains a 

distributional particular solution u. of the equation Au = f . through u = g ∗ f.. 

Then A(g ∗ f ) = Ag ∗ f = δ ∗ f = f .. The convolution g ∗ f . certainly exists 

if f . has a bounded support (is “bounded in time”), or if the supports of g . and f . are 

both semi-bounded in the same direction, for example, if they lie in [0,∞[.. 

Remarks 

1. From the theorem on indefinite integrals of distributions (see p. 181), it follows 

that the homogeneous differential equation Au = 0. has no additional distribu-

tional solutions besides the classical infinitely often differentiable solutions. This 

is immediately plausible because any solution u. on the left side of the equation 

Au = 0. is differentiated by A., so it must be an infinitely often differentiable 

function as the right side. 

2. In the case of initial value problems, one usually requires additional conditions to 

ensure that the solution u. of Au = f . can be discussed in terms of initial values. 

We will address this later (p. 220).
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3. The fundamental solution g . introduced above is in general not a solution in the 

physical sense for technical-physical equations because the physical unit of g . 

typically does not match the dimension of such a solution. The distribution g . 

should be understood as a functional whose convolution u = g ∗ f .with a right-

hand side f . yields a solution to the equation Au = f .. The solution u = g ∗ f . 

then possesses the correct physical dimension along with f . and the coefficients 

of the equation. The same applies to the impulse response introduced below. See 

also the subsequent examples in the next section. 

The Causal Fundamental Solution 

If the differential equation Au = f . describes a physical system, then the solutions 

u are possible system responses to the excitation of the system mathematically 

modeled by f . Each particular solution u depends not only on f but also on the  

initial conditions of the system. We now assume that the system is in a resting 

state without energy up to an initial time t0 ., i.e., all initial values are zero, and we 

consider an excitation f from this time t0 ., i.e., supp (f ) ⊂ [t0,∞[.. Assuming the 

causality of the system, the system response cannot be present before the excitation. 

Therefore, we seek a solution u of Au = f . whose support is also contained in 

[t0,∞[.. If such a causal solution exists, then it is uniquely determined; because for 
any other causal solution ũ., we have A(u− ũ) = 0., and u− ũ. vanishes for t < t0 .. 

Due to the uniqueness of this solution of the homogeneous equation, u−ũ.must then 

be the zero function. To not violate the causality principle, no nontrivial solutions 

of the homogeneous equation can be added to u. 

We call a distribution causal, if its support is contained in a half-axis [t0,∞[.. 
We now show that there is exactly one causal fundamental solution g ∈ D .. Its  

support lies in [0,∞[., and it is the response of the system described by Au = f . to 

an input impulse at time t = 0.. The convolution g ∗ f .with the causal fundamental 

solution then exists for every right-hand side f ∈ D . whose support is bounded to 
the left, and results in the sought causal solution of Au = f . due to supp (g ∗ f ) ⊂
supp (g)+ supp (f ).. 

Theorem 9.5 (Causal Fundamental Solutions) The causal fundamental solution 

g is given by g(t) = v(t)s(t).. The support of g is contained in [0,∞[.. Here, s(t). is 
the unit step function and v(t). is the solution of the homogeneous equation Au = 0. 

of n-th order that satisfies the following initial conditions: 

For n = 1 : v(0) = 1/a1,. 

for n  2 : v(k)(0) = 0 for k = 0, . . . , n− 2, v(n−1)(0) = 1/an.. 

One can therefore determine g using the zeros of the characteristic polynomial. 

Proof For n = 1., e−a0t/a1 s(t)/a1 . is the sought fundamental solution. For n  2. 

and for k = 1, . . . , n., it holds based on the initial condition with an arbitrary test 

function ϕ .



218 9 Application Examples for Distributions

.  (vs)(k), ϕ =  v(k)s + v(k−1)δ, ϕ .

For k = 1. this is immediately evident, for 1  k  n − 1., it results by induction 

and the initial condition 

.  (vs)(k+1), ϕ = − (vs)(k), ϕ  = − v(k)s + v(k−1)δ, ϕ  

= − v(k)s, ϕ  =  v(k+1)s + v(k)δ, ϕ .

Therewith, it then follows from applying the initial condition again with Av = 0. 

.  Ag, ϕ =
 

n 

k=0
ak(vs)

(k), ϕ

 
=

  
n 

k=0
akv

(k)

 
s + δ, ϕ

 
=  δ, ϕ .

The uniqueness of the causal fundamental solution has already been established 

above.   

Example The differential equation u(3) + u̇ = 0. has the characteristic polynomial 

P(λ) = λ3 + λ. with the zeros λ1 = 0., λ2 = j ., and λ3 = −j .. Thus, the general 

solution is u(t) = c1+c2 sin(t)+c3 cos(t).with parameters c1 ., c2 ., c3 . from R.. From  

the initial condition follows the particular solution v(t) = 1− cos(t). and the causal 

fundamental solution 

. g(t) = s(t)− cos(t)s(t).

Remark If v(t)s(t). is the causal fundamental solution ofAu = f ., then the function 

− v(t)s(−t). is also a fundamental solution. By convex combinations of v(t)s(t). 

and −v(t)s(−t)., one obtains infinitely many noncausal fundamental solutions. The 

causal fundamental solution g is also called the Green’s function after G. Green 

(1793–1841). 

Impulse Response, Step Response of Time-Invariant Linear 

Systems 

Many causal, time-invariant linear systems in technical applications are described 

by differential equations of the form 

. A1u = A2f,

where A1 . and A2 . are two linear differential operators with constant coefficients. 

Derivatives also appear on the right-hand side. We continue to use t0 = 0. as the 

initial time for disturbances f and understand a distribution f with supp(f ) ⊂
[0,∞[. as the input quantity, and the uniquely determined distributional solution u
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with supp(u) ⊂ [0,∞[. as the sought output quantity of the linear system. The 

second example in the next section is of this type. If g is the causal fundamental 

solution of A1g = δ ., then one obtains the causal impulse response h of the system 

A1u = A2f . through 

. h = g ∗ A2δ = A2g.

For then A1h = A1(g ∗ A2δ) = A1g ∗ A2δ = δ ∗ A2δ = A2δ .. The support of 

h is contained in [0,∞[.. Since the impulse response h can be convolved with any 

distribution f whose support is bounded below, the following relationship exists 

between such input quantities f , the impulse response h, and the system response 

u: 

. A1(h ∗ f ) = A1h ∗ f = A2δ ∗ f = δ ∗ A2f = A2f.

Theorem 9.6 The causal solution u for an excitation f with supp (f ) ⊂ [0,∞[. is 
obtained by the convolution h ∗ f . of f with the causal impulse response h: 

. u = h ∗ f.

The support of u is contained in [0,∞[.. 

Because of this relationship, the impulse response h is used in system theory 

to characterize the transfer behavior of causal, time-invariant linear systems of the 

form A1u = A2f .. This characterization of the transfer behavior applies more 

generally also to causal time-invariant linear systems that cannot be described 

by differential equations (for example, delay elements or integrators in electrical 

engineering). We will return to the basics of linear system theory in more detail in 

Chap. 11. 

Easier to measure than the impulse response h is usually the causal step response 

a, i.e., the reaction to the unit step function s. From A1a = A2s ., however, it 

immediately follows A1ȧ = A2ṡ = A2δ .. 

The impulse response h is obtained by differentiating the step response a, so 

causal, time-invariant linear systems A1u = A2f . can be characterized equally 

well by their step response a. 

Explication of the Convolution Physically realizable, time-invariant linear sys-

tems of the formAu = x . are causal (circuits, controllers, etc.). The system response 

to a regular excitation x(τ). with x(τ) = 0. for τ < 0. at time t  0. is given by the 

convolution integral 

.u(t) =
t
ˆ

0

x(τ)h(t − τ)dτ.



220 9 Application Examples for Distributions

The convolution u(t). is therefore a continuous superposition of values of the 

excitation x, namely of values with which the excitation began at all (x(τ). for τ = 0.) 

over the entire course of time of the “ signal” x up to the “ present” t . 

The strength with which the values x(τ). enter this superposition is controlled by 

the factors h(t−τ).. The present value x(t). is weighted with the factor h(0)., the  most  

distant value x(0). with the factor h(t).. One could therefore say that the impulse 

response h contains the “physical memory” of the system (an electrical circuit, a 

controller, etc.): The entire time course from 0 to t enters the system response h ∗ x . 

at time t through the superposition of signal values x(τ)., 0  τ  t ., with the 

weights h(t − τ).. In the weights h(t − τ). lies the information about the strength 

with which past events in the system due to its construction still affect the present. 

Compare this in particular with the computation of the impulse response h(t). 

from the general solution of the homogeneous system (see p. 217). From this, one 

can clearly see how the eigensolutions and the decay behavior in transient processes 

and thus how the roots of the characteristic polynomial uniquely determine the 

impulse response h(t). up to a factor. If we also consider that typical impulse 

responses of asymptotically stable, causal time-invariant systems described by linear 

differential equations usually tend to zero very fast for t → ∞., then we recognize 

that in the superposition h ∗ x . values of x(τ). typically have stronger weight the 

closer τ . is to the “ present” t , and that the weights h(t − τ). decrease all the more 

rapidly the further one goes with τ → 0. into the “ past.” When h has a bounded 

support, then the convolution x ∗ h. is a weighted moving average of x. 

Linear Initial Value Problems of n-th Order with Constant 

Coefficients 

We continue to consider equations with constant coefficients of the form 

. P(D)u = Q(D)f

for D = d/dt ., polynomials P(λ) =
n 

k=0
akλ

k(n > 0., an  = 0)., and Q(λ) =

m 

k=0
bkλ

k.. 

The notation P(D). of the differential operator means 

.P(D) =
n 

k=0
ak

dk

dtk
.
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For equations P(D)u = Q(D)f . on D ., it is not clear what initial values mean 

for distributional right-hand sides without additional conditions. For example, the 

equation u̇ = δ̇ . has the general solution u = δ + c.with arbitrary constants c, but an 

initial value u(0) = a . does not make sense. 

We want to explain how an initial value problem should be understood in the 

following. For this purpose, we assume that the differential equation describes a 

transmission system that transforms a given time-dependent input signal f into 

a corresponding output signal u. In order for the differential equation of this 

output signal u to have a unique solution, further conditions need to be formulated 

regarding the nature of the system and the type of the input signal f . 

To this end, we assume that our system is causal, i.e., a disturbance of the system 

at rest by an excitation with support in [t0,∞[. generates a system response with 

support in [t0,∞[.. We assume that the right-hand side f can be decomposed as 

f = fr + fg . with fr ∈ Cm(R). and fg ∈ D + .. Here, Cm(R). denotes the space of 

m-times continuously differentiable functions on R., and D + . denotes the space of 

distributions with support in [0,∞[.. We choose the initial time t0 = 0. and prescribe 

initial conditions of the form u(k)(0−) = lim
t→0,t<0

u(k)(t) = ck . for k = 0, . . . , n− 1.. 

Thus, the initial state of the system at time t0 = 0. originates from the past t < 0. of 

the system. In order for the left-sided limits ck . to exist, regularity conditions on the 

right-hand side f in a left-sided neighborhood of t0 . are necessary. For simplicity, 

we use signals f that are m-times continuously differentiable for t < 0.. This is  

sufficiently general for all applications covered in the following chapters. We now 

extend the classical definition of initial value problems for the specified framework 

as follows. 

Definition A causal initial value problem for the equation P(D)u = Q(D)f . on D . 
with f = fr + fg ., fr ∈ Cm(R)., fg ∈ D + ., is to find a distribution u ∈ D ., such 
that: 

1. The distribution u solves the equation P(D)u=Q(D)f . on D .. 
2. The distribution u for t < 0. coincides with the classical solution z of P(D)u=

Q(D)fr ., which satisfies z
(k)(0)=ck . for the k-th derivatives z

(k)
., k=0, . . . , n−1.. 

Comment A distribution T and a locally integrable function f coincide on an open 

set G if and only if  T , ϕ =  f, ϕ . for all test functions ϕ .with supp(ϕ) ⊂ G.. 

Examples 

1. For initial conditions ü(0−) = u̇(0−) = u(0−) = 0., the differential equation 

u(3)+ u̇ = δ . in D .has the unique causal solution u(t) = (1−cos(t))s(t).with the 

unit step function s. The noncausal solution w(t) = u(t) + cos(t) − 1. satisfies 

w(0+) = ẇ(0+) = ẅ(0+) = 0. and ẅ(0−) = −1. (cf. p. 218). Condition 2 
in the above definition yields the uniquely determined, causal solution u as the 

system output signal for initial conditions from the signal’s past t < 0..
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Fig. 9.6 Circuit that realizes 

a first-order highpass filter 

2. Impact Forces in Mechanics. For the linear motion x(t). of an initially force-free 

particle of mass m, let x(0−) = x0, ẋ(0−) = v0..At time t = 0., an impact force 

(e.g., by a hammer blow) acts, which is mathematically modeled by Zδ .with the 

Dirac distribution δ .. The constant Z represents the change in momentum in Ns. 

The equation of motion for the desired solution x reads 

. mẍ = Zδ , x(0−) = x0 , ẋ(0−) = v0.

3. Schematic Highpass Filter. We consider the following RC circuit—neglecting 

induction (see Fig. 9.6): 

Let Ue(t) = U0−U0s(t).be the input voltage, and let Ua(t).be the output voltage 

to be determined. At time t0 = 0., the capacitor is charged with UC(0−) = U0 .. 

The output voltage at time t0 . is then Ua(0−) = 0.. Using Kirchhoff’s laws and 

Ohm’s law, the problem can be described by the initial value problem 

. U̇a +
1

RC
Ua = U̇e , Ua(0−) = 0.

For Ue(t) = U0 −U0s(t) = U0s(−t)., the right-hand side becomes U̇e = −U0δ.. 

There exists exactly one classical solution z of the equation P(D)u = Q(D)fr . 

for given values z(0) = c0 , ż(0) = c1 , . . . , z
(n−1)(0) = cn−1.. For t < 0., the  

solution u of P(D)u = Q(D)f . coincides with z. A sudden disturbance occurring 

at time t0 = 0. such as an impulse or its derivatives can cause a sudden change in the 

function u which describes the temporal evolution of the system state. The temporal 

evolution from t0 . is determined by the final state that the system has reached in the 

past up to time t0 ., and by the effect of the disturbance fg . from the initial time t0.. 

Due to the already proven results, we obtain the following result about the solution 

of the stated initial value problem: 

Theorem 9.7 The causal initial value problem for the equation P(D)u = Q(D)f . 

in D . with f = fr + fg ., fr ∈ Cm(R)., fg ∈ D + ., with given initial values ck ., 

k = 0, . . . , n− 1., has the unique solution 

. u = g ∗Q(D)fg + z.

Here, g is the causal fundamental solution of P(D)u = δ ., g ∗ Q(D)fg . is the 

convolution of g with the distribution Q(D)fg ., and z is the classical solution of
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the equation P(D)u = Q(D)fr . which satisfies the conditions z
(k)(0) = ck .. Then 

u(k)(0−) = ck(k  n− 1).. 

Proof Since the difference of two solutions solves the homogeneous equation 

with vanishing initial conditions, the solution is unique and independent of the 

representation of the superposition f = fr + fg .. The convolution of the causal 

fundamental solution g with Q(D)fg . is the unique solution for the input signal fg . 

with support in [0,∞[. with vanishing initial conditions. Due to linearity and the 
regularity conditions on fr ., the unique solution z of P(D)u = Q(D)fr . is added, so 

that the required initial conditions for the overall solution u are satisfied.   

Example Consider f (t) = 3s(t)− 1.. The differential equation 

. 
du

dt
+ 2u = 3

df

dt
+ 5f

with initial value u(0−) = −5/2.. Its causal fundamental solution is g(t) =
e−2t s(t).. 

The solution on R. is then u(t) = g ∗ (9δ+15s)(t)− 5
2
=

 
3
2
e−2t + 15

2

 
s(t)− 5

2
.. 

We will solve the previous examples following the next section. 

Initial Value Problems on Half-Lines, Suppression of the Past 

In initial value problems, one is often only interested in the evolution of a system 

for t  t0 ., where the system state at time t0 . is given. With the system description 

by the equation P(D)u = Q(D)f ., we often consider disturbances from t0 . under 

“suppression of the past” only for the half-line t  t0 . and do not ask how the initial 

values in a real system could have come about. Mathematically, we can assume 

that they have been imposed on the present system by a suitable solution z of the 

homogeneous differential equation. We set t0 = 0. and look for a distribution T , 

which has its support in [0,∞[. and for t > 0. and sufficiently smooth f agrees with 

the classical solution of the initial value problem. The following statement holds: 

Theorem 9.8 (Initial Value Problems) 

1. For f ∈ D + ., the distribution T , defined by T = g ∗Q(D)f + zs ., is the unique 

causal solution of the distributional equation 

. P(D)u = Q(D)f +
n 

k=1
ak

⎛
⎝

k−1 

p=0
cpδ

(k−1−p)

⎞
⎠ .

Here, P(λ) =
n 

k=0
akλ

k
., g is the causal fundamental solution of P(D)u = δ ., s is 

the unit step function, and z is the classical solution of the homogeneous equation
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P(D)u = 0., which satisfies the initial conditions z(k)(0) = ck ., k = 0, . . . , n−1.. 

The solution is the convolution of g with the right side of the above differential 

equation. 

2. For f ∈ Cm(R).with support in [0,∞[., T = g ∗Q(D)f + zs . is regular and for 

t > 0. agrees with the classical solution u of the initial value problem with the 

initial values u(k)(0−) = ck ., k = 0, . . . , n− 1.. 

Proof The differential equation has a unique solution in D + .. Substituting T into 

the equation shows the assertion, as for k = 1, . . . , n− 1. 

. (zs)(k) = z(k)s +
k−1 

p=0
cpδ

(k−1−p).

For f ∈ Cm(R). with support in [0,∞[., the classical solution of the initial value 
problem is u = g ∗Q(D)f + z.. It agrees for t > 0.with the regular distribution T . 

  

Example The solution of the initial value problem from the preceding Example 9.2 

on page 222 is x(t) =
Z

m
ts(t)+v0t+x0.. It is continuous, but as a result of the impact 

force at t = 0. it shows an abrupt change in velocity. The solution of the initial value 

problem in D + ., i.e., the modified differential equation mü = Zδ + m(x0δ̇ + v0δ). 

“with the past excluded” from t = 0. is T (t) =
Z

m
ts(t)+v0ts(t)+x0s(t), thus T =

xs . (see Figs. 9.7 and 9.8). 

The images show x(t). and T (t). form = 1 .kg, x0 = 2 .m, v0 = 0.4 .m/s,Z = 5 .Ns. 

The third example from page 222 will be dealt with in the next section. 

Fig. 9.7 Solution x(t). of 

Example 9.2, p.  222 

Fig. 9.8 Solution T (t). in D
 
+ .
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Remarks 

1. The differential equation in the first part of the last theorem for initial value 

problems in D + . is modified compared to P(D)u = Q(D)f . and goes back to 

Zemanian (2010), Schwartz (1957), and Shilov (1968). This equation directly 

includes the initial values, and their influence precisely yields the effect of the 

initial state on the solution for t > 0.. It does not matter how the initial state was 

“really” achieved (cf. also Example 9.2 in the next section). An advantage of this 

formulation for problems where only the solution from t0 = 0. is of interest is the 

following: The initial value problem is formulated in the convolution algebra 

D + ., and with the modified equation one can then solve such problems with 

distributional right-hand sides also with the Laplace transform often used by 

engineers, which operates precisely in D + .. See Schwartz (1966) or Zemanian 

(2010) for this. Under suitable additional conditions, which are often fulfilled 

in practical applications, the Fourier transform can also be used to solve the 

problem. We will address this in Sect. 12.7. 

2. In a similar way, initial value problems in half-spaces for partial differential 

equations with distributional right-hand sides can be treated. Interested readers 

are referred to Schwartz (1957), Shilov (1968), or Triebel (1986). 

3. The proofs of the last two theorems show that only sufficient smoothness of the 

right-hand side in a left-sided neighborhood of t0 = 0. is necessary to obtain 

the results. One can then also calculate the solution of the initial value problem 

for the half-line t < 0. with the help of the parameter transformation t → −t . 
similarly to the last theorem and also use the right-sided Laplace transform for 

this. For further details, refer to the previously cited literature. 

Theorem 9.9 For t < 0., the solution of the initial value problem with given initial 

values u(k)(0−) = ck (k = 0, . . . , n − 1). is the reflection u(t) = y(−t). of the 
solution y ∈ D + . of 

. P(−D)y = (Q(−D) qfr)s +
n 

k=1
(−1)kak

⎛
⎝

k−1 

p=0
(−1)pcpδ(k−1−p)

⎞
⎠ .

Here, qfr(t) = fr(−t)., f = fr + fg . are as in the theorem on p. 222. 

Proof Consider the causal fundamental solution g = vs . as on p. 217, qv(t) = v(−t)., 
and the solution z of P(D)u = 0.with initial values z(k)(0) = ck .. Then − qvs . is the 

causal fundamental solution of the reflected equation P(−D)y = δ . in D + .. The  

convolution of − qvs .with the right-hand side of the reflected equation 

.P(−D)y = (Q(−D) qfr)s +
n 

k=1
(−1)kak

⎛
⎝

k−1 

p=0
(−1)pcpδ(k−1−p)

⎞
⎠
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yields the reflection y ∈ D + . of the solution u of our initial value problem for 

t < 0.. Due to the regularity properties of v and fr ., the continuous convolutions  
−qvs ∗ (Q(−D)|fr)s

 (k)

. vanish for k = 0, . . . , n − 1. and t → 0+., while the 

convolution of (−qvs)(k) . with the singular term on the right-hand side matches 

(qzs)(k) ., i.e., converges to qz(k)(0) = (−1)kck . as t → 0+.. The reflection u of y . 

then yields the required initial values ck = u(k)(0−)., k = 0, . . . , n− 1..   

Example As illustration, consider the equation ü + u = ḟ . with initial conditions 

u(0−) = 0., u̇(0−) = 1., and f (t) = s(t + 1)− s(t)+ δ(t).. 

The causal fundamental solution is g(t) = v(t)s(t) = sin(t)s(t).. The initial 

value problem for t  0. in D + . with fg(t) = −s(t) + δ(t). is ẍ + x = δ̇ .. It has the 

unique causal solution x(t) = cos(t)s(t).. For t < 0., we proceed as in the theorem 

shown above: 

With qfr(t) = s(−t + 1)., P(λ) = λ2 + 1., Q(λ) = λ., and − qvs = g ., one solves the 

equation P(−D)y(t) = δ(t−1)− δ(t). as in the previous remark in D + . and obtains 

. y(t) = − sin(t)s(t)+ sin(t − 1)s(t − 1).

Thus, we have u(t) = x(t)+ qy(t). as the overall solution, which satisfies the initial 

conditions u(0−) = 0. and u̇(0−) = 1.: 

. u(t) = cos(t)s(t)+ sin(t)s(−t)− sin(t + 1)s(−t − 1) for t ∈ R.

Causal Linear First-Order Systems with Constant Coefficients 

We still consider initial value problems on the half-line t  0. for linear first-order 

systems of the form 

. Ẋ = AX + F

with a constant (n×n).-matrix A and vector distributions X and F . The components 

of F are assumed to have support in [0,∞[.. We use the following notation: 

Definition For (n × n). matrices G with components gkm ∈ D + . and vector 

distributions F with n components fm ∈ D + ., i.e., F ∈ D +
n
., the convolution 

G ∗ F = (ck)1 k n . is defined by 

.ck =
n 

m=1
gkm ∗ fm.
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One easily verifies that for the componentwise generalized derivative (G ∗ F) ., 
as in the one-dimensional case, (G ∗ F) = G ∗ F = G ∗ F  . holds. For constant 
matrices A, G, and B as above, and a vector distribution F , we have  (AG+B)∗F =
A(G ∗ F)+ B ∗ F.. 

With the well-known fundamental matrix eAt
. of the system, we can now 

formulate the following theorem, where s is again the unit step function: 

Theorem 9.10 

1. The system Ẋ = AX + F . has the uniquely determined causal solution 

. U = G ∗ F

for F ∈ D +
n
.with G(t) = eAt s(t).. 

2. For F ∈ D +
n
. and a given vector x0 ∈ R

n
., the vector distribution T , defined by 

T = G∗(F +x0δ) = G∗F +Gx0 ., is the uniquely determined causal solution of 

. Ẋ = AX + F + x0 δ.

For continuous disturbances F , T is regular, and for t > 0., it coincides with the 

classical solution X of the initial value problem Ẋ = AX + F ., X(0) = x0.. 

. X(t) = eAt x0 +
t
ˆ

0

eA(t−τ) F(τ)dτ.

Proof 

1. With the identity matrix E, it follows from 

. U̇ = Ġ ∗ F = (AG+ Eδ) ∗ F = AU + F ,

that U = G ∗ F . is a solution. U is causal, and thus uniquely determined. 

2. For the distribution T = G ∗ F +Gx0 ., 

. Ṫ = Ġ ∗ F + Ġx0

= (AG+ Eδ) ∗ F + (AG+ Eδ)x0

= AT + F + x0δ.

Thus, T is the uniquely determined causal solution of the posed problem. With 

continuous F , T is also regular, continuous, and obviously for t > 0., it coincides 

with the known classical solution X of the initial value problem with X(0) = x0 ..
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Remarks 

1. What entries are in the matrix eAt
.? 

The matrix eAt s(t). here plays the role that the causal fundamental solution had 

in the one-dimensional case. The k-th column of eAt s(t). shows the response of 

all state variables to a δ .-disturbance of the state variables xk .. The response of 

the system to the disturbance F = 1nδ . is eAt 1ns(t). with the vector 1n ., whose 

components are all one. It describes the reaction of each component of the state 

vector X to simultaneous δ .-disturbances of these components. 

The elements of the matrix eAt
. are therefore linear combinations of functions 

of the form tm sin(αt) eβt . and tn cos(γ t) eλt .with m, n ∈ N0 . and α, β, γ, λ ∈ R., 

depending on the roots of the characteristic polynomial of the matrix A. 

2. The equation Ẋ = AX + F + x0δ . is the adequate mathematical formulation 

for an initial value problem that one wants to solve in D + × · · · × D + .. For  the  

explicit determination of the fundamental matrix eAt
., one can work well with 

a computer algebra system or with the Laplace transform already mentioned 

for small matrices in simple application examples. An analysis of numerical 

algorithms for the computation of eAt
. for larger matrices A can be found in 

the recommendable work of Moler and Van Loan (2003). 

The Malgrange-Ehrenpreis Theorem 

The method of fundamental solutions remains valid for linear partial differential 

equations with constant coefficients (see p. 196). The existence of fundamental 

solutions is guaranteed by the theorem of B. Malgrange (1956) and Ehrenpreis 

(1954). Interested readers can find proofs of this important result on the solvability 

of linear differential equations, for example, in Hörmander (2003) or W. Rudin 

(1991). In Chap. 12, we follow a proof as an application of the Fourier transform, 

which is based on the work of Ortner and Wagner (1994), and Wagner (2009), 

providing an explicit formula for the representation of fundamental solutions. 

9.3 Application to Linear Electrical Networks 

We test the method of fundamental solutions on four simple application examples 

for electrical networks. The analysis of the behavior of such oscillating circuits 

under different excitations is part of the basic education in a physics degree and, 

of course, in electrical engineering. 

Example 9.1 Given is the following “RL-network” with electrical resistance R and 

inductance L (Fig. 9.9):
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Fig. 9.9 Schematic RL 

circuit 

For U(t) =
 
0 for t < 0

U0 sin(ωt) for t  0
. the current I (t). with I (t) = 0. for t < 0. is 

sought from the corresponding differential equation 

. L
dI (t)

dt
+ RI (t) = U(t).

The causal impulse response is given by 

. h(t) =
1

L
e−(R/L)t s(t) , s(t) the unit step function ,

because 

. Lḣ(t)+ Rh(t) = −
R

L
e−(R/L)t s(t)+ e−(R/L)t δ(t)+

R

L
e−(R/L)t s(t) = δ(t).

The solution I (t). follows from this immediately through the convolution of the 

regular distributions h(t). andU(t).. Both distributions have their supports in [0,∞[.. 
For t  0. it is 

. I (t) = (h ∗ U)(t) =
t
ˆ

0

h(t − τ)U(τ)dτ .

Carrying out the integration yields for t  0., I (t) = 0. for t < 0. 

. I (t) =
U0

R2 + (ωL)2
(R sin(ωt)− ωL cos(ωt))

    
stationary

part

+
U0ωL

R2 + (ωL)2
e−(R/L)t

    
decaying

transient

.

Example 9.2 (Schematic Highpass Filter) In the highpass filter of Example 9.3 

on p. 222 assume the input voltage to be Ue(t) = U0 − U0s(t).. The circuit is 

described with a charged capacitor by the initial value problem 

.U̇a +
1

RC
Ua = −U0δ and Ua(0−) = 0.
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The general solutionUH (t).of the corresponding homogeneous differential equation 

is 

. UH (t) = K e−t/(RC), (K ∈ Rarbitrary).

As a causal fundamental solution, we obtain 

. g(t) = e−t/(RC) s(t).

The corresponding impulse response h is determined with the differential oper-

ator d
dt

. on the right side of the output equation by differentiating the fundamental 

solution g: 

. h(t) = ġ(t) = δ(t)−
1

RC
e−t/(RC) s(t).

For the input voltage Ue(t) = U0s(−t)., the solution is 

. Ua(t) = −U0(g ∗ δ)(t) = −U0 e
−t/(RC) s(t).

If the excitation is a (ideal) voltage pulse Ue(t) = U0R1C1δ(t).with the impulse 

strength U0R1C1 . in the physical unit Vs (cf. p. 163), produced, for example, with 

an (ideal) upstream differentiator, and Ua(0−) = 0., then the output voltage Ua . for 

this input impulse is obtained by convolving with the causal impulse response h: 

. Ua(t) = h(t) ∗ U0R1C1δ(t) = U0R1C1δ(t)−
U0R1C1

RC
e−t/(RC) s(t).

Example 9.3 Given is the depicted RLC circuit with resistance R, capacitance C, 

and inductance L (Fig. 9.10). 

The differential equation 

. Üa +
2
√
LC

U̇a +
1

LC
Ua = U1δ̇ and Ua(0−) = U0 , U̇a(0−) = 0

describes the circuit under critical damping (R2=4L/C .) with input voltage Ue(t) =
U1s(t). and given initial values. The solution is the voltage at the inductance. 

The causal fundamental solution is 

Fig. 9.10 Schematic RLC 

circuit
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. g(t) = t e−t/
√
LC s(t).

The solution according to our theorem from p. 222 is 

. Ua(t) = g ∗ (U1δ̇)+ z,

. Ua(t) =
 
U1 −

U1t√
LC

 
e−t/

√
LC s(t)+

 
U0 +

U0t√
LC

 
e−t/

√
LC .

It satisfies Ua(0−) = U0 . and Ua(0+) = U0+U1..For large negative values t , Ua(t). 

certainly does not represent a realistic voltage, and in general, the “real” voltage 

characteristic over the entire past t < 0. remains probably unknown. Therefore, we 

consider the initial value problem only on the half-line t  0., and disregarding the 

past we obtain the solution T ∈ D + .with the distributional equation 

. T̈ +
2
√
LC

Ṫ +
1

LC
T = U1δ̇ +

2U0√
LC

δ + U0δ̇

from the theorem on p. 223, namely T = Uas,. 

. T (t) =
 
U0 + U1 +

(U0 − U1)t√
LC

 
e−t/

√
LC s(t).

Example 9.4 We consider the sketched block diagram of adders, integrators, and 

multipliers in Fig. 9.11. Its components (operational amplifiers, resistors, capacitors) 

can be realized in such a way that for voltage inputs f , all occurring state variables 

x0, . . . xm−1 . and ẋ0, . . . ẋm−1 . are again voltages. We will see later that a large class 

of linear transmission systems, possessing a specified frequency response, can be 

constructed in this way (Sect. 11.2). 

Fig. 9.11 Block diagram for a realization of a first-order system
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The state description of this network by a first-order system with vanishing initial 

values is 

. ̇x(t) = Ax(t)+ cf (t)

with x(t) = (x0(t), x1(t), . . . , xm−1(t))T ., c = (c0, c1, . . . , cm−1)T . and 

. A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · · · · −α0
1 0 · · · · · · −α1

1
. . .

.... . .
. . .

.... . .
. . .

...

0 1 0 −αm−2
1 −αm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To calculate concretely, we choose 

. m = 3, c0 = Ω3, c1 = c2 = 0, α0 = Ω3, α1 = 2Ω2, α2 = 2Ω.

Later in Sect. 11.2 it will be shown that this describes a Butterworth lowpass filter 

of order 3 with cutoff frequency Ω/(2π).. A representation of the corresponding 

frequency response can be found on p. 335. 

We choose as the input signal a voltage pulse f = kδ . (k in the unit Vs) and ask, 

for example, for the output voltage x2(t) = v(t) ∈ D + . as the corresponding impulse 

response. The state description then reads: 

. 

⎛
⎝
ẋ0

ẋ1

ẋ2

⎞
⎠ =

⎛
⎝
0 0 − Ω3

1 0 −2Ω2

0 1 −2Ω

⎞
⎠

⎛
⎝
x0

x1

x2

⎞
⎠+

⎛
⎝
kΩ3δ

0

0

⎞
⎠ .

Usually, it is quite tedious to calculate the fundamental matrix eAt
.. As already 

mentioned, the Laplace transform or computer algebra systems like Mathematica, 

Maple, or Matlab offer good support in this process. In the present case, the required 

component g31 . of G(t) = eAt s(t). results in: 

. g31(t)=
1

3Ω2

 
3 e−Ωt−3 e−Ωt/2 cos

 √
3Ωt

2

 
+
√
3 e−Ωt/2 sin

 √
3Ωt

2

  
s(t).

The desired output voltage for the input signal kδ . with k = 1. Vs, i.e., the causal 

impulse response of the given Butterworth filter, is then x2(t) = k Ω3g31(t).. 

Readers are encouraged to determine the complete matrix eAt
. as an exercise 

using the methods of linear algebra (e.g., with support of a suitable computer algebra 

system).
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9.4 3D Potential Problems 

We will now begin with applications of distribution methods to spatial problems. 

It is assumed that readers have already studied functions with several variables 

in their basic mathematics courses and can use the most important theorems of 

vector analysis, particularly Gauss’s divergence theorem and Green’s formulas. 

These theorems are also collected in Appendix B. 

In many physical problems, the task is to calculate a force field from its 

divergences and vortices. Such tasks can often be formulated as potential problems. 

For example, if a spatially bounded charge distribution in a vacuum is given by the 

charge density  ., the fact that the charges are the sources or sinks of the generated 

electric field has been described by J. C. Maxwell (1831–1879) through the equation 

divE =  /ε0 ., where ε0 . denotes the electric field constant. With E = − grad u., the  

electrostatic field E. in space can be calculated from a solution u of the potential 

equation: 

. div grad u = Δu = −
 

ε0
.

In Cartesian coordinates, the Laplace operator is given by Δ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.. 

A solution u is a Coulomb potential corresponding to  .. For u : R3 → R. and 

E = (E1, E2, E3).with scalar components E1, E2 ., and E3 ., we have  

. grad u =
 
∂u

∂x
,
∂u

∂y
,
∂u

∂z

 
and divE =

∂E1

∂x
+

∂E2

∂y
+

∂E3

∂z
.

Similarly, in the case of a stationary E. field and a given current density j., 

Maxwell’s equations rotB = μ0j. and divB = 0. for the generated magnetic vortex 

field in a vacuum with B = rotA. can be transformed into an equation for the vector 

potential A.: 

. − rot rotA = ΔA = −μ0j.

ForA = (A1, A2, A3).,ΔA = (ΔA1,ΔA2,ΔA3)., μ0 . is the magnetic field constant, 

and 

. rotA =
 
∂A3

∂y
−

∂A2

∂z
,
∂A1

∂z
−

∂A3

∂x
,
∂A2

∂x
−

∂A1

∂y

 
.

Corresponding potential problems arise when calculating gravitational fields from 

given mass distributions or in the mechanics of fluids and gases. 

Since all the concepts and results from the previous sections can be translated 

to functions with more than one variable (see Sect. 8.7), one can use the funda-

mental solution method to solve partial linear differential equations with constant 

coefficients. We calculate, as an example, a potential u generated by an electric
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charge distribution in a bounded spatial region. We treat the charge density  . as a 

distribution with bounded support. The corresponding partial differential equation is 

. Δu = −
 

ε0
.

First, we verify that the function g(x, y, z) = 1√
x2+y2+z2

= 1
r
. provides a funda-

mental solution. Here, r2 = |r|2 = x2 + y2 + z2 . for r = (x, y, z)., and the function 

g is considered as a regular distribution (see page 189): 

1. Δg(x, y, z)  = 0. in any region that does not include the origin. The reader should 

verify this through appropriate differentiation. 

2. For test functions ϕ = ϕ(x, y, z) = ϕ(r)., we have  

.  Δg, ϕ =  g,Δϕ 

=
ˆ ˆ ˆ

R3

g(x, y, z)Δϕ(x, y, z)dxdydz

= lim
ε→0

ˆ ˆ ˆ

r ε>0

g(x, y, z)Δϕ(x, y, z)dxdydz.

We use Green’s second formula from vector analysis (see Appendix B on page 

499): 

. 

ˆ

G

(gΔϕ − ϕΔg)dλ3 =
ˆ

∂G

(ggradϕ − ϕgradg) · ndo,

where n. denotes the unit outward normal, dλ3 . is the volume element, do. is the 

surface element, i.e., the surface measure on the boundary ∂G. of G, and G is the 

spherical shell 

. G = {r ∈ R
3 | 0 < ε  |r|  a}.

The outer radius a is chosen such that for r = |r|  a . the test function ϕ(r). 

vanishes: 

. ϕ(x, y, z) = 0 for

 
x2 + y2 + z2  a.

Then, with Δg = 0. for r  ε . and the directional derivative
dϕ
dn
= gradϕ · n :. 

.

ˆ

r ε

gΔϕdλ3 =
ˆ

r=ε

g
dϕ

dn
do−

ˆ

r=ε

ϕ
dg

dn
do.
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Now, g(r) = 1
ε
. for all r.with |r| = ε .. From the boundedness of 

dϕ
dn

., it follows:  

. 

    
ˆ

r=ε

g
dϕ

dn
do

    =
1

ε

    
ˆ

r=ε

dϕ

dn
do

     
1

ε
· 4πε2 ·K for suitable K ∈ R.

Hence, for ε→ 0., the first surface integral on the right-hand side vanishes: 

. lim
ε→0

ˆ

r=ε

g
dϕ

dn
do = 0.

Because on the inner sphere r = ε ., the normal vector n. points toward the origin, 

we there have 

. 
dg

dn
(r) =

1

ε2
.

Consequently, for the second surface integral, we get: 

. −
ˆ

r=ε

ϕ
dg

dn
do = −

1

ε2

ˆ

r=ε

ϕdo = −4πMε(ϕ).

Here, Mε(ϕ). denotes the mean value of ϕ . on the sphere with radius ε .: 

. Mε(ϕ) =
1

4πε2

ˆ

r=ε

ϕdo.

For ε→ 0., Mε(ϕ) −→
ε→0

ϕ(0)., and thus, we obtain: 

.  Δg, ϕ = lim
ε→0

ˆ

r ε

Δϕ

r
dλ3 = −4πϕ(0) = −4π δ, ϕ .

Theorem 9.11 (Coulomb Potential) The function −
1

4π
g(r) = −

1

4πr
. is a fun-

damental solution of the potential equation in R3
.. By convolution, a particular 

solution for the equation Δu = −
 

ε0
. is obtained as follows: 

.u =
 

ε0
∗

1

4πr
. (9.4) 

Here,  . can be any distribution with bounded support. For regular charge densities 

 ., this is the Poisson integral formula in R3
.
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. u(x, y, z) =
1

4πε0

ˆ ˆ ˆ

R3

 (u, v,w) 
(x − u)2 + (y − v)2 + (z− w)2

dudvdw.

Two Coulomb potentials of the same charge distribution  . differ at most by a 

constant due to the relationship ∇ · E =  /ε0 . for the electric field strength. 

The regular distribution q/(4πε0r). is the potential of a charge q at the origin, 

which vanishes at infinity. Accordingly, q/(4πε0(r − r0)). is the contribution to 

the potential at the point r. by such a charge at the point r0 .. Through the above 

convolution integral with the charge density  (r)., the contributions of all points 

in space to the total potential are summed. For “simple” charge densities  ., the  

potential u can be directly calculated from the Poisson convolution integral. 

Examples 

1. In space, let there be a thin rod S = { (x, y, z) ∈ R
3 : x = y = 0, |z|  

l}. of length 2l with homogeneous mass density  0 . (with the unit kg/m) given. 

We describe this spatial mass distribution with the indicator function 1[−l,l](z). 
through the distributional tensor product (see p. 191) 

.  (x, y, z) = δ(x)⊗ δ(y)⊗  01[−l,l](z).

From the potential equation Δu = 4πγ . with the gravitational constant γ ., the  

gravitational potential vanishing at infinity follows 

. u = −γ  ∗
1

r
.

For (x, y, z)  ∈ S ., the potential u is obtained through integration: 

. u(x, y, z) = −γ  0
l
ˆ

−l

1 
x2 + y2 + (z− w)2

dw

= −γ  0 ln
 
2

 
x2 + y2 + (z− w)2 + 2w − 2z

     
w=+l

w=−l

= −γ  0 ln
  

x2 + y2 + (z− l)2 + l − z 
x2 + y2 + (z+ l)2 − l − z

 
.

With F = − grad u. one then finds the corresponding gravitational field F..
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Fig. 9.12 Equipotential 

surface of two charges q and 

− 2q . in the half-space y > 0. 

Fig. 9.13 Illustration of the 

interior and the exterior 

Dirichlet problem 

2. If σ . is a regular surface charge density on the surface of the sphere with radius 

R around the origin, denoted by the singular distribution  (x) = σ(x)δ(|x| −R). 

(see p. 189), then from u =  ∗ 1/(4πε0r)., one obtains Coulomb’s formula for 
the potential vanishing at infinity 

. u(x0) =
1

4πε0

ˆ

|x|=R

σ(x)

|x− x0|
do(x) .

3. Figure 9.12 illustrates an equipotential surface of the Coulomb field generated 

by two charges q and − 2q . in the half-space y > 0.: 

Approaches for Solving Boundary Value Problems 

Poisson’s formula can be used for potential computation when a known charge 

distribution is available. However, many problems in electrostatics are of the form 

where the potential u is given on certain surfaces without knowing the generating 

charge distribution, or where, given a charge distribution in a region, the values of 

the potential on the boundary of the region are additionally prescribed. Two typical 

associated boundary value problems are (cf. Fig. 9.13): 

1. The interior Dirichlet problem: For a bounded region B with boundary ∂B ., a  

distribution v with supp (v) ⊂ B . and a function f on ∂B . are given. Determine 

u such that
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. Δu = v in B and u = f on ∂B.

2. The exterior Dirichlet problem: For a bounded region K with boundary ∂K ., a  

distribution v with supp (v) ⊂ R
3 \ (K ∪ ∂K). and a function f on ∂K . are given. 

Determine u such that 

. Δu = v in R3 \ (K ∪ ∂K) and u = f on ∂K.

Examples of the first type include the question of the potential of an electric charge 

distribution  = −vε0 . within an electrically shielded area (i.e., f = 0.) or the  

question of the steady-state temperature distribution (v = 0.) in a body B with 

a time-constant boundary temperature distribution f . An example of an exterior 

Dirichlet problem is the question of the potential u that results when a grounded 

electrical conductor (i.e., f = 0.) is in the electric field of a charge  .. 

The analytical solution of such boundary value problems generally requires a 

considerable amount of mathematical effort and additional smoothness properties 

of the data ∂B ., ∂K ., v, and f . To get a general impression of a classical solution 

method, we consider the boundary value problems under simplifying assumptions: 

For x0 ∈ R
3
. we set g(x, x0) = 1/(4π |x − x0|).. Then it holds that Δxg = 0. in 

R
3 \ {x0}.. Δx .means that the Laplace operator is to be applied to the variable x.. As  

region B we consider B = {x ∈ R
3 | 0  r < |x| < R}., i.e., a sphere or a spherical 

shell. K is the sphere around the origin with radius r . If x0 ∈ B ., then let the set 

Bε(x0) ⊂ B . denote a small closed sphere with radius ε . around this singularity x0 . 

of g (see Fig. 9.14). 

For a sufficiently smooth function u on B, Green’s second formula holds, and 

since Δxg = 0. in B \ {x0}., it follows with the outward normal vectors n. of ∂B . 

respectively ∂Bε(x0). 

. 

ˆ

B\Bε(x0)

g(x, x0)Δu(x) dλ3 (x) =
´

∂B

 
g(x, x0)

du

dn
(x)− u(x)

dg

dn
(x, x0)

 
do(x)

−
´

∂Bεx0)

 
g(x, x0)

du

dn
(x)− u(x)

dg

dn
(x, x0)

 
do(x).

Fig. 9.14 Illustration with a 

small sphere around a 

singularity x0 .
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On p. 235 we showed that the second surface integral converges to u(x0). for ε→ 0.. 

Thus, it follows that 

. u(x0)=
ˆ

∂B

 
g(x, x0)

du

dn
(x)− u(x)

dg

dn
(x, x0)

 
do(x)−

ˆ

B

g(x, x0)Δu(x) dλ3(x) .

(9.5) 

The value of a sufficiently smooth solution u of the interior Dirichlet problem at 

a “starting point” x0 ∈ B . is thus determined by the values of the inhomogeneity 

Δu. in B and by the values of the potential u and its normal derivative (from the 

inside) on the boundary ∂B .. The potential u and therefore also its normal derivative 

are already uniquely determined by specifying Δu. in B and u on the boundary ∂B .: 

If u1 . and u2 . are two (sufficiently smooth) solutions, then ϕ = u1 − u2 . satisfies the 

equationsΔϕ = 0. in B and ϕ = 0. on ∂B .. Substituting into the Green’s first formula 

(p. 499) shows  

. 

ˆ

B

(ϕΔϕ + gradϕ · gradϕ) dλ3 =
ˆ

∂B

ϕ
dϕ

dn
do ,

and thus because Δϕ = 0., 

. 

ˆ

B

gradϕ · gradϕ dλ3 = 0,

i.e., gradϕ = 0.. Then ϕ . is constant, and from the boundary values, it follows ϕ = 0., 

u1 = u2 . everywhere. 

If it is possible, in the above representation formula (9.5) for all x0 ∈ B ., 

to replace the function g(x, x0). by a function G(x, x0)., which still satisfies 

ΔxG(x, x0) = 0. for all x. in B \ {x0}. and also vanishes on the boundary of B and 

leaves the volume integral unchanged, then it follows from (9.5) the following: 

Approach to the Solution u. of the Interior Dirichlet Problem at a Point 

x0 ∈ B. 

.u(x0) = −
ˆ

∂B

f (x)
dG

dn
(x, x0) do(x)−

ˆ

B

v(x)G(x, x0) dλ
3(x) . (9.6) 

The desired function G is called Green’s function. It is defined by 

.G(x, x0) =
1

4π |x− x0|
+ F(x, x0) (x  = x0, x0 ∈ B, x ∈ B ∪ ∂B).
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According to the above considerations, the following properties are imposed on F : 

1. For each x0 ∈ B ., F(x, x0). as a function of x. is twice continuously differentiable 

in B with first partial derivatives that can be continuously extended to the 

boundary ∂B .. For each x0 ∈ B ., F is harmonic in B, i.e., for all x, x0 . in B, it 

holds that ΔxF(x, x0) = 0.. 

2. For each x0 ∈ B . and each x ∈ ∂B ., it holds that F(x, x0) = − 1
4π |x−x0| .. 

Analogous to the uniqueness proof for the solution u, it can be seen that there is 

at most one function F with the required properties, i.e., if there exists a Green’s 

function G at all, then it is uniquely determined. 

The part g(x, x0) = 1/(4π |x − x0|). of Green’s function G is up to a factor 

a potential of a point charge at the location x0 . in B. The  physical meaning of 

F(x, x0). is therefore, because ΔxF(x, x0) = 0. for x ∈ B ., the potential of a charge 

distribution outside the region B. The size and location of this external charge 

distribution must be such that the superposition of its potential with that of the point 

charge at x0 . is zero on the boundary ∂B .. This consideration forms the basis of the 

method of image charges, which can be used to find Green’s function G for simple 

regions such as spheres. Before we compute an example, let us turn to the exterior 

Dirichlet problem for the sphere K (see Fig. 9.13 on p. 237): 

Coulomb potentials u, generated by spatially bounded, continuous charge dis-

tributions  . and vanishing at infinity, decay according to Poisson’s formula for 

|x| → ∞. like 1/|x|., their normal derivatives on spherical surfaces |x| = R . for 

R → ∞. like 1/R2
.: If α > 0. is large enough so that the existing total charge lies 

within the sphere around the origin with radius α ., then for all β .with 0 < β < 1. and 

x.with |x|  α/β ., the inequality 1−α/|x|  1−β . holds and thus (see Fig. 9.15 for 

illustration) 

. |u(x)| =
    

1

4πε0

ˆ

|y| α

 (y)

|x− y|
dλ3(y)

     
1

4πε0

ˆ

|y| α

| (y)|
|x− α

|x|x|
dλ3(y)

=
1

4πε0(1− α
|x| )|x|

ˆ

|y| α

| (y)| dλ3(y)

 
1

4πε0(1− β)|x|

ˆ

|y| α

| (y)| dλ3(y) .

Accordingly, one shows that for u the normal derivative on spherical surfaces 

|x| = R . decays for R→∞. uniformly in all directions like 1/R2
. (exercise). 

We now notice in Green’s formula (9.5) on p.  239, that under the above 

assumptions on u at a spherical shell B = {x ∈ R
3 | r < |x| < R}. the surface 

integral over the outer surface |x| = R . for R → ∞. vanishes: The integrand 

decays for R → ∞. like 1/R3
., while the sphere surface grows like R2

.. Also, the 

volume integral in (9.5) remains bounded, if spatially bounded, continuous charge



9.4 3D Potential Problems 241

Fig. 9.15 Illustration for the 

estimation of |u|. 

densities  . are present. Following the same considerations as in the inner Dirichlet 

problem, formula (9.6) under the above physically motivated assumptions about 

the solution u also provides an approach for the outer Dirichlet problem at a point 

x0  ∈ K ∪ ∂K .. 

Approach for the Outer Dirichlet Problem at a Point x0  ∈ K ∪ ∂K. 

.u(x0) = −
ˆ

|x|=r

f (x)
dG

dn
(x, x0) do(x)−

ˆ

|x|>r

v(x)G(x, x0) dλ
3(x) (9.7) 

for |x0| > r . with the inward normal n. to the spherical surface |x| = r . and Green’s 

function G for the sphere K around the origin with radius r . 

Since δ .-distributions can be approximated by smooth functions (cf. p. 201), 

formula (9.6) can also be used if the charge density  . represents a point charge 

qδ(x− x1).. With boundary values f on the spherical surface |x| = r ., |x1| > r ., and 

v(x) = −qδ(x− x1)/ε0 ., the approach for the potential at a point x0  = x1 ., |x0| > r . 

using the inward normal n. to the spherical surface is 

.u(x0) =
q

ε0
G(x1, x0) −

ˆ

|x|=r

f (x)
dG

dn
(x, x0) do(x) . (9.8) 

Example (The Grounded, Conductive Sphere in the Field of a Point Charge) 

Given is an electrically conductive sphere K around the origin with radius r . It is at  

ground potential u = 0.. Outside this sphere, there is a point charge q at the point 

x1 ., |x1| > r .. The corresponding outer Dirichlet problem reads as: 

The potential u vanishing at infinity is sought such that 

. 
Δu(x) = − q

ε0
δ(x− x1) for |x| > r, x  = x1,

u(x) = 0 for |x| = r.

According to the method of image charges, an approach is made for Green’s 

function G with a second charge q  . inside the sphere K . The location x2 . and 

magnitude of q  . are to be determined such that G(x, x0) = 0. for all x. and x0 . with
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Fig. 9.16 Illustration for x1 . and its mirror point x2 . 

|x0| > r . and |x| = r .. Using  (9.8), the approach for the Coulomb potential vanishing 

at infinity of the two point charges q and q  . at a point x0  = x1 . is 

. u(x0) =
q

ε0
G(x1, x0) =

q

4πε0|x0 − x1|
+

q  

4πε0|x0 − x2|
.

The boundary condition is satisfied if x2 . is the mirror point of x1 . at ∂K ., i.e., if 

x2 = r2x1/|x1|2 ., and if q  = −rq/|x1|. (cf. Fig. 9.16 left). 
For arbitrary boundary points x = rn0 ., |n0| = 1., it holds (see Fig. 9.16 right) 

. 
q  

|rn0 − x2|
= −

q

| |x1|n0 − r
|x1|x1 |

= −
q

|rn0 − x1|
and thus u(x) = 0.

By substituting into the problem formulation, it is verified that the potential 

. u(x) =
q

4πε0

⎛
⎝ 1

|x− x1|
−

r

|x1| |x− r2

|x1|2
x1 |

⎞
⎠

is the unique solution to the given boundary value problem. Green’s functionG(x, y). 

is symmetric in x. and y. (calculation exercise with the cosine rule for triangles) and 

in this example reads in the complement of the sphere as 

. G(x, y) =
1

4π

⎛
⎝ 1

|x− y|
−

r

|y| |x− r2

|y|2 y |

⎞
⎠ .

The presented method can be translated to all domains for which Gauss’s 

divergence theorem applies (see p. 499). In mathematical potential theory, it is 

shown under which—as minimal as possible—conditions on the data ∂B ., v, and 

f the approaches with the formulas (9.6) and (9.7) actually yield solutions to 

the given boundary value problems. For more complicated domains than spheres, 

however, it is generally difficult to determine Green’s functions or to calculate 

the occurring convolution integrals. Therefore, other solution methods are also 

of great importance. Mentioned here are methods from the calculus of variations
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and functional analysis, or for problems in the plane, the methods of function 

theory. In the specified literature—one might study the textbooks by Courant and 

Hilbert (1993), Cassel (2013) et al.—one finds, in addition to the further theoretical 

treatment of boundary value problems, also concrete applications of the approaches 

dealt with here to questions of mathematical physics and electrical engineering. 

For practical problems, numerical methods for approximate solutions are very 

important. The Finite Element Method has gained particular significance, the basic 

idea of which is to be explained in the next section against the background of 

distributional viewpoints. The following pages should therefore be understood as an 

invitation to learn these indispensable methods in engineering mathematics through 

further literature. 

9.5 The Basic Idea of Finite Elements 

The method of finite elements goes back to techniques used in 1908 by W. Ritz, 

1915, by B. Galerkin, and 1943 by R. Courant for solving variational problems. It 

has been developed in the engineering disciplines since the 1950s with the use of 

electronic computing devices into a standard tool, for example, for solving elasticity 

problems of deformable bodies with complicated geometry or problems in fluid 

mechanics. Systematic presentations of this method can be found, for example, in 

Dautray and Lions (1992) or Braess (1992). A first insight will be elaborated using 

a boundary value problem for the Poisson equation as an example. 

Example (Equilibrium State of a Loaded Membrane) Consider a bounded 

domain Ω . in the plane with a piecewise linear boundary ∂Ω ., where an elastic 

membrane is fixed. Under the influence of an external force acting perpendicular 

to the plane, the membrane deflects (Fig. 9.17). The tension due to the fixing is 

isotropic, so it is described by a scalar quantity k (with the dimension N/m). If 

f denotes the surface density of the force, then for small displacements u in the 

equilibrium state 

.− kΔu = f in Ω, u = 0 on ∂Ω. (9.9) 

Fig. 9.17 L-shaped 

membrane under external 

force
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Here, Δ. denotes the Laplace operator. Thus, the equilibrium position is the solution 

of a Dirichlet boundary value problem (see also the previous section). The following 

considerations can also be translated to electrical potential problems or stationary 

heat conduction problems. A derivation of the above fact from Hooke’s law can be 

found in works such as Courant and Hilbert (1993) et al.  

If the boundary ∂Ω . has a complicated shape, it will not be possible to calculate a 

solution using the classical analytical methods discussed so far. However, a practical 

solution approach is opened up by distributional considerations. 

The equation −kΔu = f . is interpreted as an equation between distributions, i.e., 

one seeks a distribution u, so that using Cartesian coordinates for all test functions 

ϕ ∈ D(Ω). it holds 

.− k Δu, ϕ = k

ˆ

Ω

grad u(x, y) · gradϕ(x, y) dx dy =  f, ϕ . (9.10) 

The equality with the middle expression in (9.10) follows from the definition of the 

generalized derivatives of u (cf. p. 188). Since one now has to solve a boundary 

value problem, one seeks a distribution solution u that is regular and also allows for 

speaking about boundary values u = 0. of this distribution u on ∂Ω .. 

According to S. L. Sobolev (1908–1989), one seeks the solution u among those 

functions v that are square-integrable along with their partial generalized derivatives 

on Ω . and vanish on the boundary ∂Ω .. The set of all such functions v forms a 

function vector space V over R., which is denoted as V = H 1
0 .. 

Even for complicated domains whose boundary has only minimal regularity 

properties, this vector space can be introduced in such a way that it is possible to 

meaningfully speak of boundary values of its elements. This is assumed for Ω . and 

V in the following.1 It holds that D(Ω) ⊂ V = H 1
0 ⊂ D (Ω)., and two functions 

in V are identified if they differ only on a null set. The space V is an example of 

a function vector space called a Sobolev space. More generally, Sobolev spaces are 

vector spaces of regular distributions of D (Ω). whose partial derivatives up to a 

certain order are also regular. Details about Sobolev spaces and their applications 

in partial differential equations can be found, for example, in Dautray and Lions 

(1992), Triebel (1986), or Atkinson and Han (2005). The needed properties of 

V = H 1
0 . in the following are to be found in Appendix B. 

A look at the second equation in (9.10) shows that the test functions ϕ . fromD(Ω). 

in (9.10) can be replaced by functions of V , because the product of two square-

integrable functions is integrable again. The basis for statements on the solvability 

of problem (9.10) and also for the construction of numerical approximate solutions 

in V using the finite element method is then the following reformulation of the 

problem:

1 Mathematically precise: Ω . is a bounded Lipschitz domain (see Appendix B, p.  502). Simplified: 

Consider the domain as the L-shaped figure or the figures on pp. 265 and 432. 
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The force density f is square-integrable on Ω ., and V is the above-described Sobolev 

space. We seek a function u ∈ V ., such that for all v ∈ V . the following holds: 

. a(u, v) = l(v) (9.11)

with a(u, v) = k

ˆ

Ω

grad u · grad v dx dy = k

ˆ

Ω

 
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

 
dx dy

l(v) =  f, v =
ˆ

Ω

f (x, y)v(x, y) dx dy .

Due to the assumptions, a(u, v). and l(v). are well defined for all u, v ∈ V .. The  

derivatives involved are to be understood as generalized derivatives. The boundary 

condition is included in the problem formulation by seeking the solution u in the 

vector space V , whose elements are functions that vanish on the boundary ∂Ω .. The  

solution u is—if it exists—to be understood as a distributional solution of (9.9) and 

is also called a weak solution. 

Potential Energy and Energy Functional of the Membrane 

The current task (9.11) is closely related to the physical consideration that the 

equilibrium state of the membrane adjusts so that the total potential energy is 

minimal. 

Assuming a linear elastic material behavior according to Hooke’s law, the 

deformation energy is proportional to the change in area. The total potential energy 

E(v). of the membrane is then given for a displacement v by 

. E(v) = k

 
ˆ

Ω

(1+| grad v(x, y)|2)1/2 dx dy−
ˆ

Ω

dx dy

 
−
ˆ

Ω

f (x, y)v(x, y) dx dy .

For small displacements, one obtains with 

. (1+ | grad v(x, y)|2)1/2 − 1 ≈
1

2
| grad v(x, y)|2

the approximation 

. E(v) ≈ J (v) =
k

2

ˆ

Ω

| grad v(x, y)|2 dx dy −
ˆ

Ω

f (x, y)v(x, y) dx dy .

J is called the energy functional of the membrane. If there is a function u for which 

J (u). is minimal, then u approximately describes the equilibrium position of the 

membrane.
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We note that J (v). can be written in the form 

. J (v) =
1

2
a(v, v)− l(v)

with a and l as above in (9.11). The connection of the posed boundary value problem 

with the variational problem of minimizing the functional J is established by the 

following version of a theorem by P. Lax and A. Milgram (see, for example, Dautray 

and Lions (1992)). The theorem shows that both problems have a common solution 

in the Sobolev space V . 

Theorem 9.12 (Theorem of Lax-Milgram) 

1. For a function u ∈ V ., the equation a(u, v) = l(v). holds for all v ∈ V . if and only 

if J (u) = inf{J (v)|v ∈ V }., i.e., if u minimizes the energy functional J . 

2. Under the given conditions in (9.11) the energy functional J is bounded below 

on V , and there is a uniquely determined function u ∈ V . that minimizes J . This 

function u is thus also the desired distributional solution of the boundary value 

problem (9.11). 

It is worth studying the justifications of this fundamental solvability statement more 

closely, because it teaches us that not only our exemplary problem (9.11), but also 

other problems of the same type can be solved in the same way. Many boundary 

value problems can be formulated such that one seeks a function u in a function 

space V adapted to the respective task, so that an equation of the form a(u, v) = l(v). 

holds for all v ∈ V .. The statements of the theorem then also apply to all such 

problems for which the essential properties of the vector space V and the (problem-

dependent) functionals a and l are satisfied. Two main steps in the following proof 

are indicated by italics and use arguments found in Appendix B. 

Proof 

1. The mapping a : V × V → R. defines a symmetric bilinear form ( a(u, v) =
a(v, u). for u, v ∈ V .). The functional l is linear on V . For u, v ∈ V . and t ∈ R., it  

follows that 

. J (u+ tv) =
1

2
a(u+ tv, u+ tv)− l(u+ tv)

= J (u)+ t (a(u, v)− l(v))+
1

2
t2a(v, v).

If u satisfies the equation a(u, v) = l(v). for all v ∈ V ., then we get with t = 1. 

.J (u+ v) = J (u)+
1

2
a(v, v)  J (u)
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and equality holds only for v = 0.. Thus, u is the uniquely determined minimum 

point of J . The  term a(v, v)/2. describes the increase in potential energy when 

the displacement u is replaced by u+ v .. 

Conversely, if J has a minimum at u, then for every v the derivative of the 

differentiable function t  → J (u + tv). at t = 0. must vanish. This derivative 

is precisely a(u, v)− l(v).. Then it follows that a(u, v) = l(v). for every v ∈ V .. 

Proof of 2. The bilinear form a is positive definite on V × V . (a(v, v) > 0. 

for v  = 0.). This follows from the Poincaré-Friedrichs inequality (Appendix B, 

p. 503): There exists a constant c > 0. such that for all v  = 0. in V we have 

. 0 <  v, v =
ˆ

Ω

v2 dx dy  c a(v, v) = c k

ˆ

Ω

| grad v|2 dx dy .

Therefore, a defines an inner product and a norm so that the vector space V is 

a Hilbert space. For each v ∈ V ., ||v||a =
√
a(v, v). is called the energy norm 

of v according to its physical meaning (see also p. 54 and p. 62). The distance 

between two functions v,w ∈ V . is given in this norm by ||v−w||a .. Now,  V is the 

completion of D(Ω). in the energy norm, i.e., for each v ∈ V . there is a sequence 

(ϕn)n∈N . inD(Ω). such that lim
n→∞

||v−ϕn||a = 0., and in V every Cauchy sequence 

(vn)n∈N . with respect to this norm (||vn − vm||a → 0. for n,m → ∞.) converges 

to a function v ∈ V .. If  u is a minimum point of J , then l(v) = a(u, v). holds for 

all v ∈ V .. According to the Cauchy-Schwarz inequality for inner products, the 

linear functional l must then necessarily be continuous with respect to the energy 

norm: For each v ∈ V .we have 

. |l(v)|2 = |a(u, v)|2  a(u, u)a(v, v) = ||u||2a ||v||2a ,

in particular lim
n→∞

l(vn) = l(v). if lim
n→∞

||vn − v||a = 0. for vn, v ∈ V .. For  a  

square-integrable force density f in our example (9.11), the functional l(v) =
 f, v . satisfies this necessary condition. This again follows from the Poincaré-

Friedrichs inequality  v, v  c||v||2a . by the estimation 

. |l(v)|2   f, f   v, v  c  f, f  ||v||2a .

Thus, |l(v)|  C||v||a .with C =
√
c  f, f  .. This then gives 

. J (v) =
1

2
||v||2a − l(v)  

1

2
(||v||a − C)2 −

1

2
C2
 −

1

2
C2

for all v ∈ V ., i.e., the energy functional J is bounded below on V . Therefore, 

there is now a minimizing sequence (un)n∈N . for J in V , 

. lim
n→∞

J (un) = inf{J (v) | v ∈ V }.
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In all vector spaces where the norm of vectors is given by an inner product, 

the parallelogram law known from elementary geometry holds, so it follows for 

elements un . and um . of this minimizing sequence in V that 

. 2||un||2a + 2||um||2a = ||un − um||2a + ||un + um||2a .

Subtracting 4l(un + um). from both sides, we get the inequality 

. 4J (un)+ 4J (um) = 8J

 
un + um

2

 
+ ||un−um||2a  8 inf

v∈V
J (v)+ ||un−um||2a .

Since J (un)→ inf
v∈V

J (v). and J (um)→ inf
v∈V

J (v). for n,m→∞., we obtain 

. ||un − um||2a → 0 for n,m→∞.

Thus, the minimizing sequence is a Cauchy sequence with respect to the energy 

norm. Therefore, from the completeness of V and the continuity of J , again with 

respect to the energy norm, it follows that there is a function u = lim
n→∞

un . in V 

for which J (u) = inf{J (v) | v ∈ V }.holds. The uniqueness of the minimum point 

of J has already been shown in the first part of the proof.   

Summary From the proof, we learn that any problem of the form a(u, v) = l(v). in 

a function space V has a solution, if a defines an inner product on V , such that firstly 

V is complete with the energy norm associated with a, and secondly the functional 

l is continuous in this norm. For many practical boundary value problems, the 

Sobolev concept of constructing a suitable vector space V is therefore the starting 

point first for a theoretical solvability statement and then for the development of 

methods to determine approximate solutions. 

Example (Stationary Temperature Distribution in a Rod) We formulate as 

another example, for which the readers can later calculate an approximate solution 

using finite elements themselves, the following one-dimensional boundary value 

problem, which describes the stationary temperature distribution T in a rod of length 

L with piecewise constant thermal diffusivity k and prescribed temperature values 

at the rod ends: 

. 

 
k(x)T  (x)

  = 0, T (0) = T0, T (L) = T1 (9.12)

k(x) = k1 > 0 for 0  x  
L

3
, k(x) = k2 > 0 for

L

3
< x  L.

First, by substituting u(x) = T (x)− T0 + x
L
(T0 − T1)., the problem is transformed 

into a differential equation for u with homogeneous boundary values: 

. 

 
k(x) (u (x)−

1

L
(T0 − T1))

  
= 0, u(0) = u(L) = 0, k(x) as above.

(9.13)
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For this task, V is chosen as the vector space of all absolutely continuous functions v 

on [0, L]., which have a square-integrable derivative v . and satisfy v(0) = v(L) = 0.. 

From the absolute continuity, it follows that all v are continuous and differentiable 

outside of a null set N ⊂ [0, L]., and that for them the fundamental theorem of 

calculus
x́

0

v (x) dx = v(x). holds. From the problem statement 

. 

L̂

0

k(x)(u (x)−
1

L
(T0 − T1))v

 (x) dx = 0 for all v ∈ V,

one obtains after a short calculation the following formulation of the problem (9.13), 

which is completely analogous to (9.11): 

A function u ∈ V . is sought such that for all v ∈ V . 

. a(u, v) = l(v) with a(u, v) =
L̂

0

k(x)u (x)v (x) dx (9.14)

l(v) =
T0 − T1

L

L̂

0

k(x)v (x) dx =
T0 − T1

L
(k1 − k2) v

 
L

3

 
.

The Poincaré-Friedrichs inequality  v, v  ca(v, v).with c > 0. holds analogously 

for this one-dimensional problem. As in the previous example, a thus defines an 

inner product on V . It can be shown that V is complete with respect to the energy 

norm  v a =
√
a(v, v).. With the Cauchy-Schwarz inequality, one sees that l is 

continuous on V with respect to this norm: Writing |l(v)|. for v ∈ V . in the form 

. |l(v)| =
   T0 − T1

L

L̂

0

 
k(x)

 
k(x)v (x) dx

   ,

then |l(v)|  
   T0 − T1

L

   

⎛
⎝

L̂

0

k(x) dx

⎞
⎠

1/2  
ˆ L

0

k(x)v (x)2 dx

 1/2

,. 

. |l(v)|  C
 
a(v, v) = C v a with C =

   T0 − T1

L

   

⎛
⎝

L̂

0

k(x) dx

⎞
⎠

1/2

.

Thus, the proof of the solvability theorem can be adopted verbatim, and it follows 

that the problem (9.14) has exactly one solution u in V . From  u,
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. T (x) = u(x)+ T0 −
x

L
(T0 − T1)

immediately follows as the solution of the given heat conduction problem (9.12). 

Based on this guaranteed solvability statement, it now makes sense to consider 

algorithms for constructing approximations for u or T . 

The Ritz-Galerkin Method 

With the work done so far in this section, we have learned how to formulate 

boundary value problems according to (9.11) and that their (distributional) solution 

is to be sought in a vector space V that has the inner product a(u, v). for u, v ∈ V . 

and the energy norm  u a .. This now makes it easy to describe the basics of 

approximation methods according to Ritz and Galerkin and later as a special case 

the finite element principle. 

In all vector spaces V where a norm  f  . of elements f ∈ V . is given by an inner 

product, one obtains an approximation in a sub-vector space U of V by orthogonal 

projection of f onto U (see also p. 12, Sects. 5.1 and 14.1, p.  449). The concept of 

orthogonality is directly related to the inner product: f, g . from V are orthogonal if 

and only if their inner product is zero. The orthogonal projection fU . of f onto U is 

an optimal approximation for f ∈ V . by an element g ∈ U . in the following sense: 

.  f − fU =  f − fU , f − fU  1/2 = inf
g∈U
 f − g ,

i.e., the norm of the error f − g . is minimal among all g ∈ U . for g = fU .. 

The exemplary problem (9.11) discussed on p.  245 now has a (unknown) solution 

u in the infinitely dimensional function vector space V described there. In this 

vector space V , the  bilinear form a(u, v). belonging to the problem defines an 

inner product and the norm  u a . for all u, v ∈ V .. According to Ritz-Galerkin, 

one constructs a finite-dimensional sub-vector space VN . of V and calculates the 

orthogonal projection uN . of u onto VN . with the inner product given by a as an 

approximation for the sought solution of the posed boundary value problem. Even 

if the function u remains unknown, its orthogonal projection uN . can be determined 

from the specification of VN . and from the equation a(u, v) = l(v). valid for every 

v ∈ V .. uN . is called the Ritz-Galerkin solution belonging to VN .. The choice of VN . 

and hence how well a function u ∈ V . can be approximated by functions from VN . is 

crucial for the error  u− uN a . of the approximation. 

To achieve satisfactory numerical results, the specification of the subspace VN . 

and its approximation properties is the key to the construction of approximate 

solutions.
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The Linear System of Equations for a Ritz-Galerkin Solution 

By specifying N linearly independent functions v1, v2, . . . , vN . in V , a  basis of an 

N -dimensional subspace VN . of V is determined. The vector space VN . is the set of 

all linear combinations of the vk ., 1  k  N .; thus the Ritz-Galerkin solution uN . in 

VN .has a representation of the form uN =
N 

k=1
uN,kvk .with uniquely determined real 

coefficients uN,k .. The orthogonality relations a(u − uN , vi) = 0. and the equations 

a(u, vi) = l(vi). yield 

. a(uN , vi) = l(vi) for 1  i  N.

With the linearity of a and the above representation of uN ., one obtains the linear 

system of equations 

. 

N 

k=1
uN,ka(vk, vi) = l(vi)

for the sought coefficients uN,1, . . . , uN,N .. In matrix form, with column vectors u. 

and l., the task is thus as follows: 

Task Determine u ∈ R
N

., so that Au = l. is satisfied for 

. 

A = (αi,k) 1 i N
1 k N

, αi,k = a(vk, vi),

l = (li)1 i N , li = l(vi).

The quantities αi,k . and li . can be calculated from the given functionals a and l and 

the chosen basis functions vi .. The matrix A is symmetric and positive definite, 

particularly regular. For x = (x1, . . . , xN )  = 0. from R
N

., due to the Poincaré-

Friedrichs inequality for our example (9.11), i.e., because a is positive definite: 

. Ax · x =
N 

i,k=1
xiαi,kxk = a

 N 

k=1
xkvk,

N 

i=1
xivi

 
> 0.

In elasticity problems, A is called the stiffness matrix. The uniquely determined 

solution u = (uN,1, . . . , uN,N ). of the system of equations yields the desired 

approximate solution uN =
N 

k=1
uN,kvk . of the original problem a(u, v) = l(v). 

for elements v ∈ V .. 

Example (A Ritz-Galerkin Solution for a Loaded Membrane) As an applica-

tion, we calculate a Ritz-Galerkin solution for the boundary value problem (9.11).
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Here, the domainΩ =]0, L[×]0, L[. is the square with side length L, and f (x, y) =
F . is a force density constant over Ω .. To calculate an approximate solution, we 

choose the following four linearly independent functions v1, . . . , v4 .: 

. 

v1(x, y) = L sin
 
π
L
x
 
sin

 
π
L
y
 
, v2(x, y) = L sin

 
3π
L
x
 
sin

 
π
L
y
 
,

v3(x, y) = L sin
 
π
L
x
 
sin

 
3π
L
y
 
, v4(x, y) = L sin

 
3π
L
x
 
sin

 
3π
L
y
 
.

They vanish on the boundary ∂Ω . of Ω ., lie in the Sobolev space V of the 

problem (9.11), and form a basis of the subspace V4 ⊂ V . (N = 4.) generated by 

them. For the elements αi,k . of the stiffness matrix A, the following holds (exercise) 

. α1,1 = a(v1, v1) = k

L̂

0

ˆ L

0

| grad v1(x, y)|2 dx dy

=kπ2

L̂

0

ˆ L

0

 
cos2

 π
L
x
 
sin2

 π
L
y
 
+sin2

 π
L
x
 
cos2

 π
L
y
  

dx dy =
kL2π2

2
,

α2,2 = α3,3 =
5kL2π2

2
, α4,4 =

9kL2π2

2
.

All off-diagonal elements αi,k ., i  = k ., of  A are zero because of the orthogonality 

relations for the trigonometric functions (cf. p. 12). The coefficients li . of the vector 

l. on the right-hand side are calculated as 

. l1 = F

L̂

0

ˆ L

0

v1(x, y) dx dy =
4FL3

π2
, l2 = l3 =

4FL3

3π2
, l4 =

4FL3

9π2
.

As the solution u = (u4,1, u4,2, u4,3, u4,4). of Au = l.we get 

. u4,1 =
8FL

kπ4
, u4,2 = u4,3 =

8FL

15kπ4
, u4,4 =

8FL

81kπ4
.

The Ritz-Galerkin solution in V4 . for the deflection of the membrane under the given 

conditions is thus 

.u4(x, y) =
8FL2

kπ4

 
sin

 π
L
x
 
sin

 π
L
y
 
+

1

15
sin

 
3π

L
x

 
sin

 π
L
y
 

+
1

15
sin

 π
L
x
 
sin

 
3π

L
y

 
+

1

81
sin

 
3π

L
x

 
sin

 
3π

L
y

  
.
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For L = 1m., F = 1N/m2
., k = 2N/m. the deflection at the point x = y = L/2. is 

approximately u4 (L/2, L/2) = 2848FL2/(405kπ4) ≈ 0.0361m.. 

Remark Since the domain Ω . in the example is a rectangle, one can obtain a Fourier 

series representation for the solution u through a separation approach. Our approxi-

mate solution is, due to the choice of basis functions v1, . . . , v4 ., exactly the Fourier 

expansion of the solution to Exercise A7 in Chap. 7 (cf. also Sect. 7.4, p.  143). 

The example thus makes it clear that Ritz-Galerkin solutions and consequently 

the approximate solutions with finite elements are generalizations of Fourier series 

expansions. Orthogonal projection of the solution onto a subspace VN ., generated by 

trigonometric functions, allows for a representation of the approximate solution as 

a trigonometric polynomial, and other basis functions of VN . yield correspondingly 

different expansion coefficients uN,1, . . . , uN,N . of the approximation uN .. 

Finite Elements 

We continue to study our membrane problem (9.11) for explanation. When choosing 

a basis arbitrarily for an N -dimensional subspace VN . of V , the stiffness matrix 

A is generally fully populated, and N2
. integrations are required to determine its 

elements exactly or approximately. The final solution of the equation system Au =
l. would require a number of computational operations that grow with N as N3

.. 

If one wants good approximations uN . for the solution u of the given problem in 

a high-dimensional subspace VN ., the general Ritz-Galerkin method proves to be 

impractical. 

The principal idea of the finite element method is now to choose the basis 

functions v1, . . . , vN . so that as many of the vk . as possible have disjoint supports. 

If supp(vi) ∩ supp(vk). is empty for i  = k . or if the supports only meet parts of 

their boundaries, then for problems like those in our examples, a(vi, vk) = 0.. If  

this is true for many i and k, then the stiffness matrix is sparse, i.e., it has zeros in 

many places. If the vk . are all of the same type, one can also use existing symmetry 

properties and thus save considerable computational effort. 

Triangulation of the Domain, Choice of Basis Functions, Linear Elements 

To implement the described idea, the domain Ω . is divided into small pieces. To 

illustrate, we consider a domain Ω . in the plane, bounded by axis-parallel lines (with 

respect to a Cartesian coordinate system). By subdividing with a rectangular grid 

and then subdividing each rectangle into two triangles, a triangulation T . of Ω . is 

created as shown in the following Fig. 9.18. 

The vertices of a triangle lying within Ω . are called the internal nodes of the 

triangulation T .. We denote by N the number of internal nodes. Consider them
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Fig. 9.18 A triangulation of 

the L-shaped membrane 

Fig. 9.19 A hat function vk . 

over the triangulation 

numbered in a sequence x1, . . . , xN .. A polygon Pk . is formed by the triangles that 

have an internal node xk . as a common vertex (e.g., the hexagon with thick borders 

in the picture above left). For each internal node xk ., 1  k  N ., we define a 

continuous function vk ∈ V . with vk(x
k)  = 0., which has precisely the closed 

polygon Pk . as its support. A particularly simple example is the choice of continuous 

functions vk . such that all vk . are affine-linear on each triangle T of the triangulation, 

i.e., of the form vk(x, y) = a + bx + cy ., with 

. vk(x
k) = H > 0 and vi(x

k) = 0 for all i  = k (1  i, k  N).

The graph of each function vk ., 1  k  N ., then looks like a tent roof over the 

corresponding polygon Pk ., supported by a stake of height H at the point xk . and 

attached to the ground at the neighboring nodes (Fig. 9.19). If T is a triangle of 

the triangulation with vertices xk = (xk, yk)., x
i = (xi, yi)., and xj = (xj , yj )., it  

is quickly calculated that vk . on T is given by the following formula (compare the 

thick-bordered “tent surface” in the picture above right): 

. vk(x, y) = H
(x − xi)(yj − yi)− (y − yi)(xj − xi)

(xk − xi)(yj − yi)− (yk − yi)(xj − xi)
for (x, y) ∈ T .

(9.15) 

The functions v1, . . . , vN . are linearly independent: If one successively sets x =

x1, . . . , xN . in the equation

N 

k=1
αkvk(x)=0., it follows that Hα1= 0, . . . , HαN =0.. 

Therefore, the functions v1, . . . , vN . span an N -dimensional subspace VN . of V .
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Once the choice of basis functions is made and their form over a triangle T of 

the triangulation is established, T is referred to as a finite element. In our example, 

due to the linearity of the basis functions vk . on each triangle T , we speak of linear 

triangular elements. With the specification of the functions v1, . . . , vN ., the stiffness 

matrix A and the right-hand side l. of the equation system Au = l. are determined. 

The approximate solution uN =
N 

k=1
uN,kvk . is uniquely determined by the 

components uN,k . of u = A−1l.. 
The described method of triangulation of Ω . can be used for all domains 

Omega in the plane that are bounded by a polygon. A (not necessarily regular) 

decomposition of Ω . into triangles is then a permissible triangulation if any two 

different triangles Ti . and Tk . that meet boundaries either have only one common 

vertex and no other boundary points in common or share a common side with two 

common vertices. 

Piecewise linear basis functions vk . can then be defined exactly as above, and 

each function u from the generated vector space VN . is uniquely determined by its 

values on the internal nodes. 

For spatial problems with polyhedral domains Ω . in R3
., the principle described 

here can also be used with corresponding admissibility conditions for the decom-

position. For example, tetrahedra, plates, or prisms are used as finite elements, and 

suitable polynomials or wavelets (see Sect. 14.2) are used as basis functions. We 

will calculate an approximation for the deflection of our loaded square membrane 

as a concrete, simple example using finite elements. 

Approximate Solution with Finite Elements for a Loaded Membrane 

As already mentioned on p. 251, let  Ω . be the square with side length L and 

f (x, y) = F . a force density constant on Ω .. For the approximate solution of the 

problem (9.11) using finite elements, we first divide Ω . into (p + 1)2 ., p ∈ N., 

squares and then each resulting square into two triangles as shown in the picture. 

With p = 3., this decomposition has N = p2 = 9. internal nodes. Each triangle has 

an area of h2/2.with h = L/(p+ 1).. As basis functions we use the piecewise linear 

functions vk . described in (9.15), 1  k  N . (Illustration Figs. 9.20 and 9.21). 

Setting up the Linear System of Equations 

We now denote a selected inner node by Z, its neighboring nodes according to the 

cardinal directions by S, SE, . . . ,W . and the triangular areas between these nodes 

by Roman numerals I, . . . , VI . as in the picture above. If all nodes S, SE, . . . ,W .
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Fig. 9.20 Mesh with 

h = L/(p + 1). 

Fig. 9.21 Six permissible 

triangles with numbering and 

orientation 

are inner nodes, then the quantities a(vZ, vZ), a(vZ, vS), . . . , a(vZ, vW ). for the 

corresponding basis functions vZ, vS, . . . , vW . are to be calculated. If some of the 

nodes S, SE, . . .W . lie on the boundary ∂Ω ., then the respective basis functions 

vS, vSE . . . vW . and accordingly the respective quantities a(vZ, vS), a(vZ, vSE). or 

a(vZ, vW ). are omitted. 

From the graph of vZ . or using formula (9.15), the partial derivatives of vZ . on 

the triangles I, . . . , VI . can be immediately seen. Since all basis functions have 

the same shape, the derivatives of vS, . . . , vW . on these triangles follow from this. 

Summarized in a table, we get 

. 

I II III IV V V I

∂vZ
∂x

H
h

0 −H
h
−H

h
0 H

h

∂vZ
∂y

H
h

H
h

0 −H
h
−H

h
0.

With the notation I . . . VI . for the union of the areas I to VI ., one gets 

.a(vZ, vZ) = k

ˆ

I ...VI

| grad vZ|2 dx dy = k

ˆ

I ...VI

 
∂vZ

∂x

 2

+
 
∂vZ

∂y

 2

dx dy

= k
H 2

h2

 
2
h2

2
+

h2

2
+

h2

2
+ 2

h2

2
+

h2

2
+

h2

2

 
= 4kH 2,

a(vS, vZ) = k

ˆ

I∪II

 
∂vZ

∂x

∂vS

∂x
+

∂vZ

∂y

∂vS

∂y

 
dx dy=k

H 2

h2

 
−
h2

2
−

h2

2

 
= −kH 2.
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Fig. 9.22 Numbering of nine 

inner nodes for the example 

with p = 3. 

Similarly, one finds 

. a(vN , vZ) = a(vW , vZ) = a(vE, vZ) = −kH 2, a(vSE, vZ) = a(vNW , vZ) = 0.

By exploiting the existing symmetries, the six calculated integrals are sufficient to 

set up the stiffness matrix A. For this purpose, we number the inner nodes as in the 

following picture for our example with p = 3. (Fig. 9.22): 

Each inner node now successively takes on the role of Z, and its inner neighboring 

nodes according to the cardinal directions of their position relative to Z take on 

the roles of the nodes S, SE, etc. Starting with the first node, it has the inner 

neighboring nodes numbered 2 and 4. The first row of A is then populated at the 

positions α1,1, α1,2 . and α1,4 .. All other elements of the first row are zero. Proceeding 

accordingly, the matrix A is given by 

. A = kH 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The empty spaces are filled with zeros. The matrix is sparse with 5N − 4
√
N . (here 

with 33) nonzero coefficients. For a square grid decomposition with a large number 

N = p2
. of inner nodes, one obtains the coefficients αi,k . of A by the corresponding 

numbering analogously 

.

αi,i = 4kH 2 (1  i  N)

αi,i+1 = −kH 2 (1  i  N − 1, i mod p  = 0,

that is, when i is not divisible by p)

αi,i−1 = −kH 2 (2  i  N, (i − 1) mod p  = 0)

αi,i+p = −kH 2 (1  i  N − p)

αi,i−p = −kH 2 (p + 1  i  N)

αi,k = 0 otherwise.
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For a constant force density f (x, y) = F . on Ω ., for reasons of symmetry, all 

components li . of the right-hand side of Au = l. are given by 

. li = F

ˆ

I−VI

vZ(x, y) dx dy = FHh2 for 1  i  N,

if Z is again an inner node as in the picture on p. 256, because above the hexagon 

around Z, the graph of vZ . forms a pyramid with a volume of Hh2 .. 

Graphical Representation of an Approximate Solution 

The approximate solution uN . for the deflection of the membrane calculated with 

the discussed finite elements for p = 7., N = 49., L = 1m., k = 2N/m., F =
5N/m2

. is shown in Fig. 9.23. One can clearly see that the approximation is not 

differentiable at the edges of the triangulation, and thus it can only be meaningfully 

interpreted as a distributional approximate solution for the original boundary value 

problem (9.9). Active readers can enjoy the pleasure of carrying out the calculation 

and graphics themselves on a rainy weekend and as an exercise, similarly treat an 

L-shaped membrane as on p. 243 and the heat conduction problem from p. 248 with 

finite elements (cf. Exercise A10). The maximum deflection of the square membrane 

calculated here is approximately 0.182m.. 

Similar approaches to those in the treated examples can also be developed for 

other differential equations with different types of boundary conditions and for the 

3D case as well. A 3D example is given later in Chap. 12 on p. 432. At the end of 

this section, which aims to provide a first insight into the importance of distribution 

methods for the theoretical and practical solution of boundary value problems, 

important tasks of numerical mathematics in the use of the described methods will 

Fig. 9.23 Graphical result of the FEM example
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be briefly mentioned: Practical tasks include, besides the mathematical modeling 

of given problems, for example, the development of triangulation routines even 

for areas or bodies with complex boundaries, the selection of suitable numerical 

integration methods for the calculation of the stiffness matrix, the choice of 

suitable equation solvers for the resulting large linear systems of equations, a 

useful graphics-related post-processing to obtain meaningful results from “data 

cemeteries”,2 and much more. 

Generally, one expects that with refinements of the triangulation, the approximate 

solutions uN . converge in V to the solution u with increasing N . Only with 

convergence studies and error estimates for the approximations can one obtain 

efficient and useful numerical results, stopping criteria for computational programs 

that iteratively calculate approximations by refining the triangulations, reliable 

criteria for the quality of the calculated approximate solutions. The framework 

for this is provided by approximation and distribution theory. Considering that 

the safety of nuclear power plants, chemical plants, electronic systems in aircraft, 

etc., depends on the quality of numerically calculated approximate solutions— 

for example, for deformations and loads on components under mechanical and 

thermal influences—it becomes clear that even with exactly solved systems of 

equations, reliable estimates for the error uN−u.are necessary to protect against high 

risks. Modern technology requires a high degree of equally modern mathematics. 

Engineers and scientists should not hesitate to seek collaboration with competent 

mathematicians. For those interested in deepening their understanding and in error 

estimates for the numerical methods sketched here, reference is made once again to 

the literature given at the beginning of the section on p. 244. As a newer source for 

error estimates, the work of Dahlke et al. (2010) is particularly recommended. 

9.6 Distributional Solution of the 1D Wave Equation 

We briefly reconsider the initial boundary value problem for the force-free vibrating 

string as an example. A twice continuously differentiable function u(x, t). was 

sought, such that

2 In the 1970s with the NASTRAN FEM Software one had to create the mesh for the structure 

with several thousands of punch cards, and the computation results were simply long listings with 

again thousands of numerical values, which had to be analyzed by looking at them. There existed 

no graphics output at that time. This is of course much better now. NASTRAN (Nasa Structural 

Analysis System) is still a commercial FEM standard. With MYSTRAN a largely compatible FEM 

software is available free of charge. 
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Fig. 9.24 Non-differentiable 

initial conditions 

. 

∂2u
∂t2
− c2 ∂2u

∂x2
= 0 for 0 < x < l , t > 0 ,

u(0, t) = u(l, t) = 0 for t  0 ,

u(x, 0) = f (x) for 0  x  l , f (0) = f (l) = 0 ,

limt→0+
∂u
∂t
(x, t) = g(x) for 0  x  l , g(0) = g(l) = 0.

For solvability within the framework of classical theory, smoothness conditions 

on f and g were necessary. Now, if one wants to treat initial conditions f for a 

guitar string of the following forms as in Fig. 9.24, the problem is considered as a 

differential equation for distributions under the following additional assumptions on 

the initial conditions f and g: 

f : [0, l] → R. should be continuous and piecewise continuously differentiable 

with f (0) = f (l) = 0., and g : [0, l] → R. should be piecewise continuously 

differentiable, g(0) = g(l) = 0 .. The odd, 2l-periodic extensions of f and g are 

again called f and g, respectively. 

The Fourier series of f converges uniformly, and in the quadratic mean to f , the  

Fourier series of g converges in the quadratic mean to g and pointwise except at 

possible points of discontinuity of g. The calculated series solution u(x, t). from 

Sect. 5.4, p.  72, is interpreted as a distributional solution with the following 

properties: 

1. The Fourier series represents the following distribution for 0 < x < l ., t > 0.: 

. u(x, t) =
1

2
[f (x + ct)+ f (x − ct)] +

1

2c

x+ct
ˆ

x−ct

g(τ) dτ .

This distribution is regular, u(x, t). is continuously extendable on [0, l]×R
+
0 ., but  

not necessarily differentiable in ]0, l[×R+ .. Its continuous extension on [0, l] ×
R
+
0 . is again denoted by u(x, t).. 

2. u(x, t). solves the wave equation for 0 < x < l ., t > 0. in the distributional 

sense, i.e., for every test function ϕ(x, t). with support in ]0, l[×R+ . and for the 

generalized derivatives of u(x, t)., it holds that
 
∂2u
∂t2
− c2 ∂2u

∂x2
, ϕ

 
= 0.. 

3. For the boundary values, it holds that u(0, t) = u(l, t) = 0 (t  0)..
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4. By considering the limit t → 0+. and (generalized) term-by-term differentiation 

of the Fourier series of u(x, t)., one obtains for the initial values: 

(a) lim 
t→0+ 

u(x, t) = f (x). for 0  x  l . pointwise. 

(b) lim 
t→0+ 

∂u 

∂t 
(x, t) = g(x). for 0  x  l . pointwise except at points of 

discontinuity. 

5. The solution u(x, t). is uniquely determined by the initial conditions f and g. 

One may calculate distributionally with the series approach as we have done, and 

obtain a distributional solution in ]0, l[×R+ .. All partial sums of the series for u 

satisfy the wave equation in the classical and thus also in the distributional sense. 

For their distributional limit u, the above statement 2 immediately follows from 

the continuity of derivatives on D (]0, l[×R+). (see p. 185). Since distributions 
generally do not have pointwise values, the question of the meaning of initial and 

boundary values arises. In the present case, however, the solution is regular, so an 

ordinary function. The attainment of the initial and boundary values results here 

from the continuity of u(x, t). on [0, l] × R
+
0 ., from the assumptions about f and 

g, and from the convergence properties of the Fourier series representing f and g. 

With sufficient smoothness of the initial conditions, the distributional solution, as 

seen in the d’Alembert form of the solution and in the asymptotic behavior of the 

Fourier coefficients, is a correspondingly smooth, thus classical solution. 

Thus, the concept of distributions provides a solid foundation for the old 

approaches of Bernoulli and Fourier, and largely frees one from the concerns 

and limitations one had to consider within the classical framework regarding 

convergence, term-by-term differentiability of series, etc. In a similar manner to 

the solution of the string problem, inhomogeneous wave, heat conduction, and 

potential problems can also be treated using separation approaches that lead to series 

representations for distributional solutions. Fundamental questions that always need 

to be resolved are questions about the regularity of such solutions and in what sense 

the initial and boundary values of the distributional solutions can be discussed. For 

this purpose, methods based on the works of S. L. Sobolev (1964) are used (see also 

Sect. 9.5). These methods can be studied in depth with the provided references to 

further textbooks on partial differential equations and their applications. 

9.7 Summary 

To conclude this chapter, we once again present some important concepts and facts 

from classical differential calculus in comparison with the corresponding concepts 

and statements of distribution theory. The comparison shows why distribution meth-

ods have become a frequently used mathematical tool, especially in engineering 

disciplines. These methods provide a calculus that allows for correct and easy



262 9 Application Examples for Distributions

calculations in a manner that often was only heuristic or even incorrect from the 

perspective of classical analysis. 

Compare the statements in Sect. 7.5 and the theorems known from analysis with 

the properties of the distribution calculus that we developed in Chap. 8 using the 

following Table 9.1. 

Table 9.1 Properties of functions and distributions compared 

Classical analysis Distribution theory 

•.One studies pointwise defined functions 
f : R→ R. 

•.One studies linear mappings T : D→ R., 

D . the space of test functions 

•.Values: To each t ∈ R. is assigned the 

function value f (t). 

•.Values: To each test function ϕ ∈ D . is 

assigned the value T (ϕ).. Despite the often 

common notation T = T (t)., distributions 

generally have no values for individual t ∈ R., 

but only “averages” T (ϕ). are defined 

•. For each distribution T there is a sequence 

of infinitely differentiable functions fn ., such  

that T = D
 -lim

n→∞
fn ., i.e., for each ϕ ∈ D ., 

T (ϕ) = lim
n→∞

+∞
ˆ

−∞

fn(t)ϕ(t) dt . 

•.Each classical, locally integrable function 
f : R→ R. is also a distribution through 

f (ϕ) =  f, ϕ =
+∞
ˆ

−∞

f (t)ϕ(t) dt (ϕ ∈ D). 

•.Many functions f are not continuous or not 

differentiable 

•.All distributions are continuous on D .. By a  

more general derivative concept, all 

distributions are also arbitrarily often 

differentiable. Linearity, chain rule, and 

product rule hold in the sense of distributions 

•.There is no ideal impulse function 

δ(t) = d
dt
s(t)., s(t). the unit step function 

•.The δ . impulse δ(ϕ) = ϕ(0)., ϕ ∈ D ., is the  

generalized derivative of s(t).: ṡ = δ ., 

δ(ϕ) = −
+∞
ˆ

−∞

s(t)ϕ (t) dt . 

•.A sequence of functions fn : R→ R. 

converges pointwise to f : R→ R. if for each 

t ∈ R.: lim
n→∞

fn(t) = f (t). 

•.A sequence of distributions Tn : D→ R. 

converges to T : D→ R. if for each ϕ ∈ D .: 

lim
n→∞

Tn(ϕ) = T (ϕ). 

•. For a pointwise convergent sequence of 
functions fn .with lim

n→∞
fn(t) = f (t)., it  

generally does not hold that 

lim
n→∞

f  n(t) = f  (t). 

•. For a convergent sequence of distributions 
Tn .with lim

n→∞
Tn = T . it always holds that 

lim
n→∞

Ṫn = Ṫ .

(continued)



9.8 Exercises 263

Table 9.1 (continued) 

Classical analysis Distribution theory 

•. For pointwise convergent series of functions 
∞ 

n=0
fn(t) = f (t)., it generally does not hold 

that

∞ 

n=0
f  n(t) = f  (t). 

•. For convergent series of distributions 
∞ 

n=0
Tn = T . it always holds that

∞ 

n=0
Ṫn = Ṫ . 

•.Classical Fourier series
+∞ 

k=−∞
ck e

jkt
. 

converge at most to an integrable function on 

[0, 2π ]., if ck → 0. for |k| → ∞. 

•.Generalized Fourier series
+∞ 

k=−∞
ck e

jkt
. 

converge in the distributional sense even if 

the |ck |. grow polynomially, i.e., if with 

suitable n ∈ N. it holds: |k|−n|ck | → 0. for 

|k| → ∞. 

•.The convolution f ∗ g . generally exists only 

under suitable integrability conditions on f 

and g. The order of differentiation and 

convolution can be interchanged only under 

differentiability properties of f or g 

•.The convolution T ∗G. of two distributions 

T and G on R. exists if one of the 

distributions has a bounded support, or if 

both supports are semi-bounded on the same 

side, e.g., if supp(T ) ⊂ [0,∞[. and 
supp(G) ⊂ [0,∞[. are defined 
•. For distributions in Rn

., the convolution 

exists under the conditions specified on p. 

194. Differentiation and convolution are 

interchangeable. This allows, together with 

the existence of the δ . distribution, the simple 

description of many time-invariant, linear 

systems through their impulse response (see 

later Chap. 11) 

•.Classical solutions for many initial boundary 

value problems often exist only under strong 

smoothness conditions on the initial and 

boundary conditions 

•.Distributions allow for a solution concept 
that often permits simple, not necessarily 

smooth initial and boundary conditions. This 

can greatly facilitate solving practical 

problems with simple mathematical models 

9.8 Exercises 

(A1) Calculate the Fourier series of the following function using the impulse 

method from p. 214:
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(A2) Calculate the step response and impulse response for the RLC circuit PT2 . 

element from p. 66. Determine the system response Ua(t). in the steady 

state, i.e., for t →∞., if:  

(a) Ue(t) = U01[0,T ](t). is a rectangular signal of duration T . 
(b) The excitation is Ue(t) = U0 sin(ωt).. 

(c) Transform the differential equation from (a) into a first-order system 

with system matrix A, calculate the matrix eAt
. for various values of R, 

C, and L using a computer algebra system of your choice, and identify 

the impulse response as an element in eAt s(t).. 

(A3) Let a time-invariant linear transfer system be described by a differential 

equation. Assume that the zeros of the characteristic polynomial P of the 

differential equation are z1 = −1 + j, z2 = −1 − j, z3 = −2.. Assume 

that P(0) = 4.: 

(a) State the third-order differential equation that describes the system. 

(b) What are the eigenfunctions of the system and the general solution of 

the homogeneous equation? 

(c) Determine the causal impulse response and note its determination by the 

eigenfunctions. 

(d) Describe the same problem using a first-order system. Provide a funda-

mental matrix for it. What is the solution of the inhomogeneous system 

when all initial values are set to zero? 

(A4) Calculate the potential u of the rod from the example on p. 236 at the 

points (0, 0, z). and (0, 0,−z). for z > l . and determine the shape of the 

equipotential surfaces of the solution u. 

(A5) A hemispherical shell H in a vacuum with radius R is described in spherical 

coordinates by H = {(R, θ, φ) : 0  θ  π/2, 0  φ < 2π}.. It carries 
a surface charge density σ(θ, φ) = σ0 cos(θ).. Calculate the value of the 

potential vanishing at infinity for the center of the shell with the following 

values: R = 2.m, σ0 = 3µC/m2
., ε0 = 8.85 · 10−12 As/Vm.. 

(A6)  . Calculate the normal derivative of Green’s function for a spherical surface 

around the origin with radius R. Use this to express the values of a harmonic 

function inside the sphere based on its boundary values on the sphere 

surface and compare it with Poisson’s formula on p. 70. 

(A7)  . (a) Using polar coordinates, verify that 

. g(r, φ) =
1

2π
ln(r)

is a fundamental solution of the potential equation in the plane. 

(b) Find Green’s function for the circle K around the origin of radius R. 

(c) Calculate the normal derivative of Green’s function on this circle. Use 

formula (9.6) on p.  239 to solve the Dirichlet problem Δu = 0. in K , 

u = f . on ∂K .. Compare your result with Poisson’s formula on p. 70.
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Fig. 9.25 Matlab’s FEM 

solution for the L-shaped 

membrane 

Fig. 9.26 FEM solution for a 

different region with a 

Lipschitz boundary 

(A8) Solve the boundary value problem using an image charge: 

. 
Δu(x) = − q

ε0
δ(x− x0) for x0 = (2, 0, 0), x = (x, y, z) with x > 0,

u(x) = 0 for x = (x, y, z) with x = 0.

(A9) Using the values from the example on p. 258 and the linear finite triangular 

elements used there, calculate the approximate solution uN ., N = p2 = 81., 

for the displacement of the membrane and its value at the point x = y =
L/2.. 

(A10) Use a numerical software to solve the problem with the L-shaped membrane 

of page 244 by the finite element method with a finer triangulation than 

before. With Fig. 9.25 you see the solution, which was computed for a finer 

mesh, force density f = 0.5. N/ m2
. and k = 2. N/m with Matlab, which is 

widely used in engineering disciplines, where FEM methods3 are “State of 

the Art.” Fig. 9.26 shows the FEM solution with the same input data on a 

different region with a Lipschitz boundary (cf. pp. 244 and 502). For a 3D 

problem, see p. 432. 

Of course, given the importance of the method, there are numerous text-

books about it and also numerous special purpose FEM software depending 

on the application field. When you will be working in an engineering 

discipline, you will fairly soon have to learn more about FEM. If you are 

interested, you can use the FEM Software Elmer for free that can easily

3 Worth reading is the article “Clough R. W. And E. L. Wilson, Early finite element research at 

Berkeley, Fifth U.S. National Conference on Computational Mechanics, (1999)”, which can be 

found in the Internet. 
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be found in the Internet by searching for “Elmer FEM.” I used it for the 

example on p. 432. 

(A11) Using analogous finite elements, calculate the stationary temperature distri-

bution for the rod on p. 248 with the values 

. L = 1 m, k1 = 2 m2/s, k2 = 3m2/s, T0 = 273.2 ◦K, T1 = 283.2 ◦K

with a subdivision of the interval [0, L]. intoN+1 = 12. equal subintervals, 

i.e., with N = 11. internal nodes. 

What are the approximate values for the stationary temperature at the points 

. x1 = L/6, x2 = L/3, x3 = 2L/3 ?

(A12) Calculate the amplitudes Ak . up to the 5th overtone for the freely vibrating 

string with initial displacements f1 . and f2 . and initial velocities zero for 

x ∈ [0, l]., 
l = 200h = 1m., n ∈ N., a > 0., h > 0.with 

. f1(x) =
 
ax for 0  x  l

2

a(l − x) for l
2
 x  l

and 

. f2(x) =
  

h

l− l
n

x for 0  x  l − l
n

nh
l
(l − x) for l − l

n
 x  l.

Compare the amplitude ratios with your experiences about the timbre 

differences of the two models. The first function models a displacement in 

the middle of the string, and the second for large n a displacement near the 

end of the string. Are the solutions of the wave equation to the above initial 

conditions f1 . and f2 . classical solutions, or can they only be understood in 

the distributional sense? 

(A13) On convolution equations, numerical solutions, Tikhonov regularization. In 

applications, convolution equations h ∗ f = x . often occur, in which x 

and h are known and f is sought. The following examples should illustrate 

that such equations are the so-called ill-posed problems, i.e., if the right-

hand side x (the data) has even only small data errors, a naively calculated 

numerical solution can be far from the actual solution of the problem. 

To make approximate solutions less sensitive to data errors, regularization 

methods are common. Suitable literature includes the reference Engl and 

Groetsch (1987). In this exercise, the so-called Tikhonov regularization will 

be tested for two examples:
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(a) Calculate the impulse response of the equation f (t) = x  (t).. In the 
corresponding inverse problem, let 

. x(t)=(sin(t)− t)s(t)

(s the unit step function) be given. With the impulse response h, it holds 

that h ∗ f = x .. Calculate f . Now suppose only equidistantly taken 

sample values of x are known, which are arbitrarily corrupted by small 

errors, for example 

. xi = x(ti)(1+ (−1)i 10−3).

Discretize the convolution equation into a system of equations of the 

formAf = x.with 100 data values over 0  t  10. and solve it “naively” 

with the help of a computer algebra system. Compare the numerical 

solution with the analytical solution f using a graph. Convince yourself 

by comparing Af. with x. that your equation solver is very good and that 

the large deviations of this numerical solution lie in the nature of the 

problem. Consider det(A). and think about the effects of data errors, for 

example, when considering Cramer’s rule for solving the equation. The 

problem corresponds to the calculation of an acceleration based on an 

observed motion. 

(b) Now find an approximate solution with the error-affected data using 

Tikhonov regularization, i.e., solve 

. (ATA+ αE)f = AT x

instead of Af = x. with a regularization parameter α 1., for example, 

α = 10−3 . (E the identity matrix). Compare your result again with the 

analytical solution without data errors. Test with different parameters α .. 

(c) On the reception problem in a transmission. In an analogous way, solve 

the problem h ∗ f = x . with f (t) = U0 sin(ω0t)s(t). and the impulse 

response h of the following transmission system (RC lowpass filter of 

the 2nd order). Neglect the coupling impedance, and set for the test ω0 =
2 rad/s., R = 1Ω ., C = 1 F., U0 = 1. V. Use error-affected values of x. 

corresponding to slightly disturbed reception data in the transmission. 

Recalculate f from this (see also later p. 401):
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(A14)  . Prove for integrable functions f and g and 

. hα(t) = (4πα)−1/2 e−t
2/(4α)

that the convolution f ∗ g . is integrable, and that the pointwise limit is 

. lim
α→0+

f ∗ hα(t) = f (t),

if f is continuous.



Chapter 10 

The Fourier Transform 

Abstract The Fourier transform is introduced, and a pointwise inversion theorem 

for classical functions is proven. The Fourier transform of tempered distributions 

is then established. Calculations with Fourier transforms are derived with the 

corresponding rules regarding symmetries, derivatives, integrals, and convolutions. 

Typical application examples are generalized Fourier series and impulse sequences, 

polynomials, and pseudofunctions such as rational functions. Important examples 

for discrete signal processing are also convolutions of impulse sequences with 

suitable growth properties of their pulse strengths. The Fourier transforms for 

square-integrable functions and for functions or distributions with several variables 

are dealt with in separate sections. Fraunhofer diffraction on rectangular and circular 

apertures is one of the examples. Further examples on all topics can be found in the 

text and in the exercises of the chapter. 

10.1 Representation of Functions by Harmonic Oscillations 

In the preceding chapters, it was shown that many periodic functions and periodic 

distributions can be represented by their Fourier series as superpositions of harmonic 

functions. These representations were the key to solving initial boundary value 

problems such as the vibrating string and some boundary value problems for 

the potential equation. They were also convenient for describing time-invariant 

linear systems with periodic excitations. If an analogous harmonic analysis can 

be achieved for nonperiodic functions and distributions, i.e., a representation as a 

superposition of harmonic functions, useful applications can be expected even in 

problems where periodic phenomena do not play a dominant role. 

To find an approach, we consider a function f on the real axis that is integrable 

and piecewise continuously differentiable on every bounded interval. On each 

interval ]  T/2, T /2[., T > 0., f has a Fourier series representation with the mean 

value property (cf. p. 24): 
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. 
f (t+)+ f (t )

2
=

+∞ 

k= ∞
cke

2πjkt/T with ck =
1

T

+T/2
ˆ

 T/2

f (s)e 2πjks/T ds.

(10.1) 

Following the idea of enlarging the considered domain and finally taking the limit 

T →∞., one sees that all ck .would vanish. To circumvent this difficulty, we use the 

products ckT ., set Δω = 2π/T ., and define a function  f . at all points kΔω., k ∈ Z., 
by 

. f (kΔω) = ckT =
+T/2
ˆ

 T/2

f (s)e js(kΔω) ds. (10.2) 

Then for t ∈ ]  T/2, T /2 [., 

.
f (t+)+ f (t )

2
= lim

N→∞
1

2π

N 

k= N

 f (kΔω)ej t (kΔω)Δω. (10.3) 

Now consider the quantities  f (kΔω). as sample values of a function  f (ω)., and take 
the limit as T →∞.. Then from (10.2) we obtain 

.  f (ω) =
+∞
ˆ

 ∞

f (s)e jωs ds.

The right side of (10.3) could then be understood as a discrete approximation for 

.
f (t+)+ f (t )

2
= 1

2π

+∞
ˆ

 ∞

 f (ω)ejωt dω. (10.4) 

At all continuity points, f (t) = 1

2π

+∞
ˆ

 ∞

 f (ω)ejωt dω. would be represented in this 

way by a continuous superposition of all functions of the form ejωt .with respective 

amplitude
1

2π
| f (ω)|. and phase arg( f (ω)).with ω ∈ R.. 

Definition The mapping F :. f →  f . is called the Fourier transform. The Fourier 

transform F(f ) =  f . of f is the function 

. f (ω) =
+∞
ˆ

 ∞

f (t)e jωt dt.
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The above consideration of the representation of f by (10.4) is mathematically 

not quite exact because of the questionable interchange of the limits T → ∞. and 

N →∞., but it at least shows which formula is to be expected. In the following, we 

consider integrable functions f on R.. Integrability means that with f , also  |f |. is 
integrable over R.. A function f is piecewise continuous or piecewise continuously 

differentiable if f is piecewise continuous or piecewise continuously differentiable 

on every bounded interval and all one-sided limits of f and f  . exist. 

The Fourier Inversion Theorem for Piecewise Continuously 

Differentiable Functions 

Theorem 10.1 For an integrable, piecewise continuously differentiable function f 

on R. and its Fourier transform  f ., the following Fourier inversion formula holds at 

every point t ∈ R.: 

. 
f (t+)+ f (t )

2
= lim

Ω→∞
1

2π

+Ω
ˆ

 Ω

 f (ω)ejωt dω.

For a better understanding, we denote by fΩ . the function 

. fΩ(t) = 1

2π

+Ω
ˆ

 Ω

 f (ω)ejωt dω = 1

2π

+Ω
ˆ

 Ω

+∞
ˆ

 ∞

f (s)ejω(t s) ds dω.

It is then to be shown that lim
Ω→∞

fΩ(t) = f (t+)+ f (t )
2

.. For fixed Ω > 0., it  

follows first by interchanging the order of integration 

.fΩ(t) =
+∞
ˆ

 ∞

f (s)

+Ω
ˆ

 Ω

1

2π
ejω(t s) dω ds =

+∞
ˆ

 ∞

f (s)
sin(Ω(t  s))

π(t  s)
ds. (10.5) 

As we have already seen earlier (cf. p. 183), the sequence of functions 
sin(Ω(t  s))

π(t  s)
. converges in distributional sense to the δ .-impulse δ(t  s). as 

Ω → ∞., so that the proof of the inversion formula becomes intuitively clear. The 

convolution kernel sin(Ω(t  s))/(π(t  s)). here plays the role that the periodic 

Dirichlet kernel played in the Fourier series expansion of periodic functions. The 

function sin(Ωt)/(πt). is referred to as the Fourier kernel or also as the Dirichlet 

kernel.
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Proof To carry out the proof, choose an arbitrary number ε > 0., and divide the 

integration range of the integral on the right side of (10.5). 

. fΩ(t) =
ˆ

|s t |>ε

f (s)
sin(Ω(t  s))

π(t  s)
ds +

t+ε
ˆ

t

f (s)
sin(Ω(t  s))

π(t  s)
ds

+
t
ˆ

t ε

f (s)
sin(Ω(t  s))

π(t  s)
ds.

Since
f (s)

π(t  s)
. is integrable with respect to s for |s  t | > ε ., it follows from the 

Riemann-Lebesgue Lemma (Theorem 4.3, p.  50) that for increasing Ω → ∞., the  

first integral vanishes due to the damping effect of the increasing oscillations of 

sin(Ω(t s)).. The second integral is written exactly as in the proceeding on p. 130: 

. 

t+ε
ˆ

t

f (s)
sin(Ω(t  s))

π(t  s)
ds=

0
ˆ

 ε

(f (t  u) f (t+)) sin(Ωu)

πu
du

+
0
ˆ

 ε

f (t+) sin(Ωu)

πu
du. (10.6) 

Since (f (t u) f (t+))/(πu). remains bounded for  ε < u < 0., the first integral 

on the right side vanishes again for increasing Ω .. The second integral converges for 

Ω →∞. to f (t+)/2. (substitute Ωu = x . and use Exercise 9 in Chap. 8, p. 204). 

Similarly, the third integral in (10.6) converges to f (t )/2. as Ω . increases. Thus, 

the stated Fourier inversion formula is shown.   
Remark After possibly modifying f at points of discontinuity such that every-

where the mean value property f (t) = f (t+)+ f (t )
2

. is satisfied, the inversion 

formula is often written briefly as 

. f (t) = 1

2π

+∞
ˆ

 ∞

 f (ω)ejωt dω.

The integral is then understood in the sense of the shown theorem as a Cauchy 

principal value integral, i.e., as the limit of the integrals over [ Ω,Ω]. forΩ →∞.. 

This is to be noted because integrability of f does not imply integrability of  f . 

(cf. Examples 1 and 3 in the next section). The conditions assumed about f in the 

theorem are sufficient but not necessary for the validity of the Fourier inversion 

formula. We will see later that the Fourier transform and the inversion formula 

can also be introduced in a sense appropriate for applications for a large class of 

distributions.
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10.2 Fourier Transform of Real-Valued Functions 

The Fourier transform  f . of a function f is also called the spectral function of f . 

It has the same meaning as the discrete spectral values for periodic functions (cf. 

p. 32), i.e., it indicates for each angular frequency ω . how amplitude and phase of 

the corresponding oscillation contribute to the composition of the “signal” f . 

We consider real-valued functions f for which the Fourier inversion formula 

holds. Then, because e jωt = cos(ωt)  j sin(ωt)., the real part R(ω). and the 

imaginary part X(ω). of the spectral function  f (ω). are given by 

. R(ω) =
+∞
ˆ

 ∞

f (t) cos(ωt) dt , X(ω) =  
+∞
ˆ

 ∞

f (t) sin(ωt) dt.

From this it follows that R is an even function and X is an odd function: 

. R(ω) = R( ω) , X(ω) =  X( ω).

For the spectral function of a real-valued function f and any ω ∈ R., it holds that 

.  f ( ω) =  f (ω) and | f ( ω)| = | f (ω)|.

Conversely, these symmetry properties of the spectral function are sufficient to 

ensure that f is real-valued: 

.  f (t) = 1

2π

+∞
ˆ

 ∞

(R(ω) sin(ωt)+X(ω) cos(ωt)) dω = 0.

For a real-valued f , one obtains the representation (see also p. 13) 

. f (t) =  f (t) =  
 1

2π

+∞
ˆ

 ∞

 f (ω)ejωt dω
 
= 1

2π

+∞
ˆ

 ∞

 ( f (ω)ejωt ) dω

= 1

π

∞̂

0

| f (ω)| cos(ωt + arg( f (ω))) dω.

Intuitively, f is composed of cosine oscillations of all angular frequencies ω  0. 

with respective amplitude
1

π
| f (ω)|. and phase Φ(ω) = arg( f (ω))..
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Symmetry Properties For real even functions f , X = 0., so   f . is real-valued and 

. f (t) = 1

π

∞̂

0

R(ω) cos(ωt) dω.

For real odd functions f , R = 0., so   f . is purely imaginary and 

. f (t) =  1

π

∞̂

0

X(ω) sin(ωt) dω.

For the even part fg(t) = (f (t)+ f ( t))/2. of a real function f , it holds that 

.  fg(ω) = R(ω) = 2

∞̂

0

fg(t) cos(ωt) dt .

For the odd part fu(t) = (f (t) f ( t))/2., it similarly holds that 

.  fu(ω) = jX(ω) =  2j
∞̂

0

fu(t) sin(ωt) dt .

Causal Functions For real causal functions f , i.e., f (t) = 0. for t < 0., it holds that 

f ( t) = 0. for t > 0., so f (t) = 2fg(t) = 2fu(t). for t > 0.. Thus, for t > 0., 

. f (t) = 2

π

∞̂

0

R(ω) cos(ωt) dω =  2

π

∞̂

0

X(ω) sin(ωt) dω.

These relationships imply in particular that the real part R and the imaginary part X 

of the spectral function  f . of a causal function f are not independent of each other. 

By substituting these representations of f into the first two equations of the section, 

one finds 

. R(ω) =  2

π

∞̂

0

∞̂

0

X(z) sin(zt) cos(ωt) dz dt,

X(ω) =  2

π

∞̂

0

∞̂

0

R(z) cos(zt) sin(ωt) dz dt .

This fact plays an important role in the design of causal filters in system theory.
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Examples of Spectral Functions 

1. For the rectangular function rT (t) = 1[ T ,T ](t) =
 
1 for  T  t  T

0 for |t | > T
. is 

.  rT (ω) =
+T
ˆ

 T

e jωs ds =  1

jω

 
e jωT  ejωT

 
= 2T

sin(ωT )

ωT
.

rT . is integrable, but the spectral function  rT . is not absolutely integrable, although 

its improper Riemann integral exists (see Fig. 10.1). If the frequency components 

for angular frequencies above π/T . are neglected and π/T . is referred to as 

the bandwidth of the rectangular signal, it is found: The shorter the duration 

of the rectangular signal, the greater its bandwidth. We will later observe a 

similar relationship between duration and bandwidth for other signals as well 

(Sect. 12.4). 

2. For the triangular function f (t) =
 
1 |t |/T for |t |  T

0 for |t | > T
., one obtains with 

integration by parts the Fourier transform (Illustration Fig. 10.2) 

.  f (ω) =
T̂

0

 
1 s

T

  
e jωs + ejωs

 
ds = 2

T̂

0

 
1 s

T

 
cos(ωs) ds

= 2

T

T̂

0

sin(ωs)

ω
ds = 2

T ω2
( cos(ωT )+ 1) = 4

T ω2
sin2

 T ω

2

 
.

Fig. 10.1 A rectangle function and its Fourier transform 

Fig. 10.2 A triangle function and its Fourier transform
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Fig. 10.3 The function f (t) = e at s(t)., magnitude and phase of its Fourier transform 

3. The spectral function of f (t) = e at s(t)., s(t). the unit step function and a>0., is  

.  f (ω) =
∞̂

0

e ate jωt dt = lim
R→∞

 
e (a+jω)t

 (a + jω)

 t=R

t=0
= 1

a + jω
.

Also in this example f is absolutely integrable, but  f . is not (Illustration 

Fig. 10.3). 

4. The Gaussian function. To compute the Fourier transform 

.  f (ω) =
+∞
ˆ

 ∞

e t
2/2e jωt dt

for the Gaussian function f (t) = e t
2/2

., we differentiate  f .. 

Interchanging differentiation and integration is allowed because for the function 

g(t, ω) = e t
2/2e jωt . it holds that

   ∂g
∂ω

(t, ω)

    |t |e t2/2 . and the right side of 
this inequality is integrable over t . Therefore, 

. 
d

dω
 f (ω) =  j

+∞
ˆ

 ∞

te t
2/2e jωt dt.

Integration by parts yields for R > 0. 

. 

+R
ˆ

 R

te t
2/2e jωt dt =  e t2/2e jωt

   
t=+R

t= R
 jω

+R
ˆ

 R

e t
2/2e jωt dt,

and thus
d f
dω

(ω) =  lim
R→∞

ω
+R
´

 R
e t

2/2e jωt dt =  ω f (ω)..
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The Fourier transform  f . therefore satisfies the initial value problem 

. ẏ(ω) =  ωy(ω) with y(0) =  f (0).

The unique solution to this problem is y(ω) =  f (ω) =  f (0)e ω2/2
.. With the 

known value of the integral  f (0) =
ˆ +∞

 ∞
e t

2/2 dt =
√
2π . (see also Example 2 

on p. 286), it therefore follows 

.  f (ω) =
√
2πe ω

2/2.

We note that the Fourier transform maps the Gaussian function f (t) = e t
2/2

. 

onto itself up to the factor
√
2π .. In other words, the Gaussian function is an 

eigenfunction of the Fourier transform with the eigenvalue
√
2π.. 

10.3 Gibbs Phenomenon and Smoothing 

In the Fourier inversion formula on p. 271, we obtained f as the pointwise limit of 

the functions fΩ . for Ω →∞.: 

. lim
Ω→∞

fΩ(t) = f (t+)+ f (t )
2

,

where fΩ . is defined by fΩ(t) = 1

2π

+Ω
ˆ

 Ω

 f (ω)ejωt dω = 1

2π

+∞
ˆ

 ∞

 f (ω)rΩ(ω)ejωt dω.. 

As with partial sums of Fourier series, the spectral values are weighted with the 

rectangular window rΩ(ω) =
 

1 for |ω|  Ω

0 for |ω| > Ω
.. Similar as in the case of Fourier 

series, the Gibbs phenomenon can again be observed at jump discontinuities of f 

when approximating by fΩ . (cf. p. 23). It is sufficient to consider only real-valued 

functions f for this section. 

Theorem 10.2 (The Gibbs Phenomenon in Fourier Transform) If f is contin-

uous in [a, t0[. and ]t0, b]., f (t0+)  f (t0 ) > 0. and f otherwise satisfies the 

conditions of the inversion formula, then 

. lim
Ω→∞

max
a<t<t0

(f (t) fΩ(t)) = lim
Ω→∞

max
t0<t<b

(fΩ(t) f (t)) ≈ 0.09·(f (t+) f (t )).

Proof To explain this, we assume that f has only a single jump discontinuity at 

t0 = 0.. Then f is of the form f (t) = fc(t) + (f (0+)  f (0 ))s(t). with a 
continuous function fc . and the jump function (f (0+)  f (0 ))s(t).. In terms of 

Cauchy principal value integrals (cf. p. 271), it follows that
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. fΩ(t) =
+∞
ˆ

 ∞

fc(s)
sin(Ω(t  s))

π(t  s)
ds + (f (0+) f (0 ))

∞̂

0

sin(Ω(t  s))

π(t  s)
ds,

where the first integral converges to fc(t). everywhere for Ω → ∞.. With the 

substitution Ω(t  s) = x ., the second integral results in (cf. p. 26) 

. 

∞̂

0

sin(Ω(t  s))

π(t  s)
ds =

Ωt
ˆ

 ∞

sin(x)

πx
dx =

0
ˆ

 ∞

sin(x)

πx
dx +

Ωt
ˆ

0

sin(x)

πx
dx

= 1

2
+

Ωt
ˆ

0

sin(x)

πx
dx = 1

2
+ 1

π
Si(Ωt).

This integral has, for any Ω > 0., on the positive half-axis at t = π

Ω
. the maximum 

1

2
+ 1

π
Si(π) ≈ 1.09., corresponding to the minimum of approximately  1.09. at 

t =  π

Ω
.. Thus, an overshoot of about 9% of the jump height of f is also observed 

near the jump discontinuity for arbitrarily large Ω ..   

Smoothing by Weight Functions 

If one uses, as in Fejér’s theorem, a triangular window as a weight function 

in the spectral domain, the approximation function is smoothed and the Gibbs 

phenomenon is eliminated (cf. p. 31 and p. 136). As with Fejér’s theorem for Fourier 

series, for continuous f andΩ →∞., one even obtains uniform convergence of the 

smoothed approximation functions  fΩ . to f , if the functions  fΩ . are defined by 

.  fΩ(t) = 1

2π

+Ω
ˆ

 Ω

 f (ω)
 
1 |ω|

Ω

 
ejωt dω = 1

2π

+Ω
ˆ

 Ω

+∞
ˆ

 ∞

f (s)
 
1 |ω|

Ω

 
ejω(t s)dsdω.

With the interchange of the order of integration and the Fourier transform of the 

triangular window calculated in Example 2, we get (Exercise) 

.  fΩ(t) =
+∞
ˆ

 ∞

f (s)
2 sin2(Ω(t  s)/2)

πΩ(t  s)2
ds.

Since the convolution kernel is positive, the approximation in the vicinity of a 

jump discontinuity of f is monotonic. This shows the disappearance of the Gibbs 

phenomenon. Due to the lower weight of the higher frequency components, the 

approximation  fΩ . is less oscillatory compared to fΩ ., and the convergence to f for 

Ω →∞. is improved.
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The convolution kernel corresponding to the triangular window (1  
|ω|/Ω)rΩ(ω). is again called the Fejér kernel . Similar results can also be achieved 

with other window functions, such as the Gaussian curve. 

Results on Fourier transforms with weight functions can be found, for example, 

in Champeney (1989) or Chandrasekharan (1989). They play an important role 

when one wants to achieve good pointwise approximations of f within given 

tolerance ranges in signal processing. 

10.4 Calculations with Fourier Transforms 

For this section, we make the following general assumption: f and g are inte-

grable, piecewise continuously differentiable, real- or complex-valued functions 

with Fourier transforms  f . and  g .. f and  f . and g and  g . are called correspondence 

pairs or Fourier pairs, and these correspondences are denoted by 

. 

As with Fourier series and discrete Fourier transform—see again Sects. 4.1–4.6 and 

p. 97—a series of properties for calculations with Fourier transforms results, which 

we document in the correspondence notation. We denote the parameter t as time and 

the parameter ω . as angular frequency. 

These relationships are readily obtained from the definition of the Fourier 

transform and from the substitution rule for integrals (Exercise). 

Differentiation in Time Domain If, in addition to the general condition of this 

section, the functions f are continuous and f  . is integrable, then for the Fourier 
transform of f  = df / dt . 

.

 df
dt

(ω) = jω f (ω).
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From the integrability of f  ., it follows that lim
t→+∞

f (t) = f (0)+
∞̂

0

f  (t) dt . exists 

and is zero. Accordingly, lim
t→ ∞

f (t) = 0.. With integration by parts, one then 

obtains 

. 

 df
dt

(ω) =  
+∞
ˆ

 ∞

( jω)f (t)e jωt dt = jω f (ω).

Convolution in Time Domain For the Fourier transform f ∗ g . of the convolution 

f ∗ g ., it holds 

.  f ∗ g =  f · g.

This is seen by exchanging the order of integration: 

.  f ∗ g(ω) =
+∞
ˆ

 ∞

 +∞ˆ

 ∞

f (s)g(t  s) ds
 
e jωt dt

=
+∞
ˆ

 ∞

 +∞ˆ

 ∞

g(t  s)e jω(t s) dt
 
f (s)e jωs ds

=
+∞
ˆ

 ∞

 g(ω)f (s)e jωs ds =  f (ω) g(ω).

Remark The definition of the Fourier transform is not uniform in the literature. 

Also common are the following definitions of the Fourier transform of a function f : 

. 

+∞
ˆ

 ∞

f (t)e 2πjωt dt ,
1√
2π

+∞
ˆ

 ∞

f (t)e 2πjωt dt ,

+∞
ˆ

 ∞

f (t)e+jωt dt.

Such differences should be noted in various literature sources. Accordingly, the 

given correspondences between “time functions” and “spectral functions” should 

be converted with a factor and the scaling relationship. 

Examples 

1. From Example 3 of p. 276, it follows for f (t) = e a|t | = e at s(t) + eat s( t)., 
a > 0., s(t). the unit step function (Fig. 10.4), 

. f (ω) = 1

a + jω
+ 1

a  jω
= 2a

a2 + ω2
.
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Fig. 10.4 The function f (t) = e a|t | . and its Fourier transform 

Fig. 10.5 An amplitude modulated cosine and its Fourier transform 

2. The function f (t) = e a|t |cos(Ωt) = 1

2
e a|t |(ejΩt +e jΩt ), a > 0., is a cosine 

oscillation amplitude modulated by e a|t | .. Its spectral function is frequency 
shifted compared to that of e a|t | . (Fig. 10.5). 

.  f (ω) = a

a2 + (ω  Ω)2
+ a

a2 + (ω +Ω)2
.

3. For the Gaussian curve Gm
σ (t) =

1

σ
√
2π

e (t m)2/(2σ 2), m ∈ R, σ > 0., one 

calculates the Fourier transform according to Example 4 on p. 277 using scaling 

and shifting rules: 

.  Gm
σ (ω) = e jωm σ

2ω2/2.

The convolution G
m1
σ ∗ G

m2
τ . of two Gaussian functions then has the spectral 

function 

.  Gm1
σ (ω) Gm2

τ (ω) = e jω(m1+m2) (σ 2+τ 2)ω2/2 =  Gm1+m2√
σ 2+τ 2

(ω).

The convolutionG
m1
σ ∗Gm2

τ . uniquely determined by the spectral function via the 

inverse Fourier formula is therefore again a Gaussian curve (cf. Exercise A12 in 

Chap. 8): 

.Gm1
σ ∗Gm2

τ = G
m1+m2√

σ 2+τ 2
.
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Fourier transforms of Gaussian functions play a significant role in probability 

theory. However, we will not go deeper into the extensive applications of the 

Fourier transform in this field. Interested readers are referred to the reference 

Kawata (1972) and the further literature mentioned there. 

Continuity, Differentiability, and Asymptotic Behavior 

1. From the definition of the spectral function  f . of f , it follows 

. | f (ω)|  
+∞
ˆ

 ∞

|f (t)| dt <∞ (ω ∈ R),

and by interchanging limit and integration, 

. lim
ω→ω0

 f (ω) = lim
ω→ω0

+∞
ˆ

 ∞

f (t)e jωt dt =
+∞
ˆ

 ∞

f (t)e jω0t dt =  f (ω0).

Riemann-Lebesgue Lemma. From the Riemann-Lebesgue Lemma on page 50, 

we have 

. lim
|ω|→∞

| f (ω)| = 0.

Thus, the Fourier transform  f . is a continuous and bounded function, and it 

vanishes for |ω| → ∞.. 

2. As with Fourier series, there is a relationship between the differentiability prop-

erties of a function f and the asymptotic behavior of its spectral function  f . on 

the one hand and between the asymptotic behavior of f and the differentiability 

properties of  f . on the other hand: 

(a) If in addition to the general assumption of the section f is k-times continu-

ously differentiable and f, f  , . . . , f (k)
. are integrable, then for ω ∈ R. 

. |ω|k| f (ω)|  
+∞
ˆ

 ∞

|f (k)(t)| dt.

(b) If g(t) = tkf (t). is integrable, then  f . is k-times continuously differentiable, 

and for ω ∈ R. 

.  g(ω) = j k  f (k)(ω).

Roughly speaking: The smoother f is, the faster  f . decays; the faster f decays, 

the smoother  f . is.
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2(a) follows from the differentiation rule, and 2(b) follows inductively by 

interchanging differentiation and integration from proving the assertion for the 

case k = 1.: 

. j
d f
dω

(ω) = j

+∞
ˆ

 ∞

f (t)
d

dω
e jωt dt =

+∞
ˆ

 ∞

tf (t)e jωt dt =  g(ω).

Plancherel Equation and Multiplication Theorem 

Theorem 10.3 (Plancherel Equation and Multiplication Theorem) If f and g 

are square-integrable, then: 

1. Plancherel equation in the two variants 

.

+∞
ˆ

 ∞

|f (t)|2dt = 1

2π

+∞
ˆ

 ∞

| f (ω)|2 dω. (10.7) 

+∞
ˆ 

 ∞ 

f (t)g(t)dt = 
1 

2π 

+∞
ˆ 

 ∞

 f (ω) g(ω) dω. (10.8) 

2. The Multiplication Theorem 

.  f · g = 1

2π
 f ∗ g. (10.9) 

The left-hand side of the Plancherel equation (10.7) is referred to as the normalized 

signal energy (see page 54). Functions f with

+∞
ˆ

 ∞

|f (t)|2 dt < ∞. are also called 

energy signals. The signal energy can also be calculated from the spectral function 
 f . according to (10.7). In particular, the spectral function of energy signals is again 

a square-integrable function. The multiplication theorem plays an important role in 

amplitude modulation in communication systems and is therefore often referred to 

as the modulation theorem. 

Proof (1) Define h(s) =
+∞
ˆ

 ∞

f (t)f (t  s) dt .. Under our assumptions, the 

convolution h is integrable, bounded, and continuous (see Appendix B). By the 

convolution theorem and the symmetry relationship from page 279, h has the Fourier 

transform 

. h(ω) =  f (ω) f (ω) = | f (ω)|2.
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We have h(0) =
+∞
ˆ

 ∞

|f (t)|2 dt ., and using δn(t) =
n

π(1+ n2t2)
. (cf. p. 182), we get 

. h(0) = lim
n→∞

+∞
ˆ

 ∞

h(t)δn(t) dt.

Since δn(t). is the Fourier transform of
1

2π
e |ω|/n . (see page 280), we get 

. h(0) = 1

2π
lim
n→∞

+∞
ˆ

 ∞

h(t)
 +∞ˆ

 ∞

e |ω|/ne jωt dω
 
dt

= 1

2π
lim
n→∞

+∞
ˆ

 ∞

e |ω|/n
 +∞ˆ

 ∞

h(t)e jωt dt
 
dω

= 1

2π
lim
n→∞

+∞
ˆ

 ∞

e |ω|/n h(ω) dω = 1

2π

+∞
ˆ

 ∞

| f (ω)|2 dω,

thus proving (10.7). The interchange of limit and integral in the last step is possible 

because the functions e |ω|/n h(ω)  0. form an increasing sequence of functions 

(monotone convergence theorem, see Appendix B, p.  493). 

To show Eq. (10.8), we use the abbreviation a(f, g) =
+∞
ˆ

 ∞

f (t)g(t) dt .. The  

polarization identity (left to the reader as an exercise) is valid: 

. a(f, g) = 1

4
(a(f+g, f+g) a(f g, f g))

+ j

4
(a(f+jg, f+jg) a(f jg, f jg)) .

Using (10.7), all arguments f +g, f  g, f +jg, f  jg . can be replaced by their 

respective Fourier transforms multiplied by the factor
1√
2π

.. Due to the linearity of 

the Fourier transform, (10.8) then follows: a(f, g) = 1

2π
a( f , g)., i.e., 

.

+∞
ˆ

 ∞

f (t)g(t) dt = 1

2π

+∞
ˆ

 ∞

 f (ω) g(ω) dω.
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Proof of (2) For h(t) = g(t)ejωt .,  h(s) =  g(s  ω) =  g(ω  s). by the 

symmetry and frequency shifting properties on page 279. From the Plancherel 

equation (10.8), the multiplication theorem follows: 

. 

+∞
ˆ

 ∞

f (t)g(t)e jωt dt =
+∞
ˆ

 ∞

f (t)h(t) dt

= 1

2π

+∞
ˆ

 ∞

 f (s) h(s) ds

= 1

2π

+∞
ˆ

 ∞

 f (s) g(ω  s) ds = 1

2π
 f ∗ g(ω).

  

Remark The Plancherel equation, the multiplication theorem, and the convolution 

theorem also hold for arbitrary square Lebesgue-integrable functions and play a 

central role in many applications of Fourier analysis. For further details, see also 

Sect. 10.7 and the application examples in Chaps. 11 to 14. 

Examples 

1. Applying the Plancherel equation (10.7) to the rectangular function 

. f (t) =
 
1 for |t |  1

0 for |t | > 1,

we immediately compute the integral

+∞
ˆ

 ∞

sin2(ω)

ω2
dω = π

2

+∞
ˆ

 ∞

|f (t)|2 dt = π.. 

2. For the Gaussian function f (t) = e t
2/2

., it follows from page 277 
 f (ω) =  f (0)f (ω).. The  value of  f (0). is also shown by the Plancherel equation: 

. 

+∞
ˆ

 ∞

|f (t)|2 dt =
 f (0)2
2π

+∞
ˆ

 ∞

|f (ω)|2 dω , so  f (0) =
+∞
ˆ

 ∞

e t
2/2 dt =

√
2π.

Summary With the Fourier inversion formula, we have now obtained a representa-

tion as a superposition of harmonic functions for integrable, piecewise continuously 

differentiable functions and recognized important properties of their Fourier trans-

forms, such as similarity, translation, smoothness, and decay properties, Plancherel 

equation, convolution, and multiplication theorem. However, disadvantages of the
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Fourier transform on the function class considered so far are also apparent. Many 

important functions for applications, such as the unit step function, polynomials, 

and periodic functions like sin(t)., are not integrable over R. and thus do not have 

Fourier transforms in the sense considered so far. These remaining limitations will 

be overcome in the next section, where we introduce the Fourier transform on a 

sufficiently large class of distributions for many practical questions. In this class, 

all the abovementioned functions will be contained as regular distributions, and 

the Fourier transform will be bijective and thus invertible. The transformation rules 

obtained will remain valid in the distributional sense. 

10.5 The Fourier Transform of Tempered Distributions 

The approach to find a class of functions S . on which the Fourier transform is an 

invertible mapping is provided by the statements about differentiability and decay 

properties: For those infinitely differentiable functions that, together with all their 

derivatives, decay faster than any power of 1/|t |. as |t | → ∞., the Fourier transforms 

also have these properties, and the Fourier inversion formula shows that the Fourier 

transform is bijective on this class of functions. 

The Fourier Transform of Rapidly Decreasing Functions 

Definition A function ϕ : R → C. is called a rapidly decreasing function, if ϕ . is 

infinitely differentiable and 

. lim
|t |→∞

tmϕ(k)(t) = 0

holds for arbitrary natural numbers k,m  0.. The set of all rapidly decreasing 

functions is denoted by S . and is called Schwartz space in honor of L. Schwartz. 

Every test function ϕ ∈ D . (cf. Chap. 8) belongs to S ., so D ⊂ S .. Other typical 

examples are functions of the form P(t)e t
2
.with a polynomial P . Not belonging to 

S . are, for example, 1/(1+|t |2). or e |t | ., because the first function decays too slowly 
and the second is not differentiable. The following properties of S . are established: 

1. S . is a function vector space, i.e., linear combinations of functions in S . are again 

in S .. 

2. Products of functions in S . are again in S ., and products Pϕ . between functions 

ϕ ∈ S . and polynomials P are in S .. 

3. Arbitrary derivatives of functions in S . are again in S .. Every ϕ ∈ S . is integrable, 

because with a (depending on ϕ .) suitable constant M , due to the rapid decay of 

ϕ ., it holds that
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. 

+∞
ˆ

 ∞

|ϕ(t)| dt  M

+∞
ˆ

 ∞

(1+ |t |) 2 dt <∞.

4. For all ϕ ∈ S ., the translations ϕ(t  t0)., t0 ∈ R., and the products ϕ(t)e±jωt ., 
ω ∈ R., belong again to S .. 

5. For every ϕ ∈ S ., the Fourier transform  ϕ . also belongs to S .. 

All formulas for the Fourier transform shown in 10.1 and 10.4 naturally also apply to 

functions in S .. The fact that with ϕ ∈ S . also  ϕ . belongs to S ., the symmetry property 

from page 279, and the Fourier inversion formula together result in the following 

main theorem about the Fourier transform on S .. 

Theorem 10.4 (The Fourier Transform on S .) The Fourier transform is a linear, 

bijective mapping F : S → S .with the inverse mapping F 1 ., given for Fϕ =  ϕ . by 

. F
 1(Fϕ)(t) = ϕ(t) = 1

2π

+∞
ˆ

 ∞

 ϕ(ω)ejωt dω.

Remark In the inversion formula for functions in S ., the previously used Cauchy 

principal value integral can also be understood as an improper Riemann integral or 

as a Lebesgue integral over R., since on S . all three integral concepts lead to the same 

result (cf. Appendix B, p.  496, theorem of dominated convergence for Ω → ∞. 

applied to 1[ Ω,Ω] ϕ).. 
Consequences 

1. The symmetry property shows   ϕ (t) = F(Fϕ)(t) = 2πϕ( t).. 
2. Since with f . and g . in S . also  f · g . lies in S ., the bijectivity of the Fourier transform 

on S . shows that with any two functions f and g in S ., their convolution f ∗ g . is 

again a rapidly decreasing function in S .: 

. f ∗ g = F 1F(f ∗ g) = F 1(Ff · Fg) ∈ S.

3. For an integrable function f and ϕ . in S ., more generally also for integrable ϕ ., 

one obtains by interchanging the order of integration 

.

+∞
ˆ

 ∞

 f (s)ϕ(s) ds =
+∞
ˆ

 ∞

ϕ(s)

⎛
⎝

+∞
ˆ

 ∞

f (t)e jst dt

⎞
⎠ ds

=
+∞
ˆ

 ∞

f (t)

⎛
⎝

+∞
ˆ

 ∞

ϕ(s)e jst ds

⎞
⎠ dt =

+∞
ˆ

 ∞

f (t) ϕ(t) dt .
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Thus, the integrand  f ϕ . yields the same integral as the integrand f ϕ .. This  

immediately recalls the definition of the generalized derivative ḟ . for distributions 

f (cf. p. 171). There we defined for a distribution f and a test function ϕ . 

.  ḟ, ϕ =
+∞
ˆ

 ∞

ḟ (t)ϕ(t) dt =  
+∞
ˆ

 ∞

f (t)ϕ (t) dt =   f, ϕ  ;

thus we analogously replaced the “integrand” ḟ ϕ . except for the factor  1. by 

f ϕ .. This observation conveys the idea to introduce the Fourier transform for 

distributions according to the same recipe. Instead of the test function set D . and 

the distributions in D ., one now uses the new, larger test function space S ., defines 

distributions on S . as linear continuous functionals, and introduces their Fourier 

transform. Regarding the continuity on S ., one uses the following convergence 

definition according to L. Schwartz: 

Definition A sequence of functions ϕn . in S . converges in S . to ϕ ∈ S ., if for arbitrary 

natural numbers m, k  0. all functions tmϕ
(k)
n (t). converge uniformly to tmϕ(k)(t)., 

i.e., 

. sup
t∈R
|tmϕ(k)

n (t) tmϕ(k)(t)| → 0 for n→∞.

We then write ϕ = S-lim
n→∞

ϕn .. 

A sequence of functions ϕn . thus converges in S . to the zero function if the ϕn . and 

all their derivatives converge uniformly to zero and decay faster than any power of 

1/|t |. as |t | → ∞.. With ϕn ., also products Pϕn .with polynomials P converge to zero 

in S .. With this concept of convergence for sequences of functions in S ., it follows 

continuity of the Fourier transform on S .. 

Continuity of the Fourier Transform on S . 

Theorem 10.5 If a sequence of functions ϕn . converges in S . to ϕ ., then for the 

Fourier transforms S-lim
n→∞

 ϕn =  ϕ.. 

Proof To prove this, it suffices to consider the case S-lim
n→∞

ϕn = 0.. First, we note that 

for arbitrary ψ ∈ S ., the following estimate holds: 

. sup
ω∈R

| ψ(ω)|  sup
t∈R
|π(1+ t2)ψ(t)|.
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This estimate results from | ψ(ω)|  
+∞
ˆ

 ∞

|ψ(t)| dt . by integrating the inequality 

|ψ(t)|  (π(1+ t2)) 1 sup
t∈R
|π(1+ t2)ψ(t)|., noting that 

. 

+∞
ˆ

 ∞

1

π(1+ t2)
dt = 1

is true. Moreover, it is clear (cf. p. 279) that for m, k ∈ N0 . 

. |ωm ϕ(k)
n (ω)| = |

+∞
ˆ

 ∞

(tkϕn(t))
(m)e jωt dt | = | ψn(ω)|

with ψn(t) = (tkϕn(t))
(m) ∈ S . is true. Because with S-lim

n→∞
ϕn = 0. also 

S-lim
n→∞

ψn = 0. holds, it follows from the shown estimate sup
ω∈R

| ψn(ω)| → 0. and 

sup
ω∈R

|ωm ϕ(k)
n (ω)| → 0. for n → ∞.. This means S-lim

n→∞
 ϕn = 0. and shows the 

continuity of the Fourier transform on S ..   

Tempered Distributions 

Definition Every continuous linear mapping T : S → C. is called a tempered 

distribution. The set of all tempered distributions is denoted by S  .. 

Instead of T (ϕ)., we use the notation  T , ϕ . for the value of a distribution T ∈ S  . 
on a test function ϕ ∈ S . as in Chap. 8. The continuity of a linear functional T ∈ S  . 
on S . means that lim

n→∞
 T , ϕn =  T , ϕ . if ϕ = S-lim

n→∞
ϕn .. From the definition, it 

follows: 

1. S  . is a vector space. 
2. The restrictions of distributions in S  . to D ⊂ S . yield distributions in D .. In this  

sense, S  ⊂ D .. For T ∈ D . with compact support, T (ϕ)., ϕ ∈ S ., is defined 

and continuous on S .. Distributions with compact support are thus understood 

as elements of S  .. Many examples of distributions in Chap. 8 are also examples 

of distributions belonging to S  .. Derivatives Ṫ . and products f T  with infinitely 

often differentiable functions f are defined for T ∈ S  . as before (see p. 173). For 
distributions T ∈ S  ., the generalized derivatives T (k)

., k ∈ N,. also belong to S  .. 
3. It can be shown that for T ∈ S  ., the product with an infinitely often differentiable 

function f is tempered if and only if f and all derivatives f (k), k ∈N., have at
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most polynomial growth, i.e., if for every k ∈ N0 . there exists a natural number 

N such that lim
|t |→∞

|t | N |f (k)(t)| = 0. holds (Schwartz 1957). 

We prove only that the product f T ∈ S  . for such functions f and T ∈ S  .: 
For ϕ ∈ S . we have by the product rule that every derivative Dp(f ϕ). tends to 

zero for |t | → ∞. faster than every power of 1/|t |.. Thus, f ϕ ∈ S . and the product 

f T  is well defined. To see the continuity of f T , we observe  P(t)Dqϕk ∞→ 0. 

with k → ∞. for every sequence ϕk → 0. in S ., every polynomial P , and every 

derivative Dq
.. Since derivatives of f can be majorized by polynomials, we have 

also  tqDp(f ϕk) ∞ → 0. for any p, q ∈ N0 ., i.e., f ϕk → 0. in S ., which proves 

the continuity of f T  . 

Definition The vector space of all infinitely often differentiable functions f with 

f T ∈ S  . for T ∈ S  . is called the space OM . of multipliers in S  .. Its elements are 

called slowly increasing or polynomially bounded. 

Before we give examples of tempered distributions, we introduce the Fourier 

transform on S  . according to the previously announced procedure. 

The Fourier Transform on S  
. 

Definition The Fourier transform  T . of a distribution T ∈ S  . is defined for ϕ ∈ S . 

by   T , ϕ =  T , ϕ .. 
The definition is consistent with the definition of the Fourier transform for 

integrable functions f . If we consider f as a regular distribution Tf ., then  Tf = T f . 

holds: 

For ϕ ∈ S ., it follows by changing the order of integration 

.   Tf , ϕ =  f, ϕ =
+∞
ˆ

 ∞

+∞
ˆ

 ∞

f (ω)ϕ(t)e jωt dt dω =   f , ϕ =  T f , ϕ .

The Fourier transform of distributions that do not belong to S  . is not defined here. 
For more information, see, for example, Gel’fand et al. (1964). 

Inverse Fourier Transform on S  
. 

Using the same convergence concept for distributions as on p. 182, we write T =
S  -lim
n→∞

Tn ., if lim
n→∞

 Tn, ϕ =  T , ϕ . for all ϕ ∈ S .. Thus, the Fourier transform F . on 

S  . is linear and invertible, and S  -lim
n→∞

F(Tn) = F(T ). holds for T = S  -lim
n→∞

Tn .. The  

inverse transform F 1 . is given for T ∈ S  . and ϕ ∈ S . by
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.  F 1T , ϕ =  T ,F 1ϕ .

These statements hold for T ∈ S  ., T = S  -lim
n→∞

Tn ., ϕ ∈ S . as 

. 

 FF 1T , ϕ =  T ,F 1Fϕ =  T , ϕ ,
 F 1FT , ϕ =  T ,FF 1ϕ =  T , ϕ ,
  Tn, ϕ =  Tn, ϕ  →

n→∞
 T , ϕ =   T , ϕ .

The last property is a continuity property of the Fourier transform on S  .. For  

mathematicians with knowledge of functional analysis, it should be noted that this is 

the continuity of F .when S  . is equipped with the so-called weak topology, denoted 
as σ(S  ,S).-topology. For more details, see, for example, Rudin (1991). 

The inversion formulas F 1(FT ) = T . and F(F 1T ) = T . are equations in 

S  . and usually not pointwise relationships like the inversion formulas for functions 

because distributions T generally do not have values at individual points. 

Calculating with Fourier Transforms in S  
. 

The transformation rules of p. 181 apply in the sense of coordinate transformations 

for distributions also in S  .. 
We show this statement exemplarily for translations and derivatives: 

1. One obtains the correspondence 

. 

with A(t) = t  t0 . and the notation TA . for the translation of T , with ϕ ∈ S . and 

et0(x) = e jxt0 . from the correspondence for a translation of  ϕ . (see p. 180): 

.   TA, ϕ =  T , ϕ ◦ A 1 =  T ,  et0ϕ =  et0 T , ϕ .

2. For generalized derivatives one calculates as follows: 

. 

For ϕ ∈ S . and the polynomial P(x) = (jx)k ., the following holds: 

.  T (k), ϕ =  T , ( 1)k ϕ(k) =  T ,  Pϕ =  P T , ϕ ,
 ( 1)k PT , ϕ =  ( 1)kPT, ϕ = ( 1)k T , ϕ(k) =   T (k), ϕ .
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From the symmetry property F2T (ω) = 2πT ( ω). (see p. 279), one recognizes 
that the Fourier transform F . satisfies the relation F4(T ) = 4π2T .. Therefore, the 

inverse transformationF 1 = (4π2) 1F3
.and F .has only four possible eigenvalues 

±
√
2π,±j

√
2π..Examples of eigenfunctions of the Fourier transform can be found 

on p. 296. 

We now provide some typical examples of distributions in S  . and their Fourier 
transforms. 

Examples of Tempered Distributions and Their Fourier 

Transforms 

1. The δ .-impulse. The δ .-impulse has only the zero point as its support and belongs 

to S  .. From the equation 

.  δ, ϕ =  ϕ(0) =
+∞
ˆ

 ∞

ϕ(t) dt =  1, ϕ ,

it follows that its Fourier transform is δ = 1.; thus 

. 

In particular, the constant function f = 1. belongs to S  .. Conversely, for the 
Fourier transform of f = 1. and ϕ ∈ S ., 

.   f , ϕ =  f,   ϕ  = 2π

+∞
ˆ

 ∞

ϕ( t) dt = 2π

+∞
ˆ

 ∞

ϕ(t) dt = 2π ϕ(0) =  2πδ, ϕ .

The resulting Fourier transform (see also p. 184) 

.  f = 1 = 2πδ

is often noted in the form

+∞
ˆ

 ∞

e jωt dt = 2πδ(ω).. Note that e jωt . is not 

integrable, and the left side is not defined in the conventional sense and can 

only be understood as a symbol for the distribution 2πδ(ω).. 

The Fourier transform of the impulse δ(t  t0). is given by the shift rule as 

e jωt0 ..
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2. The unit step function. The function s(t) =
 
1 for t  0

0 for t < 0
. is a regular distri-

bution in S  . and has the generalized derivative ṡ = δ .. From the differentiation 

rule for Fourier transforms, it follows 

.  ̇s(ω) = jω s(ω) = δ(ω) = 1.

Considering that jωkδ(ω) = 0., we obtain (see p. 174) 

.  s(ω) = 1

jω
+ kδ(ω).

1/ω. denotes the singular distribution vp(1/ω)., defined by the principal value 

(p. 167), and k ∈ C. is a constant. To determine this constant k, we apply  s . to 
the test function ϕ(ω) = e ω

2/2 ∈ S .. Then, on the one hand, 

.   s, ϕ =  s, ϕ =  s(t),
√
2πe t

2/2 =
√
2π

∞̂

0

e t
2/2 dt = π,

and on the other hand 

.   s, ϕ =  j  1
ω
, e ω

2/2 + k δ(ω), e ω2/2 = k,

since the first term on the right side is zero, because 1/ω. is an odd function and 

e ω
2/2

. is an even function. Thus we get k = π .; therefore 

. 

For the sign function sgn(t) = s(t) s( t)., we get 

. 

3. Slowly growing functions. Every locally integrable function f that grows 

slowly, i.e., |t | N |f (t)| → 0. for |t | → ∞. with an appropriate choice of 

N ∈ N., belongs to S  .. Choose C > 0. and N so that for t outside a suitable 

bounded neighborhood U of zero the estimate 

.|f (t)|  C(1+ |t |2)N
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holds, and consider a sequence of functions ϕn . in S . with S-lim
n→∞

ϕn = 0.; then it 

follows 

. εn = sup
t∈R

(1+ |t |2)N+1|ϕn(t)| → 0 for n→∞

and thus 

. | f, ϕn |  sup
t∈U
|ϕn(t)|

ˆ

U

|f (t)| dt +
ˆ

R\U

C(1+ |t |2)N+1(1+ |t |2) 1|ϕn(t)| dt

 sup
t∈U
|ϕn(t)|

ˆ

U

|f (t)| dt + Cπεn → 0.

This shows the continuity of the regular distribution corresponding to f on S .. 

In particular, all polynomials and also the functions ejω0t , sin(ω0t)., and 

cos(ω0t). belong to the space S
 
.. 

Periodic distributions T are, according to the theorem on p. 211, always 

representable as generalized Fourier series of the form 

. T (t) =
+∞ 

k= ∞
cke

jkω0t

with polynomially bounded coefficients ck .. They are therefore tempered as the 

sum of a constant and the generalized derivative f (n)
. of a continuous periodic 

function f (n suitable, see Sect. 9.1). 

Analogously, the slowly growing regular distribution f (t) = ln(|t |). and its 
generalized derivatives and thus also the pseudofunctions pf(t m). for m ∈ N. 
belong to S  . and all rational functions understood as pseudofunctions. 

Similarly, all integrable and all measurable bounded functions belong to 

S  .. Also all p-integrable functions f (i.e., |f |p . is integrable) are for p > 1. 

tempered distributions. This follows with 1/p + 1/q = 1. from the Hölder 

inequality 

. | f, ϕn |  

⎛
⎝

+∞
ˆ

 ∞

|f (t)|pdt

⎞
⎠

1/p⎛
⎝
+∞
ˆ

 ∞

|ϕn(t)|qdt

⎞
⎠

1/q

since the right-hand side converges for ϕn → 0. in S . to zero as well. 

Examples of Distributions That Are Not Tempered 

The functions et , e t , et
2
. are examples of distributions that belong to D ., but  

due to their large growth as |t | → ∞., they do not belong to S  .. They do not 
possess Fourier transforms in S  ..
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Remark It can be shown that distributions T ∈ D . coincide locally, i.e., on 
open bounded sets, with generalized derivatives of continuous functions of 

suitably high order. Distributions with support inside a compact set K can be 

represented as generalized derivatives of continuous functions with support in 

K , of suitably high order. Tempered distributions are generalized derivatives of 

certain slowly growing continuous functions of a certain order. The proofs of 

these remarkable theorems on the structure of distributions go beyond the scope 

of our introduction. They can be found in the fundamental monograph “Théorie 

Des Distributions” by Laurent Schwartz (1957) or in Vladimirov (2002). 

As further examples, we calculate the Fourier transforms for f (t) = ln(|t |)., 
g(t) = |t | 1/2 ., the Fourier transforms of the Hermite functions, of polynomials, 

generalized Fourier series, and rational functions. 

4. The Fourier Transform of f (t) = ln(|t |).. From ḟ (t) = vp(1/t).,  ̇f (ω) = jω f ., 

and the Fourier transform of ḟ (t) = vp(1/t). 

. 

it follows that 

.  f (ω) =  πpf(|ω| 1)+ kδ(ω).

To determine the constant k, we calculate the integrals I1 =   f (ω), e ω
2/2 . and 

I2 =  pf(|ω| 1), e ω
2/2 ..Here, we use properties of the Euler Gamma function 

Γ (x).. 

From Γ (x) =
∞́

0

e uux 1du., we obtain, with the substitution u = t2/2. and 

differentiation under the integral for x = 1/2., the  value of Γ  (1/2).: 

. Γ  
 
1

2

 
= 2
√
2

∞̂

0

e t
2/2 ln(t)dt  

√
π ln(2).

With the Euler-Mascheroni constant γ ≈ 0.5772. and Γ  (1/2) = ( γ  
2 ln(2))

√
π ., we have  

. I1 =  ln(|t |),
√
2πe t

2/2 = 2
√
2π

∞̂

0

e t
2/2 ln(t)dt

=
√
πΓ  

 
1

2

 
+ π ln(2) =  π(γ + ln(2)).

For I2 ., with the substitution ω = t1/2 . and integration by parts (see p. 168)
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. I2 = 2

1
ˆ

0

e ω
2/2  1

ω
dω + 2

∞̂

1

e ω
2/2

ω
dω

= 1

2

∞̂

0

ln(t)e t/2dt  1

2

∞̂

1

ln(t)e t/2dt +
∞̂

1

e t/2

t
dt.

Since the last two terms add up to zero, with t = 2u. 

. I2 =
∞̂

0

ln(2u)e udu = ln(2)+ Γ  (1) = ln(2) γ.

Thus, the constant k =  2πγ ., and we have the result 

. 

5. The Fourier Transform of f (t) = |t | 1/2 .. The even function f (t) = |t | 1/2 . is 
regular and belongs to S  .. It holds that 

.  f (ω) = 2

∞̂

0

t 1/2 cos(|ω|t)dt = 2|ω| 1/2
∞̂

0

u 1/2 cos(u)du.

With the known value
√
π/2. of the Fresnel integral

∞́

0

u 1/2 cos(u)du., we  

obtain the correspondence 

. 

|t | 1/2 . is thus a generalized eigenfunction of the Fourier transform with 

eigenvalue
√
2π .. 

6. The Fourier Transforms of Hermite Functions. The Hermite polynomials Hn . 

are defined for n  0. by 

. Hn(t) = ( 1)net2 dn

dtn
e t

2

.

One obtains from 

.e t
2

Hn(t) = ( 1)n dn

dtn
e t

2 =  d

dt

 
e t

2

Hn 1(t)
 

= e t
2  
2tHn 1(t) H  

n 1(t)
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the relationship 

. Hn(t) = 2t Hn 1(t) H  
n 1(t).

The Hermite functions hn(t) = e t
2/2Hn(t). then satisfy the relation 

. h n(t) =  te t
2/2Hn(t)+ e t

2/2H  
n(t).

From this, with the above equation for Hn . and H
 
n . 

. hn+1(t) = t hn(t) h n(t).

We show that the functions hn . are eigenfunctions of the Fourier transform with 

eigenvalues ( j)n
√
2π .. For n = 0., i.e., for h0(t) = e t

2/2
., this claim is already 

shown. The symmetry property hn(t) = ( 1)n hn( t). holds. 
With induction and the notation fn(t) = j thn(t)., one obtains by Fourier 

transforming the last equation for hn+1 . 

.  hn+1(ω) =  j  fn(ω) jω hn(ω)

=  j
 
jn
√
2π( 1)n+1h n(ω)+ ( j)n

√
2πωhn(ω)

 

= ( j)n+1
√
2π
 
 h n(ω)+ ωhn(ω)

 
= ( j)n+1

√
2πhn+1(ω).

Thus, the claim is shown:  hn = ( j)n
√
2πhn . for all n ∈ N ∪ {0}.. 

It should be noted that the normalized Hermite functions (2nn!√π) 1/2hn . 
form a complete orthonormal system of eigenfunctions of the Fourier transform 

in L2(R).. Suitably scaled, they are also eigenfunctions of the harmonic 

oscillator. For details on special functions, see Folland (1992) or Triebel (1986). 

7. Polynomials. For each monomial P(t) = tm . and ϕ ∈ S ., it holds that 

.   P , ϕ = 1, ωm ϕ(ω) = 1, ( j)m ϕ(m)(ω) = jm 1(m), ϕ = 2πjmδ(m), ϕ .

We thus obtain 

. 

8. Trigonometric Functions and Generalized Fourier Series. From Example 1 and 

from cos(ω0t) = (ejω0t + e jω0t )/2. and sin(ω0t) = (ejω0t  e jω0t )/(2j)., 

the following correspondences are obtained:
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. 

The last correspondence holds for polynomially bounded coefficients ck .. 

This shows that periodic functions and distributions have a discrete spectrum 

(cf. p. 32). The Fourier transform is a sequence of equidistant impulses, 

whose strengths, except for the factor 2π ., are precisely the Fourier coefficients 

ck .. Observing the results of Sect. 9.1, we notice that periodic sequences of 

impulses—often called impulse train—again have impulse trains as Fourier 

transforms: 

. 

From Example 2 and the rule for frequency shifts, with the unit step function 

s(t)., we obtain 

. 

The occurring rational functions are to be understood here and also in the 

following example, if they have poles for real ω ., as  pseudofunctions (cf. p. 168). 

9. Rational Functions. Functions of particular importance in linear system 

theory are those whose Fourier transforms have the form Q(jω)/P (jω). with 

polynomials P and Q (cf. Sect. 11.2). To determine them, one needs to perform 

the inverse transformation of the typical partial fractions of Q(jω)/P (jω). (cf. 

Appendix A, p. 488 for the partial fraction decomposition of rational functions). 

For b ∈ R,. r ∈ R \ {0}., and k ∈ N., the following correspondences hold 
( sgn(t). denotes the sign function and s(t). the unit step function):
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. 

Proof. With  sgn(ω) = 2

jω
. it follows from the equation 

. 
1

(jω)k
= j k 1

(k  1)!
dk 1

dωk 1

 
1

jω

 

and the rules for frequency shifts and derivatives (cf. p. 291), immediately 

the first correspondence. With for a ∈ R \ {0}. (cf. p. 276) and the rule for 
differentiation, we obtain 

. 

With r =  a  = 0. and again the rule for frequency shifts, the second 

aforementioned correspondence is obtained. 

We note that the inverse Fourier transform of a rational function 

Q(jω)/P (jω). is a causal distribution (i.e., it has its support in the half-axis 

[0,∞[.) if and only if all poles of Q/P . have real parts r < 0.. Q(jω)/P (jω). 

belongs to the space OM . of multipliers in S  . if and only if no zeros of P lie on 

the imaginary axis (cf. p. 290). 

10. Impulse Sequence of the Discrete Sign Function. A discrete analog to the sign 

function is the impulse sequence T (t) =
 

k∈Z\{0}
sgn(k)δ(t k).. It has as Fourier 

transform the generalized Fourier series 

.  T (ω) =
 

k∈Z\{0}
sgn(k)e jkω =  2j

∞ 

k=1
sin(kω).

This is a regularization of the function  j cot(ω/2).. In a closed interval I 

around the origin, I ⊂]  2π, 2π [., we can see that  T . is the regularization by 

the principal value of  jcot
 ω
2

 
.. By Exercise A6 in Chap. 7, it holds 

.f (ω) =  2j ln
   2 sin

 ω
2

    = 2j

∞ 

k=1

cos(kω)

k
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for ω  = 2πm., m ∈ Z.. Therefore, we have 
 T (ω) = f  (ω) =  j cot

 ω
2

 
. for ω  = 2πm., m ∈ Z.. Thus, in I it holds 

.  T (ω) =  j vp
 
cot

 ω
2

  
,

because for ϕ ., supp(ϕ) ⊂ I ., and the even function p(ω) = ω cot
 ω
2

 
., we  

have 

.  p(ω)
ω

, ϕ(ω) =
∞̂

0

p(ω)ϕ(ω) p( ω)ϕ( ω)
ω

dω

=
ˆ ∞

0

(ϕ(ω) ϕ( ω))cot
 ω
2

 
dω.

More on regularizations can be found in Gel’fand et al. (1964). In contrary to  
k∈Z

ejkω = 2π
 
k∈Z

δ(ω  2πk)., this   T . is not a measure. 

10.6 Fourier Transform of Convolutions 

Under suitable conditions on the distributions T and G in S  ., the convolution T ∗G. 

is again a tempered distribution, and for its Fourier transform, the following holds: 

.  T ∗G =  T ·  G.

This equation forms an important basis for calculating convolutions and for many 

applications of the Fourier transform. However, because convolutions and products 

for two arbitrary distributions T and G cannot generally be defined and the Fourier 

transform is only introduced on S  ., additional conditions are required for the validity 
of the convolution equation. The following theorem provides such conditions, which 

are necessary for our later application examples. 

Theorem 10.6 Sufficient for the validity of the equation T ∗G =  T ·  G. with 

distributions T and G in S  . is any of the following conditions: 

1. T and G are integrable functions. 

2. T and G are square-integrable functions. 

3. One of the two distributions T or G has a Fourier transform that belongs to the 

space OM . of multipliers in S  .. 

The same conditions on  T . and  G. in place of T and G are sufficient for the validity 

of the multiplication theorem
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.  T ·G = 1

2π
 T ∗  G.

In particular, all the indicated convolutions are possible and belong to S  .. 

Explication In general, for the validity of the convolution theorem, first the 

convolution T ∗G. must be possible and belong to S  ., and second, the product  T  G. 

must be defined and also belong to S  .. If the first condition holds, it follows from 

Fubini’s theorem (Appendix B) that the convolution T ∗ G. is also an integrable 

function. The convolution theorem then follows directly by interchanging the order 

of integration (compare Exercise A14 in Chap. 9). If the second condition holds, 

then T ∗ G. is a continuous bounded function and T ∗G =  T  G. is an integrable 

function. For the Fourier transform of square-integrable functions, see the following 

section. In the third condition with  T ∈ OM ., we have that this is a multiplier in 

S  .. The distributions T , whose Fourier transforms  T ∈ OM ., are so-called rapidly 

decreasing distributions. The space of rapidly decreasing distributions is denoted 

as O C ., and it holds F(OM) = O C .. Typical cases for distributions T ∈ O C ., 

which occur in our application examples, are causal fundamental solutions of 

asymptotically stable linear differential equations with constant coefficients (see 

Sect. 9.2 and Chap. 11). The convolution T ∗ G. exists then for all distributions 

G ∈ S  . and belongs to S  .. This condition for T ∗G =  T  G. includes the cases with 

T ∈ S . or with T ∈ E  . having a compact support because then  T ∈ OM .. The  

following inclusions hold for the spaces considered: 

. 

D ⊂ S ⊂ OM ⊂ E
∩ ∩ ∩ ∩
E  ⊂ O 

C
⊂ S  ⊂ D 

( E . is the space of infinitely often differentiable functions, equipped with the 

topology such that E  . is its dual space. We do not use it further on.) 

Under the mentioned conditions, the convolution T ∗ G., as in Sect. 8.7, p.  190, 

can be defined with test functions ϕ ∈ D . by (T ∗G)(ϕ) = T (Ǧ ∗ ϕ).. This equation 
can then be extended to a definition of the convolution of distributions in S  .. 

All statements 1–3 also apply to translations and generalized derivatives of the 

involved distributions T and G, if  T and G meet one of the stated conditions. 

The proof of statement 3 of the theorem requires advanced knowledge of the 

structure of distributions, which goes beyond the scope of this book (see also the 

remark after Example 3, p. 295). Interested readers are referred to Schwartz (1957) 

or Vladimirov (2002). There, the convolution theorem is also proven for further 

classes of distributions, which we do not address here. Further details on the Fourier 

transform of convolutions and on products of distributions can be found in Hirata 

and Ogata (1958), Champeney (1989), and Oberguggenberger (1992), some results 

of integration theory on the convolution of functions in Appendix B.
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Examples 

1. The Unit Step Function. The convolution s∗s(t) = ts(t). for the unit step function 

s(t). exists in S  . and has the Fourier transform j ̇s ., i.e., 

.  s ∗ s(ω) =  1

ω2
+ jπδ̇(ω).

However, the square of the distribution s(ω) = 1

jω
+ πδ(ω). cannot be formed 

with the developed calculus. 

The term  1/ω2
. of  s ∗ s . is to be understood as the second generalized 

derivative of ln(|ω|). and denotes the singular distribution pf( 1/ω2). (see 

p. 168). 

2. Integral Functions and Smoothing. For functions f from S ., the integral function 

F(t) =
t
ˆ

 ∞

f (s) ds . belongs to S  .. It can be written as a convolution with the unit 

step function s(t).: F(t) =
+∞
ˆ

 ∞

f (u)s(t  u), du = (f ∗ s) (t).. 

Both f ∗ s . and  f · s . belong to S  ,. and the convolution theorem holds and yields 

.  F(ω) =
 f (ω)
jω

+ π  f (0)δ(ω).

Similarly, with the Fourier transform  rT (ω) = 2T
sin(ωT )

ωT
. of the rectangular 

function rT (t). (see p. 275), the smoothing 

. G(t) = 1

2T

t+T
ˆ

t T

f (u) du = 1

2T
f ∗ rT (t)

of an integrable function f has the following Fourier transform: 

.  G(ω) =  f (ω) sin(ωT )

ωT
.

The convolution theorem is applicable because rT . has a bounded support. 

3. Convolution of the Principal Value. An interesting example is the convolution f ∗
f . for the principal value f (t) = vp(1/t).. The convolution exists because f can 

be represented as the sum of a distribution with bounded support and a square-

integrable function: To do this, choose a test function ϕ ∈ D . that is constantly
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one in a neighborhood of zero; then f ϕ + f (1  ϕ). is such a representation 

of f . Using the convolution theorem of the Fourier transform, it follows that 

 f ∗ f (ω) = ( jπsgn(ω))2 =  π2;. thus (f ∗ f )(t) =  π2δ(t).. Note that 

supp(f ) = R., but supp(f ∗ f ) = {0}.. 
4. Fourier Transform of Time-Limited and BandLimited Signals. If T is a time-

limited signal, i.e., a distribution in S  . with bounded support, then the Fourier 
transform  T . is a multiplier in S  . and thus infinitely often differentiable. Using 
complex function theory, it can be shown that  T . can be represented everywhere 

by its Taylor series (see, e.g., Rudin 1991). From the identity theorem for 

power series, it follows that the Fourier transform  T . of a time-limited signal 

T  = 0. cannot vanish completely on any interval. Similarly, it can be seen that a 

bandlimited signal T , i.e., a signal whose generalized spectral function  T . has 

bounded support, is always an infinitely differentiable function that does not 

vanish on any interval for T  = 0.. 

5. Convolutions of Impulse Trains and Products of Fourier Series. Impulse trains 

and their convolutions are of fundamental importance in discrete linear filters. We 

consider four variants that are relevant for applications (see later Sect. 11.6). 

(a) Convolution of a Rapidly Decreasing Impulse Train with a Tempered Impulse 

Train. 

Let T (t) =
+∞ 

k= ∞
ckδk and G(t) =

+∞ 
k= ∞

dkδk . be given. 

Here, δk(t) = δ(t  ka). denotes an impulse at ka with a fixed a > 0.. We  

assume that the coefficients ck . are rapidly decreasing, i.e., |k|mck → 0. for 

every m ∈ N. and |k| → ∞.. Then T has the Fourier transform 

.  T (ω) =
+∞ 

k= ∞
cke

 jkωa .

 T . is an infinitely differentiable 2π/a .-periodic function (see p. 51 and 

p. 298) and thus a multiplier in S  .. The distribution T is an example of a 

rapidly decreasing distribution. We now further assume that the sequence of 

coefficients dk . is polynomially bounded for |k| → ∞.. Then G ∈ S  . and 

.  G(ω) =
+∞ 

k= ∞
dke

 jkωa .

According to condition no. 3 on p. 300, the convolution theorem applies: 

 T ∗G(ω) =  T (ω) ·  G(ω).. The coefficients hk . of the impulse train resulting 

from the convolution 

.T ∗G(t) =
+∞ 

k= ∞
hkδk
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and the generalized Fourier series  T (ω) ·  G(ω) =
 +∞

k= ∞ hke
 jkωa

. are 

given by the discrete convolution of the coefficients ck . and dk . (see also 

p. 199): 

. hk =
+∞ 

n= ∞
cndk n.

To prove this, we have to show that the generalized Fourier series  T ·  G. has 

the given coefficients hk .. 

For this, we consider the partial sums TN (t) =
+N 

n= N
cnδn . and the convolu-

tions TN ∗G.. For ϕ ∈ S ., 

.  TN ∗G,ϕ =
+N 

n= N

+∞ 

k= ∞
cndkϕ((n+ k)a) =

+∞ 

m= ∞
hm(N)ϕ(ma)

with hm(N) =
N 

n= N
cndm n ., since the above series converges absolutely 

and can be rearranged with the index transformation n+ k = m.. Thus, 

.  TN (ω) =
N 

n= N
cne

 jnωa and  TN ·  G(ω) =
+∞ 

k= ∞
hk(N)e jkωa .

It holds that  TN G→  T  G. in S  .and hk(N)→ hk .asN →∞.: First, the series 
+∞ 

n= ∞
cndk n . converges absolutely for all k due to the growth conditions of 

the coefficients cn . and dn ., i.e., all hk . are well defined. For each ϕ ∈ S ., 

second,  ( T   TN ) G, ϕ  =   G, ( T   TN )ϕ  .. We have that ( T   TN )ϕ . 

in S . converges to zero as N → ∞.. This follows from the boundedness of 

the functions ωpϕ(q)(ω). (p, q ∈ N.) and the fact that arbitrary derivatives of 
 T   TN . converge uniformly to zero (see p. 135). Thus, asN →∞., it follows  

that  TN G →  T  G. in S  .. If h k . now denote the Fourier coefficients of  T  G., 

then for N →∞. 

. ( T   TN ) G(ω) =
+∞ 

k= ∞
(hk  hk(N))e jkωa → 0 in S  .

Then the inverse Fourier transforms also converge 

.

+∞ 

k= ∞
(hk  hk(N))δk → 0 in S  for N →∞.
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For k ∈ Z., let  ϕk .be a test function with support in [(k  1/2)a, (k + 1/2)a]., 

which is one in a neighborhood of ka. Then (hk  hk(N))ϕk(ka)→ 0. as N 

tends to ∞., finally for each k ∈ Z., hence 

. hk = lim
N→∞

hk(N) =
+∞ 

n= ∞
cndk n.

(b) Convolution of an Impulse Sequence with Summable Coefficients with an 

Impulse Sequence that Has Bounded Coefficients. 

Another variant, which will be interesting for discrete filters in the 

application examples of Sect. 11.6 in the next chapter, is the convolution of 

two impulse sequences 

. T (t) =
+∞ 

k= ∞
ckδk and G(t) =

+∞ 

k= ∞
dkδk,

of which we assume that T has absolutely summable coefficients and G has 

bounded coefficients, i.e., 

. 

+∞ 

k= ∞
|ck| = C <∞ and |dn| < M

for suitable constants C and M and all n ∈ Z.. This example shows that under 

suitable conditions, the convolution theorem T ∗G =  T ·  G. can be used to 

define the product on the right-hand side, even if neither factor  T . nor  G. is a 

multiplier in S  .. 

Under the mentioned conditions, for hk =
+∞ 

n= ∞
cndk n . and ϕ ∈ S . 

because
+∞ 

k= ∞
|ϕ(ka)|  A <∞.with a suitable constant A > 0. 

. 

+∞ 

k= ∞
|hk||ϕ(ka)|  

+∞ 

k= ∞

 +∞ 

n= ∞
|cn||dk n|

 
|ϕ(ka)|  ACM <∞.

The series
+∞ 

k= ∞

+∞ 
n= ∞

cndk nϕ(ka). is therefore absolutely convergent, and 

any rearrangement converges to the same limit. Since the coefficients hk . are 

bounded, |hk|  M C ., the convolution defined by 

.T ∗G(t) =
+∞ 

k= ∞
hkδk = F 1

 +∞ 

k= ∞
hke

 jkωa
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is a tempered distribution. One can now, as in the previous example, define 

the product of the series  T . and  G. by  T (ω) ·  G(ω)=
 +∞

k= ∞ hke
 jkωa

. and 

thus also in this case obtain the convolution relationship 

.  T ∗G(ω) =
+∞ 

k= ∞
hke

 jkωa =  T (ω) ·  G(ω).

The following should be noted about the product defined in this way: 

It can be shown that the vector space of continuous functions f on [0, 2π/a]. 
with absolutely summable Fourier coefficients ck . is a complete normed space 

A. if one introduces the norm  f  A =
 

k∈Z |ck|.. The Fourier series  T . 

belongs to A.. This space is an algebra, i.e., with f and g also f · g . belongs 

to A. (see p. 78), and it holds that  fg A   f  A  g A .. One can consider 
 G. with the Fourier coefficients dk . then as a continuous linear functional on 

A. by  G(f ) =
 

k∈Z dkck .. In the literature,  G. is referred to as a pseudo-

measure (see Edwards (1982) and the references therein). Because A. is an 

algebra, one can define the product f  G. for f ∈ A. by f  G(p) =  G(fp).. It  

is also a continuous linear functional on A. due to the norm inequality above. 

For f =  T ., f  G. agrees with the product of  T . and  G. introduced above. The 

convolution theorem, also called Fourier exchange theorem, and a way to 

introduce products of two distributions in the exchange theorem were studied 

in Hirata and Ogata (1958). 

(c) Convolution of Impulse Sequences with Absolutely Summable Coefficients 

For T and G as in the preceding example, assume now that both distributions 

have absolutely summable coefficients. Since the coefficients are then 

bounded, it follows with the same notations as before the validity of 

.  T ∗G(ω) =
+∞ 

k= ∞
hke

 jkωa =  T (ω) ·  G(ω).

Additionally, the proof of Wiener’s 1/f .-Theorem (cf. p. 78) shows that 

the coefficients hk . are also absolutely summable and that the product  T  G. 

belongs to the normalized algebra A. introduced there. If, for example,  G. has 

no zero, then the quotient  T / G. also lies in A. and is the Fourier transform 

of a convolution of two impulse sequences with absolutely summable 

coefficients. 

(d) Convolution of Impulse Sequences with Square Summable Coefficients and 

the Multiplication of Fourier Series in L2([0, 2π/ω0]). 

(i) First, we investigate the product of Fourier series f (t) =
+∞ 

k= ∞
cke

jkω0t . 

and g(t) =
+∞ 

k= ∞
dke

jkω0t . with square summable coefficients. The 

product fg  is integrable over [0, 2π/ω0]., since |fg|  |f |2 + |g|2 . and
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f and g are square-integrable on [0, 2π/ω0].. If fN (t) =
+N 

k= N
cke

jkω0t . 

and gN (t) =
+N 

k= N
dke

jkω0t ., then as on p. 78 the convergence of fNgN . 

to fg  follows in the norm of L1([0, 2π/ω0]). and the Fourier coefficients 
of fg  are hk =

+∞ 
n= ∞

cndk n .. This series is absolutely convergent. 

Since fg  is integrable over [0, 2π/ω0]., it follows  that lim
|k|→∞

hk = 0. 

(Riemann-Lebesgue Lemma, p. 282). With f and g, the product fg  is 

also a 2π/ω0 .-periodic distribution in S
 
.. 

(ii) For two impulse sequences T (t) =
+∞ 

k= ∞
ckδk . and G(t) =

+∞ 
k= ∞

dkδk . 

with square summable coefficients ck . and dk ., the convolution is defined 

as in the previous examples by T ∗G(t) =
+∞ 

k= ∞
hkδk .with hk . as above, 

and from i) we obtain the validity of the convolution theorem  T ∗G =
 T ·  G.. 

10.7 Fourier Transform of Square-Integrable Functions 

Signals of finite energy play an important role in many applications, mathematically 

speaking square-integrable functions. Every such function can also be regarded as a 

regular distribution in S  .. The vector space L2(R). of all square-integrable functions 

is contained in S  .. The Fourier transform of tempered distributions thus also gives 

the Fourier transform of square-integrable functions and many of their properties. 

Two square integrable functions f and g are considered equal if they represent the 

same distribution in S  ., i.e., if for all ϕ ∈ S . it holds that 

.  f, ϕ =
+∞
ˆ

 ∞

f (t)ϕ(t) dt =
+∞
ˆ

 ∞

g(t)ϕ(t) dt =  g, ϕ .

The same statement holds with D . in place of S  ., i.e., if the last equation holds for all 
ϕ ∈ D .. It can be proven that this is exactly the case if f (t) = g(t). holds for almost 

all t ∈ R., i.e., if f (t)  = g(t). holds at most on a Lebesgue null set (cf. Appendix B). 

On L2(R)., an  inner product and a norm are defined by 

. f |g =
+∞
ˆ

 ∞

f (t)g(t) dt and  f  2 =  f |f  1/2
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(cf. also p. 62 and later 14.1). Two square-integrable functions f and g represent the 

same element in L2(R). if and only if the norm  f  g 2 = 0.. Without proofs, we 

state the following important statements, for the verification of which one mainly 

uses theorems of integration theory (see, for instance, Triebel 1992 or Weidmann 

1980): 

1. The vector space L2(R). is complete with respect to the norm defined above, i.e., 

every sequence of functions fn . in L2(R)., n ∈ N., with  fn  fm 2 → 0. for 

n,m→∞. converges to an element f ∈ L2(R).. 

2. The Cauchy-Schwarz inequality holds: For f, g ∈ L2(R). 

. | f |g |   f  2  g 2.

The inner product is continuous in both variables. In the Cauchy-Schwarz 

inequality equality holds if and only if f and g are linearly dependent, i.e., if 

f = αg . for some α ∈ C.. 
3. For every f ∈ L2(R). there is a sequence of rapidly decreasing functions fn ∈ S . 

that converges to f in L2(R)., i.e., lim
n→∞

 fn  f  2 = 0.. 

With these properties, it is shown that the Fourier transform maps the space 

L2(R). onto itself and that the Plancherel equation (p. 283) can be extended to all of 

L2(R).. 

Theorem 10.7 (The Fourier Transform on L2(R).) For the Fourier transform on 

L2(R)., the following assertions hold: 

1. If f ∈ L2(R). and f = lim
n→∞

fn . in L2(R)., fn ∈ S . for n ∈ N., then the Fourier 
transforms  fn . converge in L2(R). to  f .. In particular,  f ∈ L2(R).. 

2. For any two functions f and g in L2(R)., the Plancherel equation holds 

.  f | g  = 1

2π
  f | g  .

It is an orthogonality relation: The functions f and g are orthogonal if and only 

if their Fourier transforms are orthogonal. 

3. The Fourier transform is continuous, bijective, and continuously invertible on 

L2(R).. 

Proof 

1. Because of the Plancherel equation in S . (p. 283) for fn, fm . from S ., it holds that 

.   fn   fm 22 = 2π fn  fm 22.

For fn ∈ S . with lim
n→∞

fn = f . in L2(R)., the functions  fn . form a Cauchy 

sequence in L2(R)., which, due to the completeness of L2(R)., converges to a 

square-integrable function g. On the other hand, this sequence converges in S  . to
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 f .. Since both convergence in L2(R). and convergence in S  . imply convergence 

in D ., g and the Fourier transform  f . coincide. 

2. For f and g from L2(R)., let f = lim
n→∞

fn . and g = lim
m→∞

gm . in L2(R). with 

appropriate sequences of rapidly decreasing functions fn . and gm .. The Plancherel 

equation on L2(R). follows from 1) by the continuity of the inner product: 

. 2π f |g = 2π lim
n,m→∞

 fn|gm = lim
n,m→∞

  fn | gm =   f | g .

In particular, the Fourier transform F . on L2(R). is injective and continuous. 

3. If f = lim
n→∞

fn ., fn ∈ S ., then f = F( lim
n→∞

F 1(fn)).. Therefore, the Fourier 

transform is also surjective on L2(R).. 

  
The convolution formula and the multiplication theorem hold in the sense of 

distributions (cf. p. 301 and Appendix B, p.  501). For f . and g ∈ L2(R)., f ∗ g . 

and  f ∗ g . are bounded continuous functions, which do not necessarily need to be 

integrable or square-integrable. However, their Fourier transforms are defined when 

considering f ∗ g . or  f ∗  g . as distributions in S  .. The products fg . and  f g . are 

integrable functions. 

Theorem 10.8 For all functions f . and g . in L2(R)., the following convolution 

relationships hold: 

.  f ∗ g =  f · g,

 f · g = 1

2π
 f ∗ g.

Proof For fn . and gn . in S . with lim
n→∞

fn = f . and lim
n→∞

gn = g . in L2(R)., we  

have fn ∗ gn =  fn gn . in any case. Using the Cauchy-Schwarz inequality and the 
Plancherel equation for the L1

.-norm (cf. p. 501) of  f g   fn gn ., 

.   f g   fn gn 1    f   fn 2   g 2 +   g   gn 2   fn 2
= 2π( f  fn 2  g 2 +  g  gn 2  fn 2).

Thus,   f g  fn gn 1 . converges to zero as n→∞.. Since for integrable functions h., 

  h ∞   h 1 ., it follows  that  

. F
 1( fn gn)  → F

 1( f  g) uniformly as n→∞.

Moreover, using Young’s inequality (cf. p. 501), 

. f ∗ g  fn ∗ gn ∞   f  fn 2  g 2 +  g  gn 2  fn 2,
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we get 

. F
 1( fn gn) = fn ∗ gn → f ∗ g uniformly as n→∞.

Therefore, the first convolution relationship f ∗ g =  f · g . follows. The multiplica-

tion theorem is proven analogously.   
Remark It can be shown that for f ∈ L2(R)., the functions 

.  fN (ω) =
+N
ˆ

 N

f (t)e jωt dt

converge to  f . in L2(R)., i.e., lim
N→∞

  fN   f  2 = 0.. Analogously, the functions 

fN (t) = 1

2π

+N
´

 N
 f (ω)ejωt dω. converge to f . in L2(R).. 

Examples 

1. For  f (ω) = ω 1/41]0,1](ω)., the product  f 2
. is integrable but does not belong to 

L2(R).. Therefore, the convolution f ∗ f = F 1( f 2
). also does not belong to 

L2(R). (1]0,1] . is the indicator function of ]0, 1].). 
2. The function f (t) = sin(at)/t ., a > 0., is not absolutely integrable but is square-

integrable. It has the Fourier transform 

.  f (ω) =
 
π for |ω|  a

0 otherwise.

This follows from Example 1 on p. 275 using the symmetry rule from p. 279. 

Before studying applications in the next chapter, we briefly discuss how the 

Fourier transform can also be introduced for functions of several variables and how 

the essential transformation rules extend to this case. 

10.8 The Fourier Transform for Functions of Several 

Variables 

Definition For integrable, complex-valued functions in p variables, the Fourier 

transform  f . is defined by 

. f (ω) =  f (ω1, . . . , ωp) =
ˆ

Rp

f (x)e jω·x dλp(x).
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Here, ω · x. denotes the usual dot product of the vectors ω = (ω1, . . . , ωp). and 

x = (x1, . . . , xp). in R
p
. , dλp(x ) = dx1dx2 . . . dxp . is the p-dimensional volume 

element in Cartesian coordinates, and subsequently |x|. denotes the Euclidean norm 

of a vector x.. 

Example The function f (x1, x2) = e 
 
x21+x22

 
/2

. of the two variables x1 . and x2 . has 

the Fourier transform 

.  f (ω1, ω2) =
+∞
ˆ

 ∞

+∞
ˆ

 ∞

e 
 
x21+x22

 
/2e j(ω1x1+ω2x2) dx1dx2

=
+∞
ˆ

 ∞

e jω1x1 x21/2 dx1

+∞
ˆ

 ∞

e jω2x2 x22/2 dx2

= 2πe ω
2
1/2e ω

2
2/2 = 2πe 

 
ω2
1+ω2

2

 
/2.

Using the notations introduced on p. 187 with the help of multi-indices, the 

Schwartz space S (Rp). of rapidly decreasing functions is defined analogously to 

Sect. 10.5: 

Definition ϕ : Rp → C. belongs to S (Rp). , if  ϕ . is infinitely differentiable and if 

for arbitrary multi-indices m = (m1, . . . , mp). and k = (k1, . . . , kp). in N
p
0 . the 

following holds: 

.  ϕ m,k = sup
x∈Rp

   xm∂kϕ(x)

   <∞.

In other words, the product of an arbitrary polynomial in p variables and any 

derivative of ϕ . remains a bounded function, and every derivative of ϕ . decreases for 

|x| → ∞. faster than 1/|x|N . for any N ∈ N.. 
A sequence of functions ϕn ∈ S (Rp). converges to zero, if for arbitrary m. and 

k ∈ Np0 . it holds that lim
n→∞

 ϕn m,k = 0.. With this concept of convergence on 

S (Rp)., the  set S  (Rp). of tempered distributions is defined. 

Definition A tempered distribution T ∈ S  (Rp). is a continuous, linear mapping T 

from S (Rp). to C.. 

The statements of Sect. 10.5 about S = S (R). and S  = S  (R). apply 
correspondingly also to S (Rp). and S  (Rp).. In particular, the properties of the 
Fourier transform discussed can be extended to the case of multiple variables. We 

summarize them in the following table (p. 317). The proofs of these properties 

are obtained in an analogous manner to the case of a single variable. The Fourier 

transform is continuous and bijective on S (Rp). as in the case p = 1.. As in  

Sect. 10.7, the Fourier transform is introduced on the vector space L2 (Rp). of 

square-integrable functions. The statements formulated there also hold in L2 (Rp)..
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In particular, the Plancherel equation holds again 

.  f  =

⎛
⎝
ˆ

Rp

|f (x)|2 dλp(x)

⎞
⎠

1/2

= (2π) p/2

⎛
⎝
ˆ

Rp

   f (x)
  2 dλp(x)

⎞
⎠

1/2

= (2π) p/2  f  .

Theorem 10.9 The mapping (2π) p/2F . with the Fourier transform F . is norm-

preserving and bijective on the vector space L2 (Rp).. 

Theorem 10.10 (The Fourier Inversion Formula on S (Rp).) For ϕ ∈ S (Rp). 

and x ∈ Rp ., the following holds: 

. ϕ(x ) = 1

(2π)p

ˆ

Rp

 ϕ(ω)ejω·x dλp(ω).

Proof To prove the inversion formula, we set h(s ) = e |s|
2/2

.. Using the substitution 

rule for integrals and the similarity relation of the Fourier transform, it follows that 

. 

ˆ

Rp

 ϕ(s )h
 s
n

 
dλp(s ) =

ˆ

Rp

ϕ(s )np h(ns ) dλp(s ) =
ˆ

Rp

ϕ
 s
n

 
 h(s ) dλp(s );

thus, for n → ∞., taking the limit under the integral (according to the dominated 

convergence theorem, p. 496) and with
´

Rp

 h(x ) dλp(x ) = (2π)p ., we obtain 

. h(0 )

ˆ

Rp

 ϕ(s ) dλp(s ) =
ˆ

Rp

 ϕ(s ) dλp(s ) = ϕ(0 )

ˆ

Rp

 h(s ) dλp(s ) = (2π)pϕ(0 ).

This is the inversion formula at the point x = 0.. The general case follows from the 

translation rule with ψ(ω) = ϕ(ω + x). 

. ϕ(x ) = ψ(0 ) = 1

(2π)p

ˆ

Rp

 ψ(ω) dλp(ω) = 1

(2π)p

ˆ

Rp

 ϕ(ω)ejω·x dλp(ω).

  

The Jordan Inversion Formula 

The proof shows that the inversion formula also holds for continuous integrable 

functions ϕ . with an integrable Fourier transform  ϕ .. This variant of the inversion 

formula goes back to C. Jordan (1838–1922) and does not require differentiability 

conditions compared to the inversion theorem on p. 271.
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Theorem 10.11 (Jordan’s Theorem) For any integrable continuous function f on 

Rp .with an integrable Fourier transform  f . and all x ∈ Rp ., the following holds: 

. f (x ) = 1

(2π)p

ˆ

Rp

 f (ω)ejω·x dλp(ω).

The Fourier Transform for Tempered Distributions on Rp . 

Definition Following the same procedure as in Sect. 10.5, we define the Fourier 

transform  T . of a distribution T ∈ S  (Rp). by 

.   T , ϕ =  T ,  ϕ .

As in Sect. 10.5, properties 1–6 of the following table on p. 317 also apply to 

tempered distributions T instead of ϕ .. The convolution relationships from point 7 

of the table apply under analogous conditions as those mentioned in the case of 

one variable on p. 300. Point 8 of the table becomes irrelevant for distributions. 

The Plancherel equation from point 9 b) corresponds to the distributional form for 

T ∈ S  (Rp). and ϕ ∈ S (Rp). 

.  T , ϕ = 1

(2π)p
  T ,  ϕ  .

Examples 

1. The Rectangular Aperture. For a > 0 , b > 0. the function 

. f (x ) =
 
1 for x ∈ [ a, a] × [ b, b]
0 otherwise

has the Fourier transform 

.  f (ω) =
a
ˆ

 a

e jω1x1 dx1

b
ˆ

 b

e jω2x2 dx2 = 4ab
sin(aω1)

aω1
· sin(bω2)

bω2
.

Fourier transforms of functions of two variables play an important role in 

optical diffraction theory. For example, if coherent light with the amplitude 

distribution f is diffracted by an aperture in the (x1, x2). plane, then in the case 

of Fraunhofer diffraction, the intensity distribution of the diffracted light on a 

screen is proportional to | f |2 .. For the above amplitude distribution f with the 

rectangular aperture [ 1, 1]× [ 2, 2]., one obtains | f |. (not squared) as shown in
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Fig. 10.6 Surface plot of | f |. 

Fig. 10.7 Visible Fraunhofer 

diffraction pattern 

Fig. 10.6 for |ω1|  8, |ω2|  10. and a diffraction pattern by its square as shown 

in Fig. 10.7. In this sense, one can “see the Fourier transform.” We do not go 

deeper into the extensive applications in coherent optics here but refer interested 

readers to the textbooks Papoulis (1968) or Walker (1988). Related applications 

in antenna theory can be found in Bracewell (1999). 

2. The Circular Aperture. The function f (x, y) = 1. for x2 + y2  R ., f (x) = 0. 

otherwise, is an example of a radial function f (x) = f (|x|). ( x = (x, y) ).. With 

polar coordinates x = r cos(φ)., y = r sin(φ)., ω1 =  cos(ψ)., ω2 =  sin(ψ)., 

and f0(r) = f (r cosφ, r sinφ)., it holds for radial functions f of two variables 

generally that 

.  f (ω) =
+∞
ˆ

 ∞

+∞
ˆ

 ∞

f (x, y)e jx·ω dx dy =
2π
ˆ

0

∞̂

0

f0(r)e
 jr cos(φ ψ)r dr dφ.

Substituting θ = φ  ψ  π/2. shows that the integral is independent of ψ ., i.e., 
 f . is also radial. 

.  f (ω) =
∞̂

0

2π
ˆ

0

f0(r)e
jr sin(θ)r dθ dr = 2π

∞̂

0

f0(r)J0(r )r dr =  f0( ).

Here, J0(r ) =
1

2π

2π
ˆ

0

ejr sin(θ) dθ . is the Bessel function of order zero. The  

function  f0( ). is the Hankel transform of f0(r). of order zero. 
The two illustrations Figs. 10.8 and 10.9 show for R = 1. a cross-section of 

| f0|2 . and a plot of the function | f0|., whose square corresponds to the according 
diffraction pattern.
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Fig. 10.8 Cross-section of 

| f0|2 . 

Fig. 10.9 3D plot of | f0|. 

Fig. 10.10 3D plot of 

| f (ω)|2 . as in Example 1 with 

b >> a . 

In the given example with f0(r) =
 
1 for 0  r  R

0 otherwise,
. we have 

.  f (|ω|) =  f0( ) = 2π

R̂

0

J0(r )r dr.

Specifically,  f (0) = πR2
. is the area of the disk with radius R. 

It is easy to see that rotationally invariant functions f on Rp ., i.e., f (Ax) =
f (x). for matrices A = (A∗) 1 . with detA = 1. ( A∗ . the transposed matrix), 

also have a rotationally invariant Fourier transform: f ◦ A(ω) =  f (Aω).. For 

detailed treatments of the Bessel functions and other special functions and for 

transformations related to the Fourier transform, such as the Hankel or the Mellin 

transform, refer to Bracewell (1999), Folland (1992), or Vladimirov (2002). 

3. The Vertical Slit Aperture. 

Consider an infinite slit g(x, y) = 1[ a,a](x)1(y). of half width a. Its Fourier 

transform is  g(ω1, ω2) = 1[ a,a](ω1) 1(ω2) =
4π

ω1
sin(aω1)δ(ω2).. We cannot 

build the square of it. With a slit modeled as a rectangular aperture f (x). as in 

Example 1 with a << b., one obtains | f (ω)|2 . as shown above in Fig. 10.10 for 
a = 1., b = 1000., and |ω1|  10., |ω2|  20.:
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4. The Surface Measure. The distribution T (x ) = δ (|x|  R). , x = (x1, x2, x3). in 

R3 . , R > 0. , is defined for ϕ ∈ S
 
R3
 
. by 

.  δ (|x|  R) , ϕ(x ) =
ˆ

|x|=R

ϕ(x ) do(x )

with the surface integral over the sphere |x| = R .. T belongs to S  
 
R3
 
. and 

has this sphere as its support. We calculate the Fourier transform of T . For  ϕ ∈
S
 
R3
 
. it holds with the volume element dλ3(ω) = dω1dω2dω3 . 

.   T , ϕ =  T ,  ϕ =
ˆ

|x|=R

ˆ

R3

ϕ(ω)e jω·x dλ3(ω)do(x )

=
ˆ

R3

ϕ(ω)

ˆ

|x|=R

e jω·x do(x)dλ3(ω).

For each fixed ω ∈ R3 .we now choose ω/|ω|. as the “north pole” of the spherical 
coordinate system (r, θ, φ). for the calculation of the surface integral. 

With ω · x = |ω||x| cos(θ). , the angle θ . between x. and ω ., and |x| = R ., it follows 

that 

.   T , ϕ = R2

ˆ

R3

ϕ(ω)

π̂

0

ˆ 2π

0

e jR|ω| cos(θ) sin(θ) dφdθdλ3(ω)

= 2πR2 · 1

jR

ˆ

R3

ϕ(ω)

|ω|

π̂

0

∂

∂θ

 
e jR|ω| cos(θ)

 
dθdλ3(ω)

= 4πR

2j

ˆ

R3

ϕ(ω)

|ω|
 
ejR|ω|  e jR|ω|

 
dλ3(ω)

= 4πR

ˆ

R3

ϕ(ω)
sin (R|ω|)
|ω| dλ3(ω).

Thus, the Fourier transform of δ (|x|  R). is calculated, and we obtain the 

correspondence 

. 

This example will be the key to solving initial value problems of the three-

dimensional wave equation in Sect. 12.8.
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Summary 

The Fourier transform can be extended from the class of functions studied in the 

first sections of this chapter to tempered distributions. This applies in the case of a 

one-dimensional or p-dimensional underlying parameter space. In the examples, 

we have recognized that a large class of generalized functions, which occur in 

applications, has tempered Fourier transforms and that the calculation rules familiar 

from the classical case can also be translated in an appropriate manner (Table 10.1). 

The spectral concepts and transformation properties provided offer a powerful tool 

for solving many practical problems. We will explore the scope of Fourier methods 

associated with distribution theory in a selection of typical applications in the next 

chapters. 

Table 10.1 Properties of the Fourier transform on S (Rp). 

ϕ(x ) = ϕ(x1, . . . , xp) ∈ S (Rp).  ϕ(ω) =  ϕ(ω1, . . . , ωp). 

1. Linearity 

αϕ1(x1)+ βϕ2(x2). α ϕ1(ω1)+ β ϕ2(ω2). 

2. Symmetry 

 ϕ(x ). (2π)pϕ( ω). 

ϕ(x ).  ϕ( ω). 

3. Similarity, scaling 

ϕ(αx) (α  = 0).
1

| α |p  ϕ
 

ω

α

 
. 

4. Translations 

ϕ(x x0). e jω·x0 ϕ(ω). 

ejω0·xϕ(x ).  ϕ(ω  ω0). 

5. Differentiation (k multi-index, cf. p. 317) 

∂k ϕ(x), k ∈ Np0 . (jω)k ϕ(ω). 

6. Multiplication with a polynomial 

xkϕ(x ) , k ∈ Np0 . j |k|∂k  ϕ(ω). 

7. Convolution and modulation 

(ϕ1 ∗ ϕ2)(x ).  ϕ1(ω) ϕ2(ω). 

ϕ1(x )ϕ2(x ).
1

(2π)p
( ϕ1 ∗ ϕ2)(ω). 

8. Continuity, Riemann-Lebesgue Lemma 

For ϕ(x ) ∈ S (Rp).  ϕ(ω). is continuous and bounded and 

lim
|ω|→∞

 ϕ(ω) = 0. holds 

9. Plancherel equation 

(a)
´

Rp

| ϕ(x ) |2 dλp(x ) = 1

(2π)p

´

Rp

| ϕ(ω)|2 dλp(ω). 

(b)
´

Rp

ϕ1(x )ϕ2(x ) dλ
p(x ) = 1

(2π)p

´

Rp

 ϕ1(ω) ϕ2(ω) dλp(ω).
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For the Fourier transform of arbitrary distributions in D ., please refer to 
the textbooks by Schwartz (1957), Gel’fand et al. (1964), Horváth (1966), and 

Zemanian (2010). 

10.9 Exercises 

(A1) Compute the Fourier transforms of 

. f1(t) = sgn(t),

f2(t) = t2 sgn(t) (sgn(t) is the sign function),

f3(t) = t2e t
2

,

f4(t) = e at
2+bt+c (a > 0),

f5(t) =
t

1 j t
.

(A2) Which function f corresponds to the following spectral function? 

Hint:  f . is the sum of two triangular frequency windows. 

(A3) For a > 0., let  

. Fa(x) =
1

π

a

a2 + x2
= 1

a
F1

 x
a

 
.

Compute for a > 0 , b > 0. the Fourier transforms Fa ∗ Fb . and  Fa+b.. 

(A4) Use the Plancherel equation to compute the integral

∞̂

0

sin(ax) sin(bx)

x2
dx.. 

(A5) The Plancherel equation holds for all square-integrable functions f . For  

which bandlimited function g , i.e.,  g(ω) = 0. for |ω| > Ω . , is the mean 

square error ε =
+∞́

 ∞
|f (t) g(t)|2 dt . minimal when approximating f 

by g? 

(A6) Compute the Fourier transform of the distribution S(t) = 1

t
∗ rT (t).. 

( rT . is the rectangular function rT (t) = 1. for |t | < T . , rT (t) = 0. for 

|t |  T . ).



10.9 Exercises 319

(A7) (a) Find examples of functions and distributions f and g, such that 

their convolution exists, but the convolution theorem for the Fourier 

transform does not hold. 

(b) Find examples of functions f such that for the integral function f ∗ s . 

the formula f ∗ s(ω) =
 f (ω)
jω

+ π  f (0)δ(ω). does not hold (where s(t). 
is the unit step function). 

(A8) Compute the Fourier transform of f (t) = cos(t) (s(t + 1) s(t  1))., and 

justify that the multiplication theorem from p. 300 holds. 

(A9) (a) Compute the causal solution h of au(3) + bu̇ = δ . for a, b > 0.. 

(b) Compute F 1( f ). for  f (ω) = 1

(jω)3a + jωb
.. 

(c) Compute F 1( f ). for 

.  f (ω) = 1

(jω)3a + jωb
+ π

b
δ(ω) π

2b
(δ(ω  ω0)+ δ(ω + ω0))

with ω0 =
√
b/a . for positive a, b. 

(A10) (a) Compute F 1( f ). for  f (ω) = 5ω + 9 10j

ω2  4jω  13
., and (b) F 1( hRC,α). for 

.  hRC,α(ω) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for |ω|  b  a

(0 < a < b, α = a/b)

0 for b + a  |ω|

cos2
 
π
|ω|  (b  a)

4a

 
for b  a  |ω|  b + a.

Sketch  hRC,α . and hRC,α ., and discuss the meanings of the parameters a, b, 

and α . (see also Raised Cosine Pulse, p.  390 and p. 398). Hint: hRC,α . is real 

and even (see p. 273). Use addition theorems for the cos2 . function. 

(A11) Compute the Fourier transforms of 

. f1(x, y) = xye (x
2+y2) and f2(x, y) =

 
1 for (x  1)2 + (y  1)2  1

0 otherwise.

(A12) Reflect on the fact that the generalized derivative ḟ . of f (t) = sin
 
et

2
 
. is 

indeed a tempered distribution, but that generally for ϕ ∈ S ., the equation 

 ḟ, ϕ =
+∞
ˆ

 ∞

2tet
2

cos
 
et

2
 
ϕ(t) dt . does not hold.
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(A13) For a, b > 0. compute the Fourier transforms of f (t) = e a|t |  e b|t |

t
. and 

g(t) = 1 e b|t |

t
..Hint: For  g . use lim

a→0+
e a|t | . and lim

a→0+
arctan(ω/a).. 

(A14)  . Compute the Fourier transforms of the following distributions: 

. f (t) = |t |, g(t) = tnsgn(t), h(t) = ts(t),

p(t) = pf(t n) for n ∈ N, q(t) = pf(|t |λ 1) (0 < λ < 1).

Hint: Use in the last example e rt tλ 1s(t)  → tλ 1s(t). in S  . for r → 0+. 

and

∞̂

0

tλ 1e (r+jω)t dt = (r+jω) λΓ (λ). for r > 0.with the well-known 

Gamma function. 

(A15)  . Compute the Fourier transform of f (x) = 1

cosh(ax)
. for a > 0.. 

For which a is f an eigenfunction of the Fourier transform and to what 

eigenvalue? 

(Hint: Use the residue theorem and integrals over rectangle paths with 

base [ R,R]. and upper edge [ R + jπ/a,R + jπ/a].with R →∞..) 

(A16)  . (a) Fourier Transform Under Linear Coordinate Transformation. 

Let A be a real regular (p×p).matrix and B be the transposed matrix 

of A 1 .. Show that for T ∈ S  (Rp). holds (see notation on p. 187) 

.  TA = | det(B)| ( T )B .

(b) Let P be the parallelogram bounded in the plane by the lines y = ±1. 
and y = x ± 1.. Compute the Fourier transform of the function fp ., 

which is one on P and zero elsewhere. 

(A17) Plot f (ω, n) =  2
n 

k=1
sin(kω). for large n (say n = 30.) and  cot(ω/2). to 

illustrate the regularization as on p. 299. Zoom in around zero, and calculate 

some integrals around zero with f (ω, n)ϕ(ω)., ϕ ∈ D . such that it has 

supp(ϕ) ⊂]  2π, 2π [. including the singularity of cot(ω/2).. Compare the 

approximation  f (ω, n), ϕ . with   vp(cot(ω/2), ϕ .. Take, for example, 

ϕ(ω) = e 1/(1 ω
2)1[ 1,1](ω) ., any derivative of it or product with a smooth 

function.



Chapter 11 

Basics of Linear Filters 

Abstract This chapter treats in detail the application of the Fourier transform in 

linear filtering as an important part in Electrical Engineering and other fields. The 

first part is devoted to the continuous case, e.g., analog linear circuits. A fundamental 

theorem on the convolution representation of causal translation-invariant linear 

systems (LTI systems) is the starting point. All systems are considered as operators 

on a signal space of distributions. It is shown how different types of linear filters 

can be mathematically designed. The examples are lowpass, bandpass, allpass, and 

bandstop filters with their mathematical representation and with their realization by 

standard circuits. Conditions for stability of linear filters by their frequency response 

are deduced. The second part on discrete linear filters starts again with a theorem 

that causal systems have a convolution representation by their impulse response. 

Counterexamples are given, if causality is missing and the input signal space is the 

space of bounded discrete signals. The z-transform is introduced for a treatment of 

discrete LTI systems with their transfer functions. Invertibility and design of causal 

linear phase FIR filters is studied. Causal IIR filters are calculated with the bilinear 

transform. All topics are completed with examples and exercises. 

11.1 Signals 

The aim of this chapter is to introduce some fundamental concepts and results of 

linear system theory. Important mathematical tools in this context are the calculus of 

distributions and Fourier analysis, whose significance for this field will be presented 

below. The subject of system theory is the study of signals and systems that transmit 

signals. There are myriads of such systems in devices of our everyday life. 

Transmission systems play an important role in physics, communication, and 

control engineering. These are physical systems that process time- or space-

dependent input signals and output them in a modified form as output signals. A 

distinction is made between analog, i.e., continuous, and discrete signal processing. 

Examples of transmission systems include electrical circuits, telephone systems that 

transmit conversations, a guitar string that is set into vibration, an object that is 
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irradiated with light and partially absorbs and partially reflects it, audio and video 

transmission systems, and many more. 

The permissible and possible input and output signals for a given system are 

generally restricted to certain classes. Therefore, in the first section, we introduce 

suitable signal spaces that allow both analog and discrete linear systems to be treated 

mathematically uniformly, and in the second section, we describe the linear systems 

that will be studied subsequently. 

The mathematical model for a transmission system is a transformation L between 

a set  Z . of permissible input signals and a set A. of possible output signals. In 

deterministic models—which we will restrict ourselves to in the following—the sets 

Z . and A. are vector spaces of functions or distributions f . 

The variable of a signal is often time. When considering continuous parameters, 

one speaks of analog signals f . If the parameter is discrete, then f is called 

a discrete signal. The values of the signals, in the discrete mathematical model 

subsequently the coefficients of an impulse sequence, are assumed to be real or 

complex numbers. If the coefficient range of discrete signals is also discretized— 

as in technical sampling systems of digital communication—one speaks of digital 

signals. We will not discuss the effects of quantization, i.e., the approximation of 

real or complex values by discrete values, but refer to the extensive literature on 

digital signal processing for this. Furthermore, we will restrict ourselves to the case 

of one-dimensional parameter sets from R. or from the set aZ. with a fixed chosen 

a > 0.. The number 1/a . then represents the sampling frequency of a discrete system. 

For continuous parameters, we use the following signal spaces for Z . or A.: 

1. D . and D ., the spaces of test functions and distributions (see Chap. 8) 
2. D r ., the subvector space of distributions in D

 
.with support in [r,∞[., and D R ., the  

space of causal distributions: 

. D
 
R =

 

r∈R
D
 
r

3. D p ., the space of p-periodic distributions 

4. S . and S  ., the spaces of rapidly decreasing test functions and tempered distribu-

tions, which we introduced with the Fourier transform in Chap. 10 

5. S  r ,. the space of tempered distributions in S  .with support in [r,∞[., r ∈ R., and 
S  R ., the space of causal tempered distributions: 

. S
 
R =

 

r∈R
S
 
r

6. E  ., the space of distributions with bounded support 
7. O C 

,. the space of rapidly decreasing distributions. A distribution T belongs to 

O C . if and only if its Fourier transform  T . is a multiplier in S  .. 
(See p. 290, p.  299, p.  301, and the example on p. 303.)
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8. Lp (R). (1 ≤ p < ∞.) and L∞(R)., the spaces of p-integrable and that of 

measurable essentially bounded functions on R. (see Appendix B, p.  491). They 

can be considered as subspaces of S  .. 

Except for D r . and S
 
r ., all these spaces have the property that for each element f , 

every time-shifted element fτ . (see p. 186) with a translation τ(t) = t+t0 . (t, t0 ∈ R.) 
is again contained in the respective same signal space. For D r . and S

 
r ., this holds only 

for translations to the right. 

For statements about the continuity of operators on these signal spaces, one 

needs assumptions about convergence, mathematically speaking about the topology 

in these spaces. For the spaces D ., E  ., and S  . and their subspaces, we use the 
already introduced convergence concepts from p. 182, p.  202, and p. 290. For  the  

convergence of a sequence Tn → T . as n→∞. in D R . (respectively, S  R .), we require 

that  Tn, ϕ →  T , ϕ . for all ϕ . in D . (respectively, S .) and additionally that all Tn . 

and T belong to D r . (respectively, S
 
r .) for a suitable r ∈ R.. More precisely, D R . 

and S  R . should have the so-called topology of the inductive limit of the spaces D r . 
or S  r .. The significance of this topology will become clear later in an example on 

p. 327. Convergence in the spaces Lp
. and L∞ . is the usual norm convergence in 

these spaces with the norms given in Appendix B, p.  500, which we denote by  . p . 

and  . ∞ .. 

When dealing with discrete parameters, we use the following signal spaces for Z . 

or A.: 

1. X = {x = 

+∞ 

n= ∞ 

xnδn | xn ∈ C }., the space of discrete signals. 

Here, δn . denotes the Dirac functional δ(t  na).. The step size a > 0. is 

arbitrary and assumed to be fixed from now on. All signal spaces specified below 

are to be understood as subspaces of X . with the same step size a. The space X . 

is endowed with the topology induced by D .. A sequence (xN )N∈N . of discrete 

signals xN =
+∞ 

n= ∞
xN,nδn . converges in X . to x =

+∞ 

n= ∞
xnδn . if and only if 

limN→∞ xN,n = xn . for all n ∈ Z., meaning it converges pointwise to x. 

2. X ∩ D k ,. the space of discrete signals in D . with support in [ka,∞[. for k ∈ Z., 
a as above, and X ∩ D R ,. the space of causal discrete signals with the topology 

induced by D R . 

3. X ∩ S  ., X ∩ S  k ., and X ∩ S  R ., the corresponding spaces of tempered discrete 

signals in S  .with their induced convergence concepts 
4. X ∩ E  ., the space of discrete signals with finite support, with E  . convergence 
5. X ∩O C 

,. the space of discrete signals with rapidly decaying coefficients
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6. l 
p 

d 
= {x ∈ X | 

+∞ 

n= ∞ 

|xn|p < ∞ }., for 1 ≤ p < ∞., the space of discrete 

signals x with coefficients xn . that are p-summable. The norm of x is  x p =

(

+∞ 

n= ∞
|xn|p)1/p.. 

7. l∞d 
= {x ∈ X | supn∈Z 

|xn| < ∞ }., the space of discrete signals x with bounded 

coefficients. The norm of x with coefficients xn . is  x ∞ = sup{|xn| : n ∈ Z}.. 
Except for X ∩ D k . and X ∩ S  k ., each of these signal spaces includes every 

translation xτ . of any element x. The translations τ . here are mappings on aZ. of 

the form τ(na) = (n  m)a ., m ∈ Z.. A translation xτ . of x ∈ X . by ma to the right 

with m ∈ N. is simply the convolution xτ = x ∗ δm . of x with δm .. 

X ∩ D k . and X ∩ S  k . also contain all right translations of their elements. 

Convergence of a sequence (xN ). to x in X ∩ D R . (respectively, X ∩ S  R .) means, 

in addition to pointwise convergence, that all xN . and x lie in a space X ∩ D k . 
(respectively, X ∩ S  k .) for some suitable k ∈ Z.. The spaces lpd . (1 ≤ p ≤ ∞.) can 

be equipped with norms from the respective spaces lp(Z). (cf. Appendix B, p.  501). 

The mapping x =
+∞ 

k= ∞
xkδk → (xk)k∈Z . is then an isometry between l

p
d . and lp(Z)., 

and the embeddings of l
p
d . spaces into X . are continuous. Examples of signals from 

different signal spaces will be seen in the following sections. 

11.2 Translation-Invariant Linear Systems 

In the following definition, we assume that the parameter set I satisfies I = R. 
or I = aZ.. The definition then applies equally to continuous and discrete linear 

systems. The signal spaces Z . and A. are spaces from the lists in the previous section 

according to this distinction of the parameter set. 

Definition 

1. A system L : Z → A. is called linear if L is a linear operator, i.e., if for f1, f2 ∈
Z . and arbitrary constants c1 . and c2 . it holds 

. L(c1f1 + c2f2) = c1Lf1 + c2Lf2.

2. It is called translation-invariant if L can be interchanged with translations τ . of 

the parameter set I with the translation operator Tτ . on D ., defined by Tτf = fτ ., 

i.e., if for all f ∈ Z . and Lf = g ., it holds 

.L(Tτf ) = Tτ (Lf ) = gτ .
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A shifted input signal then results in a correspondingly shifted output signal. 

3. The system is called causal or realizable if an output signal can only be observed 

when an input signal is present, i.e., if for all t0 ∈ I . and all f ∈ Z . with support 

in [t0,∞[., it holds that the support of Lf is also in [t0,∞[.. 
Remark If the (continuous or discrete) parameter of the signals represents time, 

then one also speaks of time-invariant instead of translation-invariant linear systems, 

also denoted as LTI Systems. 

Examples 

1. Examples of analog time-invariant linear systems include a delay line, described 

by Lf (t) = f (t  t0)., t0 > 0. , or a differentiator, described by Lf (t) = c
.
f (t)., 

c ∈ R.. Both systems are causal, and the signal classes Z . and A. can be 

chosen as the spaces of distributions D . or S  .. Other examples can be found 

in Sect. 9.3, where causal time-invariant linear systems are given by linear 

differential equations with constant coefficients. The associated operators L in 

all these examples are given by convolution with the causal impulse response. 

Permissible input signals are all distributions that can be convolved with the 

impulse response, for example, all causal input signals f ∈ D R .. For  A., one 

can then choose A = D R ., in the case of stable systems (cf. later p. 334) also  

Z = A = S  R .. 

2. Let an asymptotically stable, linear differential equation P(D)u = f . be 

given. Here, P is a polynomial with real constant coefficients, whose zeros 

have negative real parts, and D = d/dt .. D p . denotes the space of p-periodic 

generalized Fourier series. 

The system L : D p → D p ., where each p-periodic generalized Fourier 

series f (t) =
∞ 

k= ∞
ck e

j2πkt/p
. is assigned the periodic solution L(f )(t) =

∞ 

k= ∞
hkck e

j2πkt/p
. with hk = 1/P (2πkj/p)., is an analog time-invariant linear 

system (cf. p. 65 and p. 214). 

3. (a) The operator L : X → X . on the space X . of discrete signals, Lx = y . with 

yn = xn k . (k ∈ Z.), describes a discrete translation-invariant linear system. 

Similarly, averaging L : X → X . on the space X . of discrete signals, for 

example, Lx = y = x ∗
 
1

2
δ0 +

1

2
δ1

 
.with yn =

1

2
xn +

1

2
xn 1.. 

(b) Analogously, all discrete recursive systems L : X → X ., Lx = y .with 

. yn =
N 

k=0
akxn k +

M 

l=1
blyn l , (N ≥ 0, M ≥ 1, ak, bl ∈ R)

are linear, translation-invariant, and causal (cf. also p. 114), if the initial rest 

state is assumed, i.e., y = 0. for x = 0..
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11.3 Analog Linear Filters, Continuity, and Causality 

All analog systems mentioned in the first example above have in common that the 

operator L can be represented as a convolution with the impulse response h = Lδ .. 

For f ∈ Z . it holds 

.Lf = L (f ∗ δ) = f ∗ Lδ = f ∗ h. (11.1) 

The operators L in these examples with the signal spaces D R . or S  R . for Z . and A. 

are interchangeable with the convolution (cf. p. 196) and are also continuous: For  

n→∞. it holds 

.fn → f in Z  ⇒ Lfn = fn ∗ h→ f ∗ h = Lf in A. (11.2) 

Time-invariant linear systems with these two properties are called linear filters. 

So, for a linear system L : Z → A. to be a linear filter, it requires first the 

convolution representation (11.1) and second the continuity property (11.2) for  

suitably given signal spaces Z . and A.. 

If one assumes that in practice causal systems and signals with “finite past” play 

a role, i.e., signals whose support is bounded below, then the global importance 

of linear filters is shown in the following theorem, in which we summarize results 

from Schwartz (1957), Albrecht and Neumann (1979), and Neumann (1980). In this 

theorem, the above mathematical continuity requirement on L is replaced by the 

causality condition for a linear system, which is physically justified in numerous 

applications. The space Z . of input signals is the vector space D R . of all distributions 

on R.whose support is bounded below or the space E  . of distributions with bounded 
support. The image space of L is the vector space D . of all distributions. A linear 
system of the form Lf = f ∗ h. is causal if and only if the support of h is in the 

interval [0,∞[.. 

Automatic Continuity of Causal Time-Invariant Linear Systems 

Theorem 11.1 (Theorem of Albrecht-Neumann) On the spaces Z = E  . or 
Z = D R ., every causal time-invariant linear system L : Z → D . is automatically 
continuous and is represented by the convolution with the impulse response h = Lδ ., 

i.e., for every f ∈ Z . it holds Lf = f ∗ h.. 
The proof of this fundamental result requires functional analytic methods and 

cannot be carried out here. In the aforementioned works by E. Albrecht and M. 

Neumann, one can find further variants of this theorem for other signal spaces as 

well. The theorem shows that many physically relevant, realizable time-invariant 

linear systems are linear filters and always possess the required continuity property 

(11.2). Their transfer behavior can thus be empirically determined by measuring
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the impulse response. Convolution representations are also obtained for linear 

dissipative multiparameter systems. Readers interested in the topic may refer to 

the works of König (1959), Day (1961), Weiss (1991), the textbooks by Zemanian 

(1995), Vladimirov (2002), Partington (2004), and Pohl and Boche (2010), and the 

references found therein for further study. 

For continuity, the convergence concepts in E  . and D R . introduced on p. 202 are 

crucial, in other words, the topology of these spaces. In the following example, 

we provide a causal system, either on Z = D R . or on Z = E  ., defined by a 
convolution operator, which is not continuous if the chosen space Z . is equipped 

with D .-convergence, i.e., with the coarser topology induced by D .. 

Example Consider L : Z → D ., defined by Lf = f ∗ h. with h =
∞ 

n=0
δn . and 

Z = D R . or Z = E  .. The  accumulator L is a causal convolution operator. 

For n ∈ N. let 

. fn =  δ n + δ0.

Then it holds 

. D
 -lim

n→∞
fn = δ0,

but (compare also the example on p. 200) 

. Lfn =  
 1 

k= n
δk and thus D -lim

n→∞
Lfn =  

 1 

k= ∞
δk  = Lδ0 = h.

On the other hand, the sequence fn . is not convergent in the topologies defined on 

p. 202 in D R . or in E  ., and L is continuous on these spaces with these topologies 

according to the preceding theorem. 

For specifically given operators L, which are usually directly defined as convo-

lution operators in applications of system theory, it can often also be shown directly 

that the necessary continuity property is present, even if the permissible signal class 

Z . does not coincide with D R . or E  .. These systems are then also linear filters, even if 

they do not satisfy the causality condition. Linear filters, i.e., continuous convolution 

systems on suitable signal spaces, are studied below. 

The Frequency Response of Analog Linear Filters 

We now consider convolution systems Lf = f ∗ h., for  which  h is a tempered 

distribution (cf. p. 289). If, for example, the system is described by an ordinary
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Fig. 11.1 Schematic linear 

filter 

differential equation as in Sect. 9.2, then its causal fundamental solution is tempered 

if and only if it contains no exponentially growing components (cf. p. 64 and p. 217), 

i.e., if no zero of the characteristic polynomial has a positive real part. For the input 

signals f , we assume that the convolutions f ∗ h. exist and that the convolution 

theorem f ∗ h =  f  h.holds for the Fourier transforms. This is the case, for instance, 

if the signals f are “time-limited” distributions, i.e., if they have bounded supports, 

if f and h are square-integrable functions (cf. p. 300), or if f belongs to S  . and  h. 

is a multiplier in S  . (cf. p. 290). From the continuity of the Fourier transformation 

on the associated signal spaces and the convolution theorem, it then follows directly 

the continuity of the considered convolution operators Lf = f ∗ h.. 

Definition For a linear filter Lf = f ∗ h. that satisfies the above requirements, the 

Fourier transform  h. is referred to as the frequency response of the filter. 

If the δ .-impulse belongs to the space Z . of input signals, then the frequency 

response is the Fourier transform of the impulse response Lδ = h.. The transmission 

behavior of the system can then be schematically described as in Fig. 11.1: 

With the inverse Fourier transform F 1
  f  h

 
. of f ∗ h., the system response in 

the time domain is given by the equation 

.f ∗ h = F 1
  f  h

 
. (11.3) 

A descriptive interpretation of this formula, which is to be read as an equation 

between tempered distributions, is obtained if we assume more specific conditions 

on h and f . If, for example, f is a piecewise continuously differentiable, time-

limited signal and |h|2 . is also an integrable function with h, then the output signal 
f ∗ h. is continuous and integrable and has an integrable Fourier transform (cf. 

p. 301). The Jordan inversion theorem from p. 312 and the convolution theorem 

then give the pointwise representation of the system response f ∗ h. to the input 

quantity f : 

.f ∗ h(t) = 1

2π

+∞
ˆ

 ∞

 f ∗ h(ω) e jωt dω = 1

2π

+∞
ˆ

 ∞

 f (ω) h(ω) e jωt dω. (11.4) 

The input signal f (t) = 1

2π

+∞́

 ∞
 f (ω) e jωt dω. is a superposition of harmonic 

oscillations whose amplitudes and phases are expressed as a function of frequency
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by the spectral function  f (ω).. The amplitudes | f (ω)|. of the oscillations involved 
are amplified or attenuated by the factor | h(ω)|. during transmission, and the phases 

arg
  f (ω)

 
. are additively changed by the phases arg

  h(ω)
 
.. The frequency response 

 h. contains information about amplitude and phase changes during the transmission 

of f . It thus provides crucial information for the analysis and design of linear 

transmission systems, whose properties can thus be specified. 

It can be seen, due to  δ = 1. and f ∗ δ = f ., that the representation 

(11.4) also holds if h contains additional δ . components. Examples that meet 

the special conditions mentioned above can be found in Sects. 5.2 and 9.3. For  

more general situations, for example, if h also contains derivatives 
.
δ . of δ ., the  

pointwise representation (11.4) requires additional differentiability properties of 

f . The growth of  h(ω). can then be compensated by sufficiently rapid decay of 

| f (ω)|. for |ω| → ∞. in the case of correspondingly smooth input signals f , so  

that the product  f  h. results in an integrable function and the representation (11.4) 

remains valid. For time-limited distributions f and tempered distributions h without 

further assumptions, the somewhat more abstract distribution equation (11.3) is  

always valid—and that is the advantage of the distribution method. In particular, 

we recognize that no new frequencies are generated when filtering a signal f : If  
 f (ω) = 0., then also  f  h(ω) = 0.. 

Definition For a filter with a piecewise differentiable frequency response 

.  h(ω) = | h(ω)| ej arg( h(ω)),

we refer to the function A(ω) = | h(ω)|. as amplitude response. The function Φ(ω)=
arg( h(ω)). is called the phase response. The almost everywhere defined function 

D(ω) =  dΦ(ω)/dω . is called phase delay or group delay. 

For a frequency-dependent group delay, signals with a large bandwidth are trans-

mitted through the filter with correspondingly strong phase changes. For example, 

group delay changes of about 1–3 ms in signals in audio systems are already 

perceptibly above the threshold of audibility and require phase equalization in 

high-fidelity components. To illustrate regular frequency responses—for example, 

with the help of a computer algebra system—one can graphically represent the 

amplitude response, the phase response, or the phase delay separately. For reasons 

of symmetry, it is sufficient to represent over the half-axis ω ≥ 0. (cf. again p. 273). 

In electrical engineering, the frequency response is often represented as a locus 

curve in the complex plane dependent on the parameter ω .. Signals f in this field of 

application are often time-dependent voltage waveforms. 

Examples 

1. Differentiator. The frequency response  h. of the ideal differentiator, considered 

as a filter on S  . with the causal impulse response a
.
δ(t)., is given by the 

differentiation rule of the Fourier transform as  h(ω) = jωa.. This shows that 

the differentiator is very sensitive to high-frequency noise in the input signal.
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They are amplified by the factor ωa .. For a time-limited, twice continuously 

differentiable input signal f , it follows with Jordan’s inversion formula from 

p. 312 

. f ∗ h(t) = a
.
f (t) = 1

2π

+∞
ˆ

 ∞

jωa  f (ω) e jωt dω = a

2π

+∞
ˆ

 ∞

 .
f (ω) e jωt dω.

We have already encountered an approximate realization as an electrical circuit 

on p. 156. If one wants a system that acts as a differentiator for signal components 

with low frequencies and strongly attenuates high-frequency signal components, 

then one can choose as frequency response 

.  hb(ω) =
jωa

(1+ jbω)2

with b > 0.. Amplitude and phase changes in the transmission correspond to 

those of the ideal differentiator up to the angular frequency ω = 1/b.. Above this 

angular frequency, the amplitude drops to zero, and the phase shifts from π/2. to 

 π/2.. The impulse response of this approximate differentiator is (exercise) 

. hb(t) =
a(1 t/b)

b2
e t/b s(t)

with the unit step function s(t).. The system is causal. 

2. Integrator. An ideal integrator is a linear system L, which is defined with a real 

constant K by Lf (t) = K
t́

 ∞
f (x)dx . (Fig. 11.2). 

Its response to the unit step function s(t). is a(t) = Kts(t)., and its impulse 

response is
.
a(t) = Ks(t).. Its frequency response is h(ω) = K/(jω)+Kπδ(ω).. 

Here, 1/ω. denotes the principal value vp(ω 1). (cf. p. 167). If one chooses the 
space S .or the set of integrable functions with bounded support as the input signal 

class Z ., then the convolution theorem holds for the Fourier transform. Integrators 

are causal linear systems. They can be approximately realized in a manner similar 

to differentiators (cf. p. 156) using suitably configured operational amplifiers in 

electrical circuits. 

3. Ideal Lowpass Filter. If the amplitude response | h(ω)|. of a filter becomes small 

as soon as |ω|. exceeds a cutoff frequency ωc > 0., then it is called a lowpass 

filter. The angular frequency ωc . is referred to as the cutoff frequency, the interval 

] ωc, ωc[. as the passband, and its complement as the stopband. Low-pass filters 

play an important role in communications technology. We will see in Sect. 12.1 

Fig. 11.2 Schematic 

integrator
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that they can be used for the reconstruction of a continuous signal from suitable 

samples. The ideal lowpass filter, also called the Küpfmüller lowpass, operates 

distortion-free in the passband, i.e., its response Lf to an input signal f has the 

same form as f , but possibly time-delayed. It is defined by 

. Lf (t) = A0f (t  t0) (A0 > 0 , t0 > 0)

for all f with supp( f ) ⊂ ]  ωc, ωc[.. Components of a signal f with 

frequencies ω ., |ω| ≥ ωc ., are cut off. The frequency response is therefore 

.  h(ω) = A0 e
 jωt0 rωc (ω),

where rωc(ω) = 1. for |ω| < ωc ., rωc (ω) = 0. for ω  ωc .. 

If one chooses the input signal space Z . as the space of square-integrable 

functions L2(R). or the space E  . of time-limited distributions, then the 

convolution theorem holds for the Fourier transform. For a time-limited input 

signal f ,  f . is an infinitely differentiable function (see p. 303), and application 

of f ∗ h. to a test function ϕ ∈ S . shows 

.  f ∗ h, ϕ =   f  h,F 1ϕ = A0

2π

+∞
ˆ

 ∞

ˆ +ωc

 ωc

 f (ω) e jω(t t0) dω ϕ(t) dt.

Thus, 

. f ∗ h(t + t0) =
A0

2π

+ωc
ˆ

 ωc

 f (ω) e jωt dω.

From this representation of the system response in the time domain, one can 

see, in addition to the time delay of t0 . and the band limitation in the frequency 

domain, that the output signal f ∗ h. is an infinitely differentiable function. No 

matter how irregular f is, band limitation produces a smoothed signal, which, 

however, is no longer time-limited (Illustration Fig. 11.3). 

The ideal lowpass filter is not causal and therefore cannot be realized as a 

transmission system by any electrical circuit. The filter, considered in E  ., has the 
impulse response 

Fig. 11.3 Frequency and impulse response of an ideal lowpass filter
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. h(t) =
A0 sin

 
ωc(t  t0)

 

π(t  t0)
.

It would be present for any previous time interval for an exciting pulse at time 

t = 0.. Despite the noncausality, the Küpfmüller lowpass is very useful in many 

theoretical studies and also in the design of practical transmission systems due 

to its simple form. In practice, filters that are realizable and stable and that 

approximately have the same frequency response are sought. Stability means 

that a bounded input signal also results in a bounded output signal. 

If one wants to construct linear filters with a causal impulse response by 

specifying their frequency response, it should be noted that its real and imaginary 

parts, in other words amplitude distortion and phase distortion, cannot be chosen 

independently (see p. 274). There are criteria that indicate for which frequency 

responses there are realizable, i.e., causal filters. Mention should be made of the 

theorems of R. Paley and N. Wiener and the Hilbert transform. References on 

this topic include Paley and Wiener (1934), Dym and McKean (1985), Papoulis 

(1987), Stein and Weiss (1971), or Pohl and Boche (2010). We will not go further 

into this topic mathematically, but instead show in the following example how 

to construct realizable, stable approximation filters with a rational frequency 

response. 

Butterworth Lowpass Filter 

Realizable, stable lowpass filters for signals in L∞(R). or more generally from S  . 
are obtained with the principal design method as frequency response  h. a rational 

function 

.  h(ω) = K

P(jω)

to be set, where K is a real constant and P is a polynomial of degree n with real 

positive coefficients, whose zeros have negative real parts: 

. P(jω) = (jω)n + an 1(jω)
n 1 + . . .+ a1(jω)+ a0.

The constant K , the order n of the filter, and the coefficients a0, . . . , an 1 . are to be 
determined such that the filter meets the desired requirements for gain, passband, 

and stopband in each case. For example, | h(ω)|. should lie in the shaded area, i.e., 
meet the following tolerance scheme. Since | h|. is even, it suffices to consider the 
half-axis ω ≥ 0. (cf. Fig. 11.4). 

The realizability arises from the fact that a filter with a rational frequency 

response h(ω) = K/P(jω). can be described by a differential equation of the form
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Fig. 11.4 Tolerance scheme 

of a Butterworth lowpass 

filter 

. u(n) + an 1u
(n 1) + . . .+ a1

.
u+ a0u = Kf.

This equation has a unique causal fundamental solution and unique causal solutions 

u for right-hand sides f with supp (f ) ⊂ [0,∞[. (see Sect. 9.2). The corresponding 
causal system is given by Lf = f ∗ h = u.. 

Substituting the causal fundamental solution h and taking the Fourier transform 

of the differential equation result in 

. 
 h(n) + an 1 h(n 1) + . . .+ a0 h = ((jω)n + an 1(jω)

n 1 + . . .+ a0) h = K δ = K.

The causal fundamental solution h of the differential equation has the Fourier 

transform  h(ω) = K/P(jω). exactly if all zeros of P have negative real parts 

(see also p. 298). Since then the regular distribution  h. belongs to the space OM . 

of multipliers in S  ., the convolution theorem for the Fourier transform holds (see 

p. 290 and p. 300). 

For a right-hand side Kf with supp (f ) ⊂ [0,∞[., we now substitute 

. 
.
v0 = u(n) + an 1u

(n 1) + . . .+ a1
.
u = Kf  a0u

and consider v0 . as the causal response of the system
.
v0 = g . to the input quantity 

g = Kf  a0u.. By integration follows 

. v0 = u(n 1) + an 1u
(n 2) + . . .+ a2

.
u+ a1u.

Since supp (v0) ⊂ [0,∞[., no integration constant occurs. With further substitutions 

we obtain the following first-order differential equation system: 

. 
.
v0 = Kf  a0u ,

.
vk = vk 1  aku for 1  k  n 1, u = vn 1.

This system with the “state variables” v0, . . . , vn 1 . can be replicated as an 
electronic circuit with proportional elements, adders, and integrators (see also 

p. 231). References to implementations in circuit technology can be found at the 

end of the section. 

The circuit is described by the following signal flow diagram in Fig. 11.5:
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Fig. 11.5 Signal flow and realizability by a circuit 

The stability of the system can be characterized by the fact that its impulse 

response h is an integrable function. For a signal f whose amplitudes are bounded 

by |f (t)|  M (t ∈ R)., the filter response f ∗ h. is then also bounded with 

|f ∗ h(t)|  M
+∞́

 ∞
|h(t)| dt ., i.e., the filter is stable. Integrability of h means that 

the zeros of the characteristic polynomial P of the differential equation must have 

negative real parts; otherwise components of the form αtm eβt s(t). with  (β)  0., 

m ∈ N0 ., α ∈ R., would be present in the impulse response. These components would 

not be integrable. This property of the zeros of P , already assumed in the approach, 

thus ensures the desired stability. Because the polynomial P has real coefficients 

according to the approach, 

. | h(ω)|2 = K2

P(jω)P ( jω) ,

and the location of the zeros of the polynomial Q(z) = P(z)P ( z). shows 
symmetry to both the real and the imaginary axis in the complex plane. Conversely, 

given zeros z1, . . . , z2n . (all zk  = 0.) that exhibit this double symmetry, they 

form a polynomial Q that can be factored as Q(z) = P(z)P ( z)., where P has 

positive real coefficients and all zeros of P have negative real parts. Accordingly, 
 h(ω) = K/P(jω). is the frequency response of a realizable stable filter. 

For the Butterworth lowpass the function | h|2 . should run as horizontally as 
possible below the cutoff frequency ωc > 0. for ω ≥ 0.. Since ω/ωc < 1. there, this 

requirement is best fulfilled if | h|2 . depends only on the highest power of ω/ωc .. For  

ω/ωc < 1. the lower powers of ω/ωc . provide large contributions to the denominator 

of | h|2 ., causing a drop in gain. With the substitution of the parameter jω . by the 

complex variable z, the Butterworth lowpass filter, named after Butterworth (1930), 

is given by 

. Q(z) = P(z)P ( z) = 1+
 z

jωc

 2n
.

The order n and ωc . must be determined from the filter requirements. To determine 

the coefficients of P , we consider the zeros of Q. For a given order n of the filter 

and given cutoff frequency ωc ., they are given by
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. zk = jωc e
j (2k+1)π/(2n) (k = 0, . . . , 2n 1).

The zeros with negative real part are the zk . with k = 0, . . . , n  1.. Since P is 

assumed to have positive coefficients (the same signs are necessary for stability), it 

follows from the assumption P(0) = Q(0) = 1.. 

With ( z0)( z1) · · · ( zn 1) = ωn
c . and Q(jω) = 1+ (ω/ωc)

2n
., it follows that 

.  h(ω) = Kωn
c

(jω  z0)(jω  z1) · · · (jω  zn 1)
and | h(ω)| = |K| 

1+ (ω/ωc)2n
.

To give an example with specific filter requirements, we demand the following 

values: DC gain K = 1., passband edge ω1/(2π) = 3 .kHz, minimum passband 

gain  h1 = 0.9., stopband edge ω2/(2π) = 10 .kHz, and maximum stopband gain 
 h2 = 0.1.. 

The required order n of the filter results from | h(ω)|2 = K2/(1 + (ω/ωc)
2n). as 

(ω1/ωc)
2n  K2/ h21  1 = α1 . and (ω2/ωc)

2n  K2/ h22  1 = α2 .: For  n it must 

hold that n  (α1/α2)/(2 ln(ω1/ω2)).. From (ω1/ωc)
2n  α1, (ω2/ωc)

2n  α2 ., 

it follows that ωc . must lie in the interval [ω1 e
 ln(a1)/(2n), ω2 e

 ln(a2)/(2n)].. It is  
common to choose the geometric mean of the interval bounds for ωc . to ensure that 

the filter requirements are met even with slight variations in filter parameters, e.g., in 

the capacitances of the implementing circuit. With the given data of the example, it 

follows that n = 3, ωc/(2π) = 4.2 .kHz, z0, z1, z2 . are the zeros of Q with negative 

real parts as given on p. 334, and thus 

.  h(ω) = 1

(1+ jω/ωc)(1+ jω/ωc  (ω/ωc)2)

meets the filter requirements. The corresponding impulse response can be found on 

p. 232. A graphical representation of | h|. and the group delay (see Fig. 11.6) 

. D(ω)= d

dω
arg( h(ω))=  

n 1 

k=0
 (zk)/( (zk)

2 + (ω   (zk))2)

show that the filter is suitable for nearly distortion-free transmission in the range up 

to about ωc/2., i.e., up to a frequency of approximately 2.1 .kHz. In this range, the 

filter matches very well with an ideal lowpass. Delay  arg( h(ω))/ω . and group 

delay of the filter are always less than 0.11. ms, the attenuation at ωc . according to 

the design with K = 1. is about 3 dB,  20 log10(| h(ωc)|) = 10 log10(2)., with Volt 

input and reference amplitude 1 V. 

Butterworth filters (as analog filters or in discrete form, see p. 377) are widely 

used in audio high-fidelity systems or in communication technology in WLAN 

receivers and many more. The third-order normalized transfer function (ωc = 1.) 

is H(s) = 1/((1 + s)(1 + s + s2))., s ∈ C., with associated frequency response 
H(jω)..
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Fig. 11.6 Attenuation | h|. and ωc . times group delay 

In an analogous manner, Chebyshev lowpass filters are also constructed. For their 

frequency response, one requires 

. | h(ω)| = K 
1+ ε2T 2

n (ω/ωc)
.

Here, Tn ., n ∈ N., are the Chebyshev polynomials from p. 107. The constants K , ε ., 

and the filter order n are to be determined according to the attenuation specifications 

for the filter. Chebyshev lowpass filters are more rippled in the passband compared 

to Butterworth filters due to the zeros of the Chebyshev polynomials, but they 

attenuate more strongly in the stopband for the same order (see pp. 113–114). 

However, they have greater and more frequency-dependent delays. All details for 

designing such filters can be found in Exercise A26 of Chap. 5 on p. 127. 

11.4 Analog Filters with Rational Frequency Responses 

A large class of typical linear transmission elements can be described analogously 

to the Butterworth filter by differential equations of the form 

. u(m) + αm 1u
(m 1) + · · · + α0u = βnf

(n) + βn 1f
(n 1) + . . . β0f

with real coefficients α0, α1, . . . , αm 1 ., αm = 1., and β0, . . . , βn 1 ., βn  = 0.. With 

the polynomials P(z) =
m 

k=0
αkz

k
. andQ(z) =

n 

k=0
βkz

k
. and the differential operator 

D = d

dt
., the differential equation is briefly noted as 

. P(D)u = Q(D)f.

Choosing a signal class Z . with input signals f , which can be convolved with the 

causal solution h of P(D)h = Q(D)δ ., such as Z = S  R ., then Lf = f ∗ h. defines
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a causal time-invariant system, which is referred to as an analog filter. Here, we 

consider Q(jω)/P (jω). as a pseudofunction in S  . (see p. 298). 
Such filters are implemented in countless applications in electrical engineering 

and are now widespread as inexpensive components in mass products. In the 

following, frequency response, stability, and realizability will be discussed, and 

some standard examples will be presented. 

Common Linear Factors of the Polynomials P and Q 

Assume that P(z) =
m 

k=1
(z  zk). and Q(z) = βn

n 

k=1
(z  bk).. If  P and Q have a 

common linear factor (z  z1) = (z  b1)., then let  P . and  Q. be given by  P(z) =
m 

k=2
(z  zk). and  Q(z) = βn

n 

k=2
(z  bk).. It is evident that the causal solutions of 

P(D)u = Q(D)f . and  P(D)u =  Q(D)f . are identical. Common linear factors 

of P and Q thus have no influence on the solution of the described system when 

initial values are zero and therefore also do not affect the frequency response and 

stability properties of the system discussed subsequently. We therefore assume in 

the following that P and Q have no common linear factors. 

Frequency Response and Transfer Function of the Causal 

System 

The described causal system has a frequency response  h(ω). if and only if its 
impulse response h(t). is a tempered distribution, i.e., if all zeros of the characteristic 

polynomial P have real parts r ≤ 0.. For h ∈ S  ., i.e., without exponentially growing 
parts, it holds that 

.  h(ω) = F(Q(D)g)(ω) =
n 

k=0
βk(jω)

k g(ω)

with the causal fundamental solution g of the differential equation P(D)g = δ .. For  
 h ∈ S  ., the Fourier transform of the differential equation P(D)h = Q(D)δ . shows 

that 

. P(jω) h(ω) = Q(jω).

If P has zeros with real parts r = 0., then 1/P (jω). is not a multiplier in S  . (cf. 298), 
the convolution theorem for the Fourier transform then generally no longer applies,



338 11 Basics of Linear Filters

and Q(jω)/P (jω). is then not the frequency response of the described causal 

system. Although F 1(1/P (jω)). is indeed a fundamental solution of P(D)g = δ ., 

it is not causal, and this fundamental solution can no longer be convolved with 

arbitrary causal right-hand sides of the differential equation. In other words, the 

equation P(jω) h(ω) = Q(jω). cannot be solved in F(S  R). for h(ω). by multiplying 

with 1/P (jω).. If the zeros of P have real parts r < 0., then 1/P (jω). is a multiplier 

in S  ., the impulse response F 1(Q(jω)/P (jω)). is a rapidly decreasing causal 

distribution, the convolution theorem applies for arbitrary tempered disturbances 

f , and the frequency response of the system is 

.  h(ω) = Q(jω)

P (jω)
.

Definition The functionH(z) = Q(z)/P (z)., closely associated with the frequency 

response, is called the transfer function of the system. 

Examples 

1. The differential equation
.
u = Kf . describes an integrator (cf. p. 330) with 

transfer function H(z) = K/z.. Its frequency response, however, is not K/(jω)., 

but  h(ω) = K/(jω) + Kπδ(ω).. The equation au(3) + b
.
u = f . describes, 

with a, b > 0., ω0 =
√
b/a ., a causal filter on S  R . with impulse response 

h(t) = s(t)(1 cos(ω0t))/b..The characteristic polynomial has the roots λ1 = 0., 

λ2,3 = ±jω0 .. The transfer function is H(z) = 1/P (z) = 1/(az3 + bz)., but  the  

frequency response is (this calculation is left as a good exercise for the reader; 

cf. pp. 293 and 298) 

.  h(ω) = 1

(jω)3a + jωb
+ π

b
δ(ω) π

2b
[δ(ω  ω0)+ δ(ω + ω0)]  =

1

P(jω)
.

The convolution theorem does not hold if, for example, f (t) = U0s(t).. 

2. The causal filter for the differential equation
.
u au = af . can be realized by an 

adder, an integrator, and a proportional element (cf. p. 333). It has the transfer 

function H(z) = a/(z a). and for positive a ∈ R. the impulse response 

. h(t) = a eat s(t).

It is not tempered, the system is unstable (see below), and it has no frequency 

response that by definition should belong to S  .. 

The filter with the frequency response
a

jω  a
. has for a > 0. the impulse 

response 

.  h(t) =  a eat s( t)

and is not causal.
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These examples show that the equation  h(ω) = H(jω). for the frequency 

response of a system of the form P(D)u = Q(D)f . is only correct if all poles of 

H have negative real parts. 

Stability of the Causal System 

A causal time-invariant linear system of the form P(D)u = Q(D)f . is called stable 

if a bounded input signal results in a bounded output signal (BIBO-stable, “bounded 

input bounded output”). 

For polynomials P and Q without common linear factors, the system is certainly 

unstable if P has zeros with positive real parts. It is also unstable if P has 

zeros on the imaginary axis. For a zero at the origin, consider, for example, 

f (t) = s(t). as input signal. For zeros of the form ± jb., b > 0., consider, 

for example, f (t) = cos(bt)s(t). as input signal: The convolution with the part 

(c1 cos(bt)+ c2 sin(bt))s(t). of the impulse response corresponding to the zero pair 

± jb. is unbounded for t →∞. (with suitable c1 ., c2 .). 

We now assume that all zeros of P have negative real parts. Then the preceding 

considerations show that the frequency response is given by 

.  h(ω) = Q(jω)

P (jω)
.

If degQ = n > m =.deg P ., then the impulse response h contains additive terms 

of the form ckδ
(k)(t). with k ≥ 1. and certain constants ck  = 0. (cf. partial fraction 

decomposition and Fourier transforms of derivatives on p. 291). The system is in 

this case unstable, because then, for example, the excitation f (t) = sin((ω0t)
2)s(t). 

results in an unbounded system response. In summary we obtain the following: 

Theorem 11.2 For polynomials P and Q without common zeros, the causal time-

invariant linear system described by P(D)u = Q(D)f . is stable if and only if 

degQ ≤ degP . holds and all poles of Q/P . have negative real parts. This is 

exactly the case when the impulse response h has the form h(t) = p(t) + cδ(t). 

with a suitable constant c and an integrable function p(t).. The frequency response 

of a stable system of this form is Q(jω)/P (jω).. The term cδ(t). in the impulse 

response appears when degQ = degP .. The integrable function p(t). is under these 

conditions even a rapidly decreasing distribution, and the convolution theorem of 

the Fourier transform applies to all tempered input signals f .
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Realization of the Causal System 

We continue to consider the differential equation from p. 336 with the polynomials 

P and Q given there. Let again Q(z) = βn

n 

k=1
(z  bk). be the factorization of 

Q(z) =
n 

k=0
βkz

k
.. For n ≥ degP = m., letQ1(z) = βn

m 1 

k=1
(z bk) =

m 1 

k=0
ckz

k
. and 

Q2 =
Q

Q1
.. For n < m. let Q1(z) = Q(z)., ck = βk . for 0 ≤ k ≤ n., ck = 0. for k > n. 

and Q2(z) = 1.. 

The right side of P(D)u = Q(D)f . can thus be represented by 

. Q(D)f = Q2(D)[Q1(D)f ].

With the causal fundamental solution g of the system, one obtains for an input signal 

f with supp (f ) ⊂ [0,∞[. the output signal 

. u = g ∗Q(D)f = g ∗ [Q2(D)Q1(D)f ] = Q2(D)[g ∗Q1(D)f ].

This input-output relation can be schematically represented by a serial connection 

of two systems: 

System 2 can be electrically simulated by proportional elements, adders, and dif-

ferentiating elements. We consider System 1 and assume without loss of generality 

that n = m 1.. With the coefficients ck . of Q1 ., it is given by 

. v(m) + αm 1v
(m 1) + · · · + α0v = cm 1f

(m 1) + cm 2f
(m 2) + · · · + c0f.

As on p. 333 it is transformed into a first-order differential equation system: Let 
.
x0 = c0f  α0v .. Then 

. v(m) + αm 1v
(m 1) + · · · + α1

.
v  cm 1f

(m 1)  · · ·  c1
.
f = .

x0.

With the causality of the system, integration yields 

.v(m 1) + αm 1v
(m 2) + · · · + α1v  cm 1f

(m 2)  · · ·  c2
.
f  c1f = x0.
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With
.
x1 = x0 + c1f  α1v . and xm 1 = v ., repeated integration and continuation of 

the process results in the following state description by a first-order system: 

. 
.
x(t) = Ax(t)+ Cf (t)

with x(t) = (x0(t), x1(t), . . . , xm 1(t))T ., C = (c0, c1, . . . , cm 1)T . and 

. A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · · · ·  α0
1 0 · · · · · ·  α1

1 · · ·
.... . . · · ·
...

· · · · · ·
...

0 1 0  αm 2
1  αm 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In control theory, this state description is called the observer canonical form of the 

system. The corresponding block diagram has already been introduced in Sect. 9.3 

on p. 231. 

Examples 

1. Allpass Filter. An allpass filter L is a filter with a constant amplitude response. 

When considering the filter in the signal space L2(R)., it follows from the 

Plancherel equation that the energy
∞́

 ∞
|Lf (t)|2dt . of an output signal Lf is 

proportional to the energy of an input signal f of the filter. 

Allpass filters can be used for signal delay and phase equalization of 

transformed signals. For example, one can derive from the frequency response 

of a lowpass filter of the form 

.  hLP(ω) =
K

P(jω)
= K

|P(jω)| e jΦ(ω)

the frequency response hAP .of an allpass filter by replacing the numerator K with 

the complex conjugate of the denominator. This results in 

.  hAP(ω) = e2jΦ(ω) .

The amplitude response is then constantly 1, and the phase delay is doubled 

compared to the lowpass filter (Allpass Delay Equalizer). 

2. Highpass Filter. Highpass filters have their stopband 0 ≤ ω < ωc . below a 

cutoff angular frequency ωc . and their passband above it. One way to obtain a 

highpass frequency response is the Lowpass to Highpass Transformation, i.e., 

replacing the normalized parameter s = jω/ωc . in the frequency response of 

a lowpass filter with the cutoff frequency ωc/(2π). by the parameter 1/s .. For
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Fig. 11.7 Lowpass-highpass 

transform 

example, from the frequency response hLP . of the Butterworth lowpass filter from 

p. 335, one derives the rational frequency response hHP . of a highpass filter of the 

same order with the same cutoff frequency: 

.  hHP(ω) =
1

(1 jωc/ω)(1 jωc/ω  (ωc/ω)2)
= (jω)3

ω3
c

 hLP(ω).

In general, if the transfer function (cf. p. 338) of a stable lowpass filter has 

poles zk ., then ω2
c/zk . are the corresponding poles of the highpass filter’s transfer 

function (see the image below right). The highpass filter is therefore also stable, 

and its frequency response has the same magnitude as the lowpass filter at ωc ., 

in this example 1/
√
2., i.e., about 3 dB attenuation. For the amplitude responses, 

the following holds | hHP(α ωc)| = | hLP( ωc/α)| = | hLP(ωc/α)|. for α > 0.. 

Lowpass and highpass filters have the same order. In the case of Butterworth 

filters, lowpass and derived highpass filters have the same group delays, because 

for Butterworth filters, the poles zk . of the lowpass transfer function have the 

magnitude ωc .. Verifying these statements is given to readers here as a small 

calculation exercise. 

From log(α ωc) = log(ωc)+ log(α), log(ωc/α) = log(ωc) log(α)., it can be 

seen that the transformation mirrors the amplitude response of the lowpass filter 

for ω > 0. at the cutoff frequency on a logarithmic frequency axis (Fig. 11.7). 

3. Bandpass Filter. Bandpass filters can be obtained by serially connecting high-

pass and lowpass filters or by using the Lowpass to Bandpass Transformation. In  

this transformation, the normalized parameter jωn = jω/ωc . in the frequency 

response of a lowpass filter is replaced using the Joukowsky transform (see 

p. 127) with 

. 
1

B

 
jωn +

1

jωn

 
.

In filter design, besides the cutoff frequency ωc ., the normalized bandwidth 0 <

B < 1. is also freely selectable. The quantity Q = 1/B . is referred to as the 

quality factor of the bandpass filter. A first-order lowpass filter with the frequency 

response
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Fig. 11.8 How the filter 

transformations above and 

below map a lowpass pole P 

.  hLP(ω) =
K

(1+ jωn)

corresponds to, for example, a second-order bandpass filter with the frequency 

response 

.  hBP(ω) =
jωnBK

1+ jωnB  ω2
n

.

In this transformation, it generally applies: The order of the lowpass filter is 

doubled and  hBP(ωc) =  hLP(0). holds. As with the lowpass filter, the bandpass 
filter is also stable. This follows from the mapping properties of the Joukowsky 

transform (see p. 127 and Exercise A5 at the end of the chapter). Figure 11.8 

shows as a typical example the transformation of the pole z0 = jωc e
jπ/6

. 

of the transfer function of the Butterworth lowpass filter from p. 335 into a 

pair (generally not conjugate) of complex poles of the transfer function of the 

generated bandpass filter with B = 1/3.. The other lowpass pole z2 = z0 . then 

leads to the conjugate complex poles for this pair in the bandpass filter. 

The passband limits ω1 . and ω2 ., ω2 > ω1 > 0., with | hBP(ω1)| = | hBP(ω2)| =
| hLP(ωc)|., are ω1 = ωc( B +

√
4+ B2)/2, ω2 = ωc(B +

√
4+ B2)/2.. 

Therefore, (ω2  ω1)/ωc = B . is the normalized bandwidth and ω1 · ω2 = ω2
c . 

holds. For α > 0. it holds that | hBP(α ωc)| = | hBP(ωc/α)|., i.e., on a logarithmic 

frequency axis and normalized frequency ωn = ω/ωc ., the amplitude response 

for 0 < ωn < 1. is mirrored to the side ωn > 1. and ω1,n, ω2,n . are symmetrically 

located around the center frequency ωn = 1.. See Fig. 11.9, starting from the 

Butterworth lowpass filter on p. 335 with normalized transfer function HLP ., 

so that the bandpass transfer function is HBP (s) = HLP ((s + 1/s)/B)., the  

magnitude |HBP (jλ)|. for 0.4 ≤ λ ≤ 2.5. is plotted. Readers are asked to verify 

all statements in Exercise A5 at the end of the chapter. 

4. Bandstop Filter. In the Lowpass to Bandstop Transformation, the parameter 

jωn = jω/ωc . in a lowpass frequency response is replaced by B/(jωn+1/jωn).. 

The order n of the lowpass filter is thereby doubled. The quantity B∈ ]0, 1[. is the 
normalized bandwidth of the stopband. The bandstop filter (syn. notch filter) is 

then also stable with the lowpass filter and has an n-fold zero in the amplitude 

response at ωc .. The poles corresponding to the lowpass pole z0 = jωc e
jπ/6

. as in
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Fig. 11.9 Bandpass design 

Fig. 11.10 Bandstop design 

the previous example with B = 1/3. are also shown in Fig. 11.8 on the preceding 

page. Readers are asked to verify the statements about this transformation in 

Exercise A5. In Fig. 11.10—with analogous data as in the previous example—the 

amplitude response | hBS |. of the generated sixth-order bandstop filter is shown. 
The band limits ω1,n ., ω2,n . are the same as in the previous bandpass example. 

To implementation possibilities of different filter types using operational 

amplifiers, resistors, and capacitors—in particular, universally adjustable filters 

that can be set as lowpass, highpass, bandpass, or bandstop filters depending on 

the purpose—we refer to the instructive source Tietze and Schenk (2008). 

11.5 Periodic Signals and Stationary Filter Response 

We now consider a stable, causal time-invariant linear system Lf = h ∗ f . on S  ., 
which is given by a differential equation of the form P(D)u = f .with a polynomial 

P and by the causal fundamental solution h of the equation. Transient processes 

decay with increasing time. We calculate the filter response to a signal f (t)s(t). 

turned on at time t = 0.with f (t) = U0 e
jω0t . and the unit step function s(t).: 

.(f s ∗ h)(t) = s(t)

t
ˆ

 ∞

U0 e
jω0(t x) h(x)dx



11.5 Periodic Signals and Stationary Filter Response 345

= U0 e
jω0t s(t)

 +∞
ˆ 

 ∞ 

h(x) e jω0x dx   

+∞
ˆ 

t 

h(x) e jω0x dx

 

= U0
 h(ω0) e

jω0t s(t)+ r(t). 

The function 

. r(t) =  U0 e
jω0t

+∞
ˆ

t

h(x) e jω0x dx

vanishes due to the integrability of h for t → ∞.. It is the transient filter response, 

i.e., it represents the decaying transient process. 

Theorem 11.3 For t > 0, t →∞., the stationary filter response is U0
 h(ω0) e

jω0t .. 

It is the uniquely determined periodic solution of P(D)u = U0 e
jω0t .. 

In many applications, it is common to study the filter response to periodic input 

signals. If one chooses a periodic function f (t) = U0 e
jω0t . as a mathematical 

model of an excitation, it is implicitly assumed that the signal f has been present 

for an infinite amount of time at all times, so the system is always in a steady-state 

condition. It then holds that 

. (f ∗ h)(t) = U0
 h(ω0) e

jω0t .

Under our stability assumption,  h(ω) = 1/P (jω). is a multiplier in S  . (see p. 290 
and p. 300), and more generally, it follows for a T -periodic distribution 

. f (t) =
+∞ 

k= ∞
ck e

j2πkt/T

with the convolution theorem of the Fourier transform 

. hk = h(2πk/T ) and  f  h(ω) = 2π

+∞ 

k= ∞
ckhkδ(ω  2πk/T )

the periodic filter response (see p. 294–298) 

. (f ∗ h)(t) = F 1( f  h)(t) =
+∞ 

k= ∞
ckhk e

j2πkt/T .

With the impulse response h of a stable causal system of the form P(D)u = f ., we  

thus obtain the periodic solution for periodic f also through periodic convolution:
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Theorem 11.4 For a T -periodic distribution f , the convolution f ∗ h. is precisely 

the filter response, which also results from the T -periodic convolution of the 

excitation f with the T -periodic transfer function hT ., 

. hT (t) =
+∞ 

k= ∞
hk e

j2πkt/T .

The coefficients hk . are the sample values  h(2πk/T ). of the frequency response  h. 

and f ∗ h. is again a T -periodic distribution. 

Refer once more also to Sects. 5.2 and 9.1 for this. 

Remark We note that the functions ejωt . are eigenfunctions of the convolution 

operator L, which mathematically describes the filter. The associated eigenvalues 

are the factors h(ω).: 

. L ejω0t = ejω0t ∗h(t) = F 1(2π h(ω)δ(ω  ω0)) = h(ω0) e
jω0t .

The effect of L—usually complicated in applications— is reduced by the Fourier 

transform to the simple algebraic multiplication operation:  Lf =  h f .. This  

significantly simplifies the analysis of L. For linear differential operators on S  . of 
the form 

. L =
n 

k=0
ck

dk

dtk
,

it holds similarly that L ejωt =
n 

k=0
ck(jω)

k ejωt . and in general 

.  Lf (ω) =
n 

k=0
ck(jω)

k  f (ω).

This fact is the reason for the usefulness of the Fourier transform in solving 

differential equations. We will return to this point in Sects. 12.8 and 14.1. 

The preceding considerations show how the frequency response  h. of stable 

time-invariant linear systems can be approximately determined using measurement 

techniques: Sine waves of different frequencies are used as test signals on the 

transmission system, the steady-state condition is waited for, and finally the values 

of the frequency response  h. for the test frequencies are obtained from the measured 

magnitude and phase changes during transmission. From these discrete values, an 

approximation for  h. is constructed through interpolation.
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Periodization in the Time Domain and Sampling in the 

Frequency Domain 

If a locally integrable function f (t). is cut out by a time window, yielding a time-

limited course f0(t) =
 
f (t) for T/2  t < T/2

0 otherwise
. and f0 . is continued to a T -

periodic function fT ., then fT . can be represented as a convolution with a pulse train 

δT (t) =
+∞ 

k= ∞
δ(t  kT ).: 

. fT (t) =
+∞ 

k= ∞
f0(t + kT ) = (f0 ∗ δT )(t).

The convolution theorem can be applied, and the generalized spectral function  fT . 

of fT . is obtained by (cf. p. 298) 

.  fT (ω) =  f0(ω) ·  δT (ω) = 2π

+∞ 

k= ∞

1

T
 f0
 
2πk

T

 
δ

 
ω  2πk

T

 
.

The coefficients
1

T
 f0
 
2πk

T

 
= 1

T

+T/2
´

 T/2
f0(t) e

 j2πkt/T dt . are precisely the 

Fourier coefficients of the Fourier series of fT .. They result from the sample values 

of the continuous spectral function  f0 . of the time-limited section f0 .. One says: 

Periodization in the time domain corresponds to sampling in the frequency domain. 

Analogously, sampling in the time domain corresponds to periodization in the 

frequency domain. Refer to Fig. 11.11 for illustration and later Sect. 12.2. 

Numerical Approximations for Fourier Transforms 

The relation between the Fourier coefficients of the time-limited signal section f0 . 

of f and sampled values of the Fourier transform of f0 . allows approximations for 
 f . to be calculated using the discrete Fourier transform. The coefficients  ck . of the 
discrete Fourier transform calculated from sampled values of f0 . (cf. Sect. 6) are  

used to approximate sampled values of  f0 .. Interpolation of the points (2πk/T ,  ckT ). 

results in an approximation for  f0 . and thus for  f . (see the remark on p. 310 and (9.2) 

on p. 270). The quality of this approximation depends on the number of sampled 

values and how well f is approximated by f0 . (see Exercise A6 on p.  380, where an 

initial approximation is improved by so-called zero padding in the discrete Fourier 

transform).



348 11 Basics of Linear Filters

Fig. 11.11 Periodization in time and sampling in frequency domain 

The Poisson Summation Formula 

Using the previously used notations, the application of the inverse Fourier transform 

to  fT (ω).yields the Fourier series representation of the periodic function fT ., and we 

obtain the following Poisson Summation Formula:
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Theorem 11.5 It holds fT (t) =
+∞ 

k= ∞
f0(t + kT ) = 1

T

+∞ 

k= ∞

 f0
 
2πk

T

 
ej2πkt/T .. 

The Poisson summation formula also applies to many functions f0 . that do not 

have a bounded support. For example, one easily sees that it also holds if f0 . is 

replaced by a rapidly decreasing function ϕ ∈ S .. Due to the rapid decrease of ϕ . 

as t → ∞., the series

+∞ 

k= ∞
ϕ(t + kT ). is absolutely and uniformly convergent 

and represents the associated periodic function pointwise as well. One of the most 

well-known applications is obtained with ϕ(t) = e αt
2
. , α > 0., and T = 1.. The  

Poisson summation formula then yields the following functional equation for the 

theta function: 

. 

+∞ 

k= ∞
e α(t+k)

2 =
 

π

α

+∞ 

k= ∞
e j2πkt e π

2k2/α =
 

π

α

 
1+2

+∞ 

k=1
e
 
π2k2

α cos(2πkt)

 
.

The Poisson summation formula, which can also be shown in a corresponding form 

for functions of several variables, has a variety of different applications, for example, 

in solving heat conduction problems, in the development of sampling and quadrature 

formulas, or in the description of crystal structures. Interested readers are referred, 

for example, to Strichartz (1994). 

Application Examples 

There are countless applications of linear filters in today’s technologies because a 

wide range of signals are linearly transformed for use. Here, we consider only three 

examples. 

1. Lowpass filters generally have a smoothing effect. Thus, they can be used to 

a certain extent for denoising of signals. As an example, in Fig. 11.12 there is 

an illustration with the function f (t) = A cos(ω0t/20)., ω0 = 1. rad/s, A=1 V, 

with additive uniform noise in [ 1, 1].. This signal is lowpass filtered with a 
cutoff angular frequency of 0.1 rad/s in Fig. 11.13. Analogously, lowpass filters 

can be used in image processing to unmask images, smooth them, etc. In digital 

communication, lowpass filters are used to transform a discrete into a continuous 

signal as we will see with the Shannon sampling theorem in Sect. 12.1. 

2. Matched filters are implemented in myriads of systems like mobile phones, 

WLAN, and many more, where transmitted signals are noisy at the receiver side 

and their arrival must be detected. We show that matched filters have an optimal 

signal-to-noise ratio. A matched filter has the same shape as the transmitted 

signal.
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Fig. 11.12 Noisy 

signal 

Fig. 11.13 This signal 

lowpass filtered 

Let a received signal be r(t) = s(t) + n(t). with s ∈ L2(R). an energy signal 

and n(t). a Gaussian white noise with (one-sided) power spectral density N0 .. 

Equalization can possibly be performed before the receive filter so that only white 

noise remains in the signal. Then, the filter output of the receiver is d(t) = ds(t)+
dn(t). with the signal part ds . and noise part dn .. The receiver is a linear filter 

with impulse response h. Its frequency response  h. shall be optimized so that 

the instantaneous signal-to-noise ratio SNR(TD) = d2s (TD)

σ 2
d

. is maximal. TD . is a 

suitably chosen detection time that estimates a signal delay and σ 2
d . the variance 

of the noise part dn .. 

Since ds(TD) = (s ∗ h)(TD). and σ 2
d =

N0

2
· 1

2π

+∞́

 ∞
| h(ω)|2dω., independent 

of TD ., the task is to maximize SNR(TD) =

     
1

2π

+∞́

 ∞
 s(ω) h(ω) ejωTD dω

     

2

N0

4π

´ +∞
 ∞ | h(ω)|2dω

.. 

The Cauchy-Schwarz inequality implies SNR(TD) ≤ 1

N0π

+∞́

 ∞
| s(ω)|2dω.. 

Thus, the matched filter  hMF . with the same shape as the transmit signal s, 

i.e.,  hMF (ω) = K s(ω) e jωTD ., hMF (t) = Ks(TD  t). with a constant K has 

maximal SNR. It is left to the reader to calculate the SNR of some filters for 

concrete signals. In communication systems, the information is transmitted in 

sequences of pulses s(t)., whose shapes, e.g., raised cosine windows, are known 

at the receiver (cf. p. 390) so that matched filters can be used in such systems. 

3. Filter banks are families of bandpass filters, which are used sequentially or in 

parallel in signal processing for various purposes, from signal detection, signal 

transmission, pattern recognition to radar applications, etc., in practice mostly as 

discrete filters for discretized signals. We will see an example of their use for 

discrete processing of a continuous wavelet transform with Matlab in Sect. 14.2, 

p. 484.
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11.6 Discrete Linear Filters and z-Transform 

Analogous to Sect. 11.3, in the following we investigate fundamental questions 

regarding the representability of discrete linear systems through convolutions, 

stability, and realization possibilities. I hope to encourage readers to engage 

with the ideas and methods of this subfield of discrete mathematics by studying 

further literature. This subfield significantly influences many areas of our technical 

and application-oriented environment. Implementations of discrete filters exist in 

processors and many programs for discrete data processing in technology and 

business. 

We consider translation-invariant linear systems L : Z → A., where the signal 

spaces Z . and A. are subspaces of the space X . of discrete signals introduced on 

p. 323, which need to be specified in each case. As with analog filters, the question 

arises about representability through convolution with the impulse response 

. Lx = L(x ∗ δ) = x ∗ Lδ

and the question about the continuity of L with respect to suitable topologies on Z . 

and A.. A continuous system that can be described by a convolution operator L is 

referred to, as before, as a linear filter. A first representation theorem readily follows 

from the properties of convolutions already discussed in Sect. 8.7. 

Theorem 11.6 Let Z . be the space X . of all discrete signals or one of the spaces 

from list items 1–6 on page 323. Then every continuous linear translation-invariant 

operator L : Z → X ., which has a finite impulse response h = Lδ ∈ X ∩ E  ., is a  

linear filter 

. Lx = x ∗ h.

Proof Let h =
+M 

n= M
hnδn . be the impulse response Lδ .. For a signal x =

+∞ 

k= ∞
xkδk ., let  xN . be the partial sum xN =

+N 

k= N
xkδk .. From the linearity and 

translation invariance of the operator L, it follows 

. LxN =
+N 

k= N
xk

 +M 

n= M
hnδn+k

 
=

N+M 

m= (N+M)

 +N 

k= N
xkhm k

 
δm.

In the last equation, we regrouped the sum with the index transformation n+k = m.. 

Here, hn = 0. for |n| > M .. LxN . is thus the convolution xN ∗ h. (one may refer again 

to the example in item 6 on p. 199). For N →∞., it follows from the continuity of 

L with xN → x . in Z . that Lx = D -lim
N→∞

(xN ∗ h) = x ∗ h.. The last equation results
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from the convergence of the convolutions xN ∗ h→ x ∗ h. for h ∈ X ∩ E  . (see item 

7(b) on p. 197 and Young’s inequality for lp . spaces in Appendix B).   
Remark In the case Z = l∞d . (item 7 of the list on p. 324), the above proof fails 

because the partial sums xN =
+N 

k= N
xkδk . of x ∈ l∞d . generally do not converge to 

x in the norm of l∞d ., as can be seen from the example x =
+∞ 

k= ∞
δk .. For this space, 

there is also a counterexample to the statement of the above theorem on p. 355. 

As with analog filters, discrete causal translation-invariant linear systems on 

the space X ∩ D R . are automatically continuous and always linear filters. For 

practical applications in signal processing with causal translation-invariant linear 

operators and causal signals, the desired convolution representation always results. 

The subsequent two theorems are due to Albrecht (2011). Since the proofs in the 

discrete case are significantly simpler than with analog systems, we can also provide 

them within the scope of our introduction to the field. 

Automatic Continuity of Causal Linear Discrete Systems 

Theorem 11.7 (Automatic Continuity of Causal Linear Discrete Systems) 

Every causal linear operator L : X ∩ D R → X . is automatically continuous, and 

there is a uniquely determined infinite lower triangular matrix AL = (am,n)m,n∈Z . 

(i.e., am,n = 0. form < n.), such that for all x =
+∞ 

n= ∞
xnδn . in X ∩D R . and y = Lx ., 

y =
+∞ 

m= ∞
ymδm . the relation ym =

+∞ 

n= ∞
am,nxn . holds. Due to the causality of L, 

this series is a finite sum. 

Proof A linear mapping L : X ∩ D R → X . is, by definition of convergence in 

X ∩D R ., continuous if and only if its restrictions L|Zk
. on all spaces Zk = X ∩D k . 

are continuous. The elements of Zk . have their supports in [ka,∞[., a > 0. as chosen 

fixed on p. 323. We consider for m ∈ Z. and x =
+∞ 

n= ∞
xnδn . the linear operator 

Pm :X→C., defined as the projection Pmx = xm . onto the component with index m. 

By definition of convergence in X ., it follows  that  L is continuous if and only if the 

compositions Pm ◦ L|Zk
: Zk → C. are continuous for all k and m from Z.. 

To prove this property for a causal linear operatorL : X∩D R → X ., we introduce 

for m, k ∈ Z.with m ≥ k . the notation 

.Qk,m : Zk → {x ∈ Zk : xn = 0 for all n > m}
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for the canonical projection. For x ∈ Zk . and m ≥ k ., it is therefore Qk,m(x) =
m 

n=k
xnδn .. This projection is continuous on Zk . and has a finite-dimensional range. 

Now, let L : X ∩D R → X . be a linear causal operator. For m < k ., the mappings 

Pm◦L|Zk
. are zero due to the causality of L and are therefore continuous. Form ≥ k ., 

due to the causality of L for x ∈ Zk ., Pm(L(Ek  Qk,m)x)) = 0. holds. Here, Ek . 

denotes the identity on Zk .. Therefore, Pm ◦ L|Zk
= Pm ◦ L ◦ Qk,m . on Zk .. Since 

the image space of Qk,m . is finite-dimensional, the continuity of Pm ◦ L|Zk
. follows 

in this case as well. In other words, L is continuous because every output value 

ym = Pm(Lx). for x ∈ Zk . is determined only by values xn . up to the “time” ma, i.e., 

by the signal segment Qk,mx .. 

Next, define am,n = Pm(Lδn). for m, n ∈ Z.. Then, with the continuity of L, it  

follows for all x =
+∞ 

n= ∞
xnδn . in X ∩D R . and y = Lx . 

. ym = Pm(Lx) =
+∞ 

n= ∞
xnPm(Lδn) =

+∞ 

n= ∞
am,nxn,

and due to the causality of L, all am,n = 0. for n > m.. Additionally, since every x 

from X ∩D R . has a bounded-below support, the series is finite.   
This immediately results in the following theorem for translation-invariant systems: 

Theorem 11.8 Each translation-invariant causal linear operatorL : X∩D R → X . 

is continuous, and with h = Lδ0 =
+∞ 

n=0
hnδn . the convolution representation holds 

. Lx = h ∗ x =
+∞ 

n= ∞

 +∞ 

k= ∞
xkhn k

 
δn.

Proof The translation invariance results for the matrix representation of L shown 

in the previous theorem in a matrix AL = (am,n)m,n∈Z ., such that 

. am+1,n+1 = Pm+1(Lδn+1) = Pm(Lδn) = am,n

holds for all m, n ∈ Z.. For h = Lδ0 =
+∞ 

n=0
hnδn ., it follows from hm = Pm(Lδ0) =

am,0 . that hm n = am n,0 = am,n . and thus the convolution representation for
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y = L

 +∞ 

n= ∞
xnδn

 
=

+∞ 

m= ∞
ymδm . with the finite sum ym =

+∞ 

n= ∞
am,nxn =

+∞ 

n= ∞
hm nxn..   

Remark It can be shown that operators L as in the last two theorems are also 

continuous if the image space is replaced by X ∩ D R . with its finer topology. See 

Albrecht and Neumann (1979), Remark 1.5. 

Again, the concept of convergence introduced onX ∩D R . is crucial for continuity 

(see p. 323). We reconsider the example from p. 327. 

Example The causal discrete linear system Lx = x ∗h.with h =
∞ 

n=0
δn . on X ∩D R . 

is called an accumulator. For x=
+∞ 

n= N
xnδn . and y=

∞ 

k= N
ykδk .with y=Lx ., it is  yk =

xk + yk 1..As already shown on p. 327, for fn =  δ n + δ0 ., D
 -lim

n→∞
fn = δ0 . holds, 

but D -lim
n→∞

Lfn  = Lδ0 .. However, in X ∩ D R ., the sequence of fn . in the topology 

introduced there is not convergent, and L is continuous with respect to the X ∩D R . 

topology according to the last theorem. Thus, in typical examples from engineering 

disciplines, it is crucial to consider not only the mere operator definition but also the 

signal spaces and their topology. 

As we have already seen with analog filters, translation-invariant linear systems 

L : Z → A. for applications are often defined, respectively, designed with a 

desired impulse response h or a desired frequency response  h.directly as convolution 

operators Lx = x ∗ h.. The same applies to discrete systems. In this situation, 

the following theorem shows the continuity of a large class of such systems. We 

summarize some cases relevant for applications. 

Summary A linear convolution operator L : Z → A., Lx = x ∗ h. is continuous, 

i.e., a linear filter in the following cases: 

1. Z = X ., h ∈ X ∩ E  ., A = X . 

2. Z = X ∩ E  ., h ∈ X ., A = X . 

3. Z = X ∩D R ., h ∈ X ∩D R ., A = X ∩D R . 

4. Z = X ∩ S  ., h ∈ X ∩O C ., A = X ∩ S  . 
5. Z = l∞d 

., h ∈ l1d ., A = l∞d . 

6. Z = l1 d ., h ∈ l∞d ., A = l∞d . 

7. Z = l2 d ., h ∈ l2d ., A = l∞d .
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In all cases, for the coefficients ym . of the convolution y = x ∗h =
+∞ 

m= ∞
ymδm .with 

x =
+∞ 

n= ∞
xnδn . and h =

+∞ 

k= ∞
hkδk ., the representation ym =

+∞ 

k= ∞
hm kxk . holds. 

Proof Cases 1 and 2 follow from No. 7 on p. 197. Case 3 was shown above. In 

cases 4–7 according to our examples under No. 5, p. 303, the convolution equation 

 x ∗ h =  x h. of the Fourier transform holds, and the continuity of L follows from 

the continuity of the Fourier transform on S  ., respectively, from Young’s inequality 

for the lp . spaces (Appendix B, p.  501). From this inequality, further combination 

possibilities result with l1(Z) ⊂ l2(Z) ⊂ · · · ⊂ l∞(Z)., which we will not discuss 

further. In all cases, y = Lx . has the mentioned form, as also stated in the examples 

on p. 199, p.  303, and p. 501. Compare also the illustration on p. 200.   

Continuous, Causal, and Stable Translation-Invariant Linear 

Systems That Cannot Be Represented as Convolutions 

All the systems considered so far have been assumed to be convolution operators. 

It should be noted, however, that there are indeed continuous translation-invariant 

linear systems that cannot be represented as convolution systems and thus are not 

characterized by their impulse response. We will consider an example of such a 

system on l∞d ., which is continuous, causal, and stable in the sense of the following 

section. This example dates back to Stefan Banach (1932) and his construction of 

Banach limits and was provided by Sandberg (2001). We follow a proof by Albrecht 

(2011). In doing so, we use some arguments from functional analysis, particularly 

the Hahn-Banach extension theorem and a fixed-point theorem of A. Markov and 

S. Kakutani (see Rudin, 1991, Theorems 3.5 and 5.23). 

Example Consider the closed subspace M ⊂ l∞d . of all x =
+∞ 

n= ∞
xnδn ., such that 

limn→ ∞ xn = 0. holds. M is invariant under translations Tm .. For m ∈ Z., let  Tm . be 

the translation by ma, that is, x =
∞ 

k= ∞
xkδk → Tmx =

∞ 

k= ∞
xm+kδk..According 

to the Hahn-Banach extension theorem, there exists a continuous linear functional 

P  = 0. on l∞d ., such that P(M) = {0}. and  P  = 1 = P(1).. Here, 1 denotes 

the impulse sequence, all of whose coefficients are 1. Each such functional P is 

an extension of the limit functional p(x) = limn→ ∞ xn ., defined for such x ∈ l∞d ., 

whose coefficients have a limit as n→ ∞.. Among all these, there is a translation-

invariant functional P0 ., i.e., P0(Tmx) = P0(x). for m ∈ Z., x ∈ l∞d .. To see this, 

one needs an additional argument, which will be provided next. The operator then
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defined by L(x) =
+∞ 

k= ∞
P0(x)δk . is linear, translation-invariant, trivially causal, 

and continuous as a mapping L : l∞d → l∞d . and thus also stable in the sense of the 

following paragraph. In particular, Lδ0 = 0.. The operator L can therefore not be 

represented as a convolution. 

Readers with knowledge of functional analysis can understand the required 

additional argument as follows: Consider the convex bounded set 

. K := {P ∈ l∞d
 : P(M) = {0},  P  = 1 = P(1)}  = ∅.

Here, l∞d
 
. is the dual space of l∞d ., i.e., the Banach space of all continuous linear 

functionals on l∞d .. The weak-* topology on l∞d
 
. is the coarsest topology, such that 

all x ∈ l∞d . are continuous as functionals on l∞d
 
.. The unit ball b 1 . of l

∞
d
 
. is weak-* 

compact, and the norm is weak-* lower semicontinuous. A weak-* convergent net 

(Pλ)λ∈Λ . in K thus converges to a functional in K . Hence, K ⊂ b 1 . is weak-* closed 
and therefore also weak-* compact. 

The adjoint mappings T  m : l∞d
 → l∞d

 
. of the translations Tm ., defined by 

T  mP(x) = P(Tmx)., are weak-* continuous, map K affine-linearly into itself, and 

form a commuting family. According to the aforementioned fixed-point theorem of 

A. Markov and S. Kakutani, there exists a common fixed point P0  = 0. in K for the 

family of all T  m ., m ∈ Z.. This functional P0 . is then translation-invariant (cf. Day, 

1961). 

An entirely analogous example also shows that there are continuous linear causal 

translation-invariant operators on L∞(R). that are not convolution operators. The 

same holds in the case of several variables on L∞(Rn). with a suitably adjusted 

definition of the causality condition. Interested readers are referred to the works of 

Rudin (1972) on “ Invariant Means in L∞ .”, Albrecht and Neumann (1979), and the 

references cited therein. Another example, also mentioned by Sandberg (2001) and 

understandable with the same arguments as above, can be found in Exercise A14 at 

the end of the chapter. 

In the following, we consider linear operators L : Z → A. between subspaces 

Z . and A. of X ., which are assumed to be convolution operators, i.e., discrete linear 

filters. 

Stability and Realizability of Discrete Linear Filters 

Definition A discrete linear filter L : Z → A. is called stable if there exists a 

constant C > 0. such that for every input signal x ∈ Z ∩ l∞d .:  Lx ∞ ≤ C x ∞.. 

For stable filters, bounded input signals x ∈ l∞d ., i.e., those with bounded 

coefficients xn ., also result in bounded output signals Lx, and moreover, the 

maximum values of the coefficients of Lx are never greater in magnitude than the
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absolute maximum value of the xn . (n ∈ Z.) multiplied by C. The following theorem 

characterizes stable and realizable discrete filters by the properties of their impulse 

response. Stability means that small disturbances in x only have small effects on the 

filter response Lx. 

Theorem 11.9 Let L : Z → A. be a discrete linear filter that belongs to one of 

the cases 1–7 of the above summary. Its impulse response h has the coefficients hk ., 

k ∈ Z.. Then the following statements hold: 

1. L is stable if and only if

+∞ 

k= ∞
|hk| <∞.. 

2. L is causal if and only if hk = 0. for all k < 0.. 

Proof For 1. If h ∈ l1d ., then for x ∈ l∞d . and y = Lx . with coefficients yk ., it holds 

that |yk| ≤
+∞ 

n= ∞
|hn||xk n| ≤ sup

n∈Z
|xn|

+∞ 

n= ∞
|hn|.; thus  y ∞ ≤  h 1 x ∞ ., i.e., L 

is stable. 

Conversely, let L be stable. For cases 1, 4, and 5, h ∈ l1d ., and nothing needs to 

be shown. For other cases, we define a sequence of signals xN ., N ∈ N., whose kth 
coefficients xN,k . are given using the complex conjugate filter coefficients: 

. xN,k =
 
hN k/|hN k| for 0 ≤ k ≤ 2N and hN k  = 0

0 otherwise.

Since for all N the signals xN . are finite and always  xN ∞ ≤ 1., they belong to 

Z ∩ l∞d . for the considered spaces Z ., and it holds that  LxN ∞ ≤ C .with a positive 

constant C. For every N ∈ N. and yN = LxN ., it follows that 

. yN,N =
+∞ 

k= ∞
hkxN,N k =

+N 

k= N
|hk| ≤ C

and thus the absolute summability of the filter coefficients hk .. 

For 2. If the filter is realizable, then due to h = Lδ . by definition hk = 0. for 

k < 0.. Conversely, it follows from supp(h) ⊂ aN∪{0}. and supp(x∗h) ⊂ supp(x)+
supp(h). the causality of a filter with such an impulse response h.   
Remark In many textbooks on linear system theory, stability is defined in a weaker 

sense than above. Often it is only required that a bounded input signal should 

result in a bounded output signal. It should be noted, therefore, that a filter that 

only meets this weaker condition does not generally have an impulse response 

with absolutely summable coefficients. Consider, for example, the accumulator with 

impulse response h =
+∞ 

k=0
δk . on X ∩ E  ., or note that the convolutions x ∗ h. in cases
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6 and 7 always lie in l∞d . and there are elements h in l2d ⊂ l∞d . that do not belong to 

l1d .. According to our definition, stability is equivalent to the continuity of L, if both 

the subspace Z ∩ l∞d . of input signals and the space A ∩ l∞d . of output signals are 

endowed with the l∞d . norm. 

Frequency Response and Transfer Function of Discrete Linear 

Filters and z.-Transforms of Discrete Signals 

Before we look at specific examples of filters, we will discuss the z-transform, which 

is a common mathematical tool when working with discrete filters. 

Definition 

1. If the impulse response h =
+∞ 

k= ∞
hkδk . of a linear filter L : Z → A. belongs to 

X ∩ S  ., then the Fourier transform  h. of h is called the frequency response of the 

filter. 

2. For a discrete signal x ∈ X ∩ S  .with coefficients xk .,  x . is called the spectrum of 

x and X(z) =
+∞ 

k= ∞
xkz

 k
. its z-transform. 

3. If the z-transform H(z). of a discrete linear filter with impulse response h 

converges for certain z ∈ C., then H is called the transfer function of the filter. 

If a discrete filter satisfies the convolution relationship x ∗ h = x h., then the filter 

can be described through properties of the frequency response or designed according 

to given requirements for the frequency response, just as in the analog case. We will 

return to this in examples later. In the discrete case, the frequency response  h. and 

spectra  x . are periodic distributions. 

In many applications of discrete filters, it is common to work with the transfer 

function instead of the frequency response. H(z). is a Laurent series. Laurent 

series are fundamental to function theory. Assuming that the coefficients hk . are 

exponentially bounded, i.e., |hk| ≤ c1r
k
. and |h k| ≤ c2 

k
. for all k ≥ k0 . with 

suitable c1, c2, k0 ., then this Laurent series converges in the annulus A = {z ∈
C | r < |z| < R = 1/ }. and diverges outside of A (comparison criterion with 

the geometric series). For  = 0., set R = +∞.. For r ≥ R ., A is the empty set. The 

series converges absolutely and uniformly in any closed annulus r1 ≤ |z| ≤ R2 . in 

A. On the boundary |z| = r . and |z| = R ., no general statement about convergence 

can be made. 

For causal filters, H(z). is defined, if the power series

∞ 

k=0
hkx

k
. has a radius of 

convergence  > 0.. Then the region of convergence of H is given by |z| > r ., where 

r = 1/  = 0. or r = 0. for  = +∞.. It then holds that H(z)→ h0 . for |z| → ∞..
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A causal impulse response h of a discrete filter, which belongs to the space X ∩
S  ., has polynomially bounded coefficients, as  h. is a generalized Fourier series (see 

Sect. 9.1). Its z-transform H then converges in any case for |z| > 1.. 

If the circle |z| = 1. belongs to the convergence annulus of a z-transform X, then 

the 2π/a .-periodic spectrum  x . of the corresponding signal x ∈ l1d . is continuous and 

given by the values of X on the unit circle (a is the step size chosen on p. 323). The 

coefficients xk . of  x . are precisely the coefficients of the Laurent series X. We then 

have 

.  x(ω) =
+∞ 

k= ∞
xk e

 jkωa = X(ejωa) and xk =
a

2π

2π/a
ˆ

0

X(ejωa) ejkωa dω.

For all signals x, h, etc., used in the following, it is generally assumed from now 

on that they have exponentially bounded coefficients as described above, i.e., that 

their z-transforms converge in an annulus r < |z| < R ., if r  = R .. 

For explicitly given signals, the region of convergence of their z-transforms can 

often be calculated using the ratio test or the root test known from the basic analysis. 

Examples 

1. For R > 0. and r > 0., let x =
+∞ 

k= ∞
xkδk . be given by xk =

 
Rk for k < 0

rk for k ≥ 0.
. 

The z-transform of x is then 

. X(z) =
 1 

k= ∞
Rkz k +

+∞ 

k=0
rkz k = z

R  z
+ z

z r
,

where both geometric series converge when both |z/R| < 1. and |r/z| < 1.. 

The z-transform is thus defined in the annulus r < |z| < R . and represents a 

holomorphic function there if r < R .. 

Observe: For x =
+∞ 

k= ∞
δk ., the  z-transform is not defined. 

2. The discrete analog to the unit step function is u with coefficients uk = 0. for 

k < 0. and uk = 1. for k ≥ 0.. Then the z-transform is 

. U(z) =
+∞ 

k=0
z k = 1

1 z 1
.

The series converges for |z| > 1., thus in the exterior of the unit disk.



360 11 Basics of Linear Filters

Basic Properties of the z.-Transform 

We restrict ourselves to those elementary properties of the z-transform that we use 

in our application examples. A further treatment of its properties and numerous 

applications, as well as closely related other transforms, can be found in the books 

by Jury (1973), Oppenheim (1978) or Oppenheim and Schafer (2013). 

1. Linearity 

The z-transform is linear because convergent series can be added term by term 

and multiplied by scalars. For the summation of two z-transforms, it must be 

assumed that a common convergence annulus exists. 

2. z-Transform of Translations 

If a signal x has z-transform X(z)., then the definition of X(z). shows that the 

translation x ∗ δk . by ka . has z-transform z kX(z).. 

Example: Let x be the 2N -periodic rectangular signal starting at k = 0. with 

xk = 1. for k= 0, . . . , N 1., xk = 0. for k = N, . . . , 2N  1., and xk+2N = xk . 

(k ≥ 0.), so x =
N 1 

k=0
δk ∗

∞ 

k=0
δ2Nk .. Then the z-transform is 

. X(z) = zN+1

(z 1)(zN + 1)
.

3. Differentiation of z-Transforms 

Laurent series may be differentiated term by term in their annulus of conver-

gence. If a discrete signal x =
+∞ 

k= ∞
xkδk . has z-transform X(z)., then  zX (z). 

is z-transform of

+∞ 

k= ∞
kxkδk.. 

4. z-Transform of Complex Conjugate Signals 

If a signal x has z-transform X(z)., then the complex conjugate signal x . has z-

transform X(z).. 

5. z-Transform of Convolutions 

Given a discrete linear filter L : Z → A. and h = Lδ . in one of the considered 

seven cases from p. 354. If X(z). converges in the annulus A1 . and H(z). in the 

annulus A2 . and A = A1 ∩A2 . is not empty, then for y = x ∗ h. and z ∈ A. it holds 

that 

. Y (z) = H(z) ·X(z).

Proof For x and h with coefficients xk . and hk . and z ∈ A., we have that
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. 

 

n,k∈Z
|hk||xn k||z| n ≤

 +∞ 

k= ∞
|hk||z| k

  +∞ 

n= ∞
|xn||z| n

 
< +∞.

Since the function (n, k)→ hkxn kz k . is summable over Z2 ., it can be summed 

in any order according to Fubini’s theorem (Appendix B, p.  496). Thus, for y =
x ∗ h., one gets for all z ∈ A. 

. Y (z) =
+∞ 

n= ∞

 +∞ 

k= ∞
hkxn k

 
z n =

+∞ 

k= ∞
hkz

 k
+∞ 

n= ∞
xn kz

 (n k).

6. Inversion of the z-Transform 

According to the identity theorem for Laurent series, the z-transform is invertible. 

The coefficients xn . of a signal x given the z-transform X can be calculated in 

different ways: 

(a) By Laurent series expansion of X. 

(b) By a contour integral using the residue theorem. 

The function f : C \ {0} → C. with f (z) = zk ., k ∈ Z,. is continuous in a 
neighborhood of the circle γ (t) = r ej t . with r > 0. and 0 ≤ t < 2π .. The  

contour integral in the mathematically positive sense is 

. 

‰

γ

zk dz =
2π
ˆ

0

rk ejkt jr ej t dt

= jrk+1
2π
ˆ

0

ej (k+1)t dt =
 
0 for k  =  1,
2πj for k =  1.

In particular, it is independent of the radius r . A  z-transform X is absolutely 

and uniformly convergent along a positively traversed circle γ . in its annulus 

of convergence. Interchanging integration and summation gives for the 

coefficients of the signal x representations as contour integrals 

. 
1

2πj

‰

γ

X(z) · zn 1 dz = 1

2πj

+∞ 

k= ∞
xk

‰

γ

·zn 1 k dz = xn.

The evaluation of the contour integrals can be done using the residue theorem 

from complex analysis (see Appendix A). In practice, in linear filters mainly 

rational transfer functions are used. The inverse transform of their partial 

fractions can then be done using geometric series (see subsequent Example 4 

and Example 1 on p. 368) or using tables available in formularies. Computer 

algebra systems like Maple, Mathematica, or the engineering fields widely
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used Matlab can calculate z-transforms and their inverses as well. Thus, 

applications of the z-transform are also available to readers who have not 

yet experience with the theorems of complex analysis used in the following 

examples. 

7. z-Transform of the Impulse Response of Stable Causal Discrete Filters 

A discrete filter with transfer function H is stable if and only if the unit circle 

is included in the annulus of convergence of the series. For causal filters, this 

is the case if and only if all singularities of H lie inside the unit disk. This 

follows immediately from the theorem on page 357 characterizing stable causal 

filters because transfer functions H of causal filters with exponentially bounded 

coefficients have a convergence region of the form |z| > r ≥ 0. (cf. p. 358) and 

belong to a stable filter if and only if r < 1..   

First Application Examples 

With the transformation rules, one easily finds new pairs of correspondences 

between signals and their z-transforms. The z-transform of convolutions allows, in 

causal linear filters described by difference equations, to immediately specify the 

transfer function. The first example shows this application to convolutions. 

1. z-Transform for Difference Equations. The coefficients yn .of the system response 

of a causal filter y = x ∗ h. on X . with impulse response h = δ0 + δ1 . satisfy the 

difference equation yn = xn + xn 1 . for all n ∈ Z.. The transfer function of the 
filter is H(z) = 1+ z 1 = (z+ 1)/z.with the region of convergence |z| > 0.. 

The difference equation yn + yn 1 = xn + 2xn 1 + xn 2 . is also satisfied for 
the coefficients of x and y. This relationship, valid for all coefficients of x and 

y, corresponds to the following convolution equation for the signals in total: 

. y ∗ (δ0 + δ1) = x ∗ (δ0 + 2δ1 + δ2).

z-Transform of both sides of the equation leads to 

. Y (z)(1+ z 1) = X(z)(1+ 2z 1 + z 2),

and thus to the same transfer function H for |z| > 0. 

. H(z) = 1+ 2z 1 + z 2

1+ z 1
= z+ 1

z
.

The equation Y (z) = H(z)X(z). holds for z with |z| > 0. in the region of 

convergence of X.
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2. Application of the Differentiation Rule. The discrete signal u =
+∞ 

k=0
δk . has the 

z-transform U(z) = z

z 1
. with |z| > 1.. Then X(z) =  zU  (z) = z

(z 1)2
. 

with |z| > 1. is the z-transform of x =
+∞ 

k=0
kδk.. 

3. Application of Complex Conjugation. Given a real discrete signal s, which arises 

from sampling a cos. function with a sampling interval a > 0., 

. s =
+∞ 

k=0
cos(ω0ka + ϕ)δk.

The signal s is then the real part of the complex signal sc =
+∞ 

k=0
ej (ω0ka+ϕ) δk .. 

The z-transform of sc . is 

. Sc(z) = ejϕ
+∞ 

k=0

 
ejω0a

z

 k

= z ejϕ

z ejω0a
.

Then the z-transform S of s = (sc + sc)/2. is 

. S(z) = 1

2

 
z ejϕ

z ejω0a
+ z e jϕ

z e jω0a

 
= z2 cos(ϕ) z cos(ω0a  ϕ)

z2  2z cos(ω0a)+ 1
.

4. Laurent Series Expansion. Given X(z) = z 3

z+ 4
., there are the expansions into 

geometric series 

. X(z) = z 4
∞ 

k=0
( 4z 1)k for |z| > 4 or

. X(z) = z 3

4

∞ 

k=0

 
 z

4

 k
for 0 < |z| < 4.

In the first case, the signal x with z-transform X in the region |z| > 4. is given by 

the coefficients 

.xk =
 
( 4)k 4 for k ≥ 4,

0 otherwise.
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In the second case, the signal x with z-transform X in the annulus 0 < |z| < 4. 

has the coefficients 

. xk =

⎧
⎪⎨
⎪⎩

1

4

 
 1

4

 3 k
for k ≤ 3,

0 otherwise.

If a signal x ∈ X . has a z-transform, then the z-transform is uniquely determined. 

However, the example shows that different signals can indeed have the same 

algebraic expression as z-transform. Therefore, to determine the inverse, the 

relevant region of convergence of the Laurent series must be given. If, for the 

abovementioned rational function X, it is additionally known that it is the z-

transform of a causal signal, then only the Laurent series of the first case is 

possible. 

5. Inversion with the Contour Integral and the Residue Theorem. 

As an example, we consider the z-transform X(z) = z(z  z1)
 1

., z1  = 0., 

and |z| > |z1|. as the region of convergence. Denoting by fn(z) = X(z)zn 1 . 
the integrand of the contour integral above in 7(b), it follows from the residue 

theorem (see Appendix A, p.  486): 

(a) For n ≥ 0.with the pole at z1 ., 

. xn =
1

2πj

‰

|z|=2|z1|
fn(z) dz = Res(fn, z1) = lim

z→z1
(z z1)fn(z) = zn1 .

(b) For n < 0., fn . has another pole at z = 0.. The residue for z = 0. is obtained 

through the Laurent series expansion around the origin 

. fn(z) =
zn

z z1
=  zn

z1

1

1 z/z1
=  

+∞ 

k=0

zn+k

zk+11

.

The residue is the coefficient of z 1 ., thus  zn1 .. With a curve C in the residue 

theorem (p. 486), which for n < 0. encloses both poles of fn ., the residues for 

z = 0. and z = z1 . compensate each other in the sum. 

The inverse z-transform of X is therefore x =
+∞ 

n=0
zn1δn.. 

In the same way, one obtains with the residue theorem forX(z) = z(z z1)
 2

. 

and n ≥ 0.with fn . as above 

. xn = lim
z→z1

d

dz
[(z z1)

2fn(z)] = nzn 11

and analogous formulas for poles of higher order.
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Causal Filters with Rational Transfer Function and Difference 

Equations 

In view of applications, we now consider discrete filters y = h∗x . for causal signals 

x ∈ l∞d ., where the relationship between the coefficients of y and x is given by a 

linear difference equation with constant coefficients: 

. 

M 

k=0
bkyn k =

N 

m=0
amxn m with b0 = 1.

In order for the output signal y to be uniquely determined, we also assume that the 

filter is causal. This excludes nontrivial solutions of the homogeneous equation. The 

z-transform of the associated convolution equation for x and y can then be directly 

read off the difference equation (see Example 1 on p. 362): 

. 

 
M 

k=0
bkz

 k
 
Y (z) =

 
N 

m=0
amz

 m
 
X(z).

By assumption, X(z). converges for |z| > 1. and H(z). for z with a sufficiently large 

magnitude (see p. 359). From this, it follows, according to the convolution theorem 

(p. 360), the rational transfer function H of the filter 

. H(z) = Q(z)

P (z)
=

N 

m=0
amz

 m

M 

k=0
bkz

 k
.

The assumed causality of the filter implies for the input impulse x = δ0 . that for 

indices k < 0. all filter coefficients hk = 0. must be zero. Specifically, the initial 

values h M = · · · = h 1 = 0. are set for the recursive solution of the difference 

equation, so that all hk . for k ≥ 0. and thus the uniquely determined impulse response 

h follow. We obtain for the causal filter with the rational transfer function H(z) =
Q(z)/P (z). the equation 

. 

 +∞ 

n=0
hnz

 n
  

M 

k=0
bkz

 k
 
=

N 

m=0
amz

 m.

Calculation of the coefficients in the series product on the left side, comparison of 

coefficients, and solving for the sought coefficients hn . yield the Following:
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Recursion Equations for the Coefficients of the Impulse Response of the Filter 

. h0 = a0 and hn = an  
n 

k=1
bkhn k for n = 1, 2, . . . (b0 = 1),

where an = 0. for n > N . and bk = 0. for k > M . are set. 

Realization of Filters with Rational Transfer Function 

The following illustration shows a typical circuit network in electrical engineering 

(in the image domain of the z-transform), with multipliers ⊗., adders ⊕., and 

delay elements for one time step a, denoted by z 1 .. The block diagram shows 

a possible realization—as a circuit or by means of software—of the previously 

discussed causal filter, where we can assume without loss of generalityM = N .. By  

rearranging the difference equation, the block diagram in Fig. 11.14 can be easily 

understood: 

. yn = a0xn +
N 

m=1
(amxn m  bmyn m).

There are also other possible realizations of the same filter (characterized by dif-

ferent parentheses in the difference representation or variations in the representation 

of H ). For this, refer to the previously cited literature on circuit design such as, for 

example, Tietze and Schenk (2008). 

Remark Other step sizes a > 0. for the considered discrete signals x result in 

correspondingly different periods 2π/a . in the spectra  x . and different bandwidths of 

the considered filters. Multiplication of a z-transformed X by z k . corresponds for 
k > 0.with a step size a > 0. to a delay by ka. The block diagram also shows that it is 

possible to realize very different transfer functions with the same circuit or with the 

same software by variable selection of the coefficients ak . and bk .—a fact that opens 

Fig. 11.14 Block diagram of a discrete filter, realizable through software
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up extensive technical possibilities. The same applies to analog frequency responses 

with the block diagram from p. 231. These simple realization possibilities explain 

the prominent role that filters with rational transfer functions play in engineering. 

Example (Solution of a Difference Equation for Fibonacci Numbers) The 

Fibonacci numbers fn ., appearing at the beginning of the thirteenth century in the 

book Liber Abaci by Leonardo da Pisa, also known as Leonardo Fibonacci, have 

numerous applications. Interested readers can easily research such applications, 

such as in the runtime calculation of algorithms like the Euclidean algorithm for 

calculating greatest common divisors and many more. We consider the causal filter 

for the difference equation 

. fn  fn 1  fn 2 = xn 1.

The coefficients of the impulse response of the filter for n ≥ 0., noted here as fn ., 

form the Fibonacci sequence 

. (f0, f1, f2, . . .) = (0, 1, 1, 2, 3, 5, 8, . . .).

With the z-transform, a closed representation of the Fibonacci numbers is easily 

found. As a transfer function H , whose coefficients are the Fibonacci numbers fn ., 

we get 

. H(z) = z 1

1 z 1  z 2
= z

(z z1)(z z2)
,

with 

. z1 =
1+

√
5

2
and z2 =

1 
√
5

2
.

Partial fraction decomposition of H(z) = 1√
5

 
z1

z z1
 z2

z z2

 
. and then 

development of the partial fractions into Laurent series in the region |z| > |z1|. 
as in previous examples (see Example 1 on p. 359) yield for n ≥ 0. 

. fn =
1√
5
(zn1  zn2).

The quotients fn+1/fn . converge for n→∞. to g = (1+
√
5)/2.. For two intervals 

with lengths L and S < L., such that S =
√
L(L S)., S is the Golden Ratio, and it 

holds that S = L/g .. It holds that gn 2 ≤ fn . for n ≥ 2. (exercise).
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Causality and Stability of Filters with Rational Transfer Functions 

A rational transfer function H with poles z1, . . . , zM . is the z-transform of a filter 

with causal impulse response h if and only if one sets the region of convergence A 

of H to be A = {z ∈ C : |z| > r}. with r = max{|z1|, . . . , |zM |}. and if the degree 
of the numerator polynomial of H does not exceed the degree of the denominator 

polynomial. (Note: In examples, do not write H as before with powers of z 1 ., but  
as a polynomial fraction with powers zk ., k ≥ 0..) 

Justification: It is immediately apparent that h cannot be causal if the degree 

of the numerator of H is greater than the degree of the denominator, and thus 

H has a polynomial component. Conversely, the Laurent series expansion of the 

partial fractions for rational H in the region A shows the causality of the resulting 

impulse response h if the degree of the numerator does not exceed the degree of the 

denominator. A corresponding expansion in an annular region with |z| < r . (i.e., with 

a pole in the exterior region) leads to a Laurent series with an analytic power series 

component and thus to a noncausal associated impulse response h (cf. Example 4, 

p. 363 and Exercise 12 at the end of the chapter). 

A causal filter with rational transfer function H has only poles as singularities 

and is stable if and only if they lie within the unit circle (No. 7, p. 362). 

Stable Inverse Filters and Stable Signal Reconstruction 

We continue with the consideration of causal filters y = h∗x .with a rational transfer 

function H and a corresponding difference equation as on p. 365. H then has at most 

as many zeros as poles. The input signals x are again causal signals from l∞d .. 

The inverse filter arises when the roles of input and output signals are reversed. 

First, examples are considered to show what needs to be taken into account. 

Examples 

1. (Causal Stable Inverse Filters) Given is the causal stable filter y = h ∗ x .with a 

finite impulse response h = δ0  δ1/4 δ2/8. and transfer function 

. H(z) = 1 1

4
z 1  1

8
z 2 = (z 1/2)(z+ 1/4)

z2

for |z| > 0. and a corresponding difference equation 

. yn = xn  
1

4
xn 1  

1

8
xn 2.

The number of zeros and poles of H matches, and all zeros and poles lie within 

the unit circle. Therefore, there exists a causal stable inverse filter: Solving the 

difference equation for xn . gives xn = yn+xn 1/4+xn 2/8. and thus the inverse
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filter with the transfer function 

. Hinv(z) =
1

1 z 1/4 z 2/8
= z2

(z 1/2)(z+ 1/4)
= 1

H(z)
.

Hinv . has the following partial fraction decomposition and Laurent series repre-

sentation for |z| > 1/2. (presented here as a small calculation exercise for readers, 

see p. 489 and p. 363): 

. Hinv(z) = 1+ 1/3

z 1/2
 1/12

z+ 1/4
= 1+ 1

12

∞ 

k=0

 
4

2k
+ ( 1)k+1 1

4k

 
z (k+1).

The inverse filter with impulse response hinv ., the inverse z-transform of Hinv(z). 

(|z| > 1/2.), is therefore causal and also stable (see p. 368). However, it has an 

infinitely long impulse response and is thus a so-called IIR filter (Infinite Impulse 

Response Filter). It holds that h ∗ hinv = hinv ∗ h = δ0 ., and for causal signals x 

from l∞d . the convolutions hinv ∗ (h ∗ x) = (hinv ∗ h) ∗ x = x . are associative (see 

p. 196). 

The frequency response hinv . is like  h. due to the exponentially fast decay of its 

Fourier coefficients infinitely often differentiable, as is generally the case with 

stable filters with rational transfer functions (see p. 51, the 1/f .-Theorem of 

N. Wiener in Sect. 5.6 and the Laurent series of the partial fractions of H and 

Hinv .). 

If for y = h ∗ x,
∞ 

k=0
ykδk =

∞ 

k=0
hkδk ∗

∞ 

k=0
xkδk . the input signals x have a 

fixed length N + 1., i.e., xk = 0. for k > N ., and one sets x = (x0, x1, . . . , xN )T ., 

then x . can already be reconstructed with y = (y0, y1, . . . , yN )T . and the first 

N + 1. coefficients of hinv ., which subsequently also appear in the matrix inverse 

to H .: 

. y = H x and x = H 1 y,

. H =

⎛
⎜⎜⎜⎜⎜⎝

h0 0 0 . . . 0

h1 h0 0 . . . 0

h2 h1 h0 . . . 0
...

. . . 0

hN hN 1 . . . h0

⎞
⎟⎟⎟⎟⎟⎠

, H 1 =

⎛
⎜⎜⎜⎜⎜⎝

hinv,0 0 0 . . . 0

hinv,1 hinv,0 0 . . . 0

hinv,2 hinv,1 hinv,0 . . . 0
...

. . . 0

hinv,N hinv,N 1 . . . hinv,0

⎞
⎟⎟⎟⎟⎟⎠

.

2. (Causal Unstable Inverse Filters) Inversion of the stable causal filter y = h ∗ x . 

with yn=xn xn 1 . yields by solving for xn . the inverse filter with the difference 

equation xn = yn + xn 1 . for the input signal y and output signal x ..
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The inverse filter, the accumulator from p. 354, is  causal, but unstable, since 

the zero z = 1. of H becomes a pole of Hinv = 1/H . on the unit circle. 

With erroneous values yn ., all errors in yk . for k ≤ n. are then added up in xn . 

during the inversion of y = h ∗ x .. This can result in an outcome that has little in 

common with the original signal x. 

3. (Noncausal Stable Inverse Filters) H(z) = z 1 ., |z| > 0., gives with h = δ1 . a 

causal stable filter, Hinv(z) = z., z ∈ C., with hinv = δ 1 . a stable noncausal filter. 
Here the degree of the numerator of H is less than the degree of the denominator. 

The transfer function H(z) = 1  2z 1 = (z  2)/z. (|z| > 0.) of the causal 

filter with impulse response h = δ0  2δ1 . has the zero z = 2.. The Laurent 

series of 1/H . in the region |z| < 2. as the z-transform of the inversion with the 

impulse response hinv =  
∞ 

k=1
2 kδ k . corresponds to a stable noncausal filter 

(see p. 368). 

4. (Noncausal Unstable Inverse Filters) Choosing in Example 1 for the impulse 

response hinv . the coefficients of a Laurent series expansion of 1/H . in a region  A 

with |z| < |z0|. for a zero z0 . of H and all z ∈ A., then hinv . is noncausal. Since the 

unit circle is not in A, the corresponding filter is unstable. 

Conclusions 

(1) If the degree of the numerator polynomial of H is less than the degree of the 

denominator polynomial, then the inverse filter is noncausal. If one chooses 

for the Laurent series expansion of 1/H . an annulus of convergence with a 

zero of H in the outer region, then the corresponding inverse filter becomes 

noncausal. The stability of the inverse filter is retained according to the 1/f .-

Theorem of N. Wiener (see p. 80) if the unit circle is in such a region (proof: 

series expansion of the partial fractions of 1/H .). 

(2) If one has as the region of convergence for the Laurent series expansion of 1/H . 

the region A = {z ∈ C : |z| > r}. with r = max{|z1|, . . . , |zN |}. with as many 

zeros z1, . . . , zN . of H as H has poles, then the corresponding impulse response 

hinv . is causal. If the unit circle is not included in this region, the inverse filter 

is unstable. However, if it belongs to this region, then the inverse filter is also 

stable. One can then reconstruct the input signal in a stable way from the values 

of y = h ∗ x . with knowledge of h, i.e., bounded disturbances of y lead to 

only bounded errors in the reconstruction of x. The combination of causality 

and stability of a filter with a rational transfer function H is preserved upon 

inversion only if all zeros and poles of H lie within the unit disk and H has 

as many zeros as poles. Filters with this property are so-called minimum phase 

filters (see Exercise A13 at the end of the chapter).
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Amplitude Response, Phase Response, and Group Delay 

For a discrete filter with a piecewise differentiable frequency response h(ω)., | h(ω)|. 
is the amplitude response, Φ(ω) = arg( h(ω)). is the phase response, and the 
function D(ω) =  dΦ(ω)/ dω . defined except for finitely many points is its group 

delay (cf. p. 329). 

A rational transfer function H  = 0. of  a filter as on p.  365 is often represented 

in factorized form. As there, let the coefficient of the denominator polynomial be 

b0 = 1.. Further, let r be the smallest index such that ar . among the coefficients of 

the numerator Q is not zero. For N > r . and M ≥ 1., H has the form with the zeros 

ck ., the poles dk ., and possibly the origin as a |M  N |.-fold pole or zero: 

. H(z) = arz
M N

N r 

k=1
(z ck)

M 

k=1
(z dk)

.

Experienced engineers can often quickly recognize characteristic properties of the 

filter by the location of the zeros ck . and the poles dk .. The impulse response can 

be obtained by partial fraction decomposition of H for given zeros and poles, as 

already shown in examples. If the filter is stable with the frequency response  h(ω) =
H(ejωa)., then taking the logarithm of the amplitude response gives 

. 20 log10 | h(ω)| = 20 log10 |ar |+
N r 

k=1
20 log10 | ejωa  ck| 

M 

k=1
20 log10 | ejωa  dk|.

Here, the logarithmic unit dB (decibel) is used, and it shows the following: 

The amplitude attenuation in dB for the angular frequency ω. is composed 

additively from the constant |ar |. and the lengths of the zero vectors nk = ejωa  ck . 
minus the lengths of the pole vectors pk = ejωa  dk ., all measured in dB. 
An amplitude attenuation of 6 dB corresponds to an approximate halving of the 

amplitude. Similarly, the phase response behaves additively. For 0 ≤ ω < 2π/a ., we  

have 

. Φ(ω) = Φ
 
ar e

jωa(M N)
 
+

N r 

k=1
Φ

 
ejωa  ck

 
 

M 

k=1
Φ

 
ejωa  dk

 
.

Corresponding relationships for the above excluded cases N = r . or M = 0. are 

seen analogously. For N = r ., the numerator of H becomes arz
M r

., and for M =
0. in non-recursive filters, the denominator of H becomes 1. The representations 

of the amplitude attenuation in dB and the phase response are then to be adjusted 

accordingly.
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For practical applications, filters with linear phase are of great importance. 

Compare, for example, the remark on p. 329 about phase distortions of only a 

few milliseconds in filters for audio applications, or consider transmission systems 

that use phase modulation techniques. For filters y = h ∗ x . with linear phase, the 

group delay defined except for possible jumps in the phase function is the constant 

frequency-independent phase delay of the filter. 

Filter Examples and Filter Design 

The previous explanations should now of course be supplemented by concrete filter 

examples. A main task of filter design in practice is to approximate ideal, often 

non-realizable filters within given tolerance ranges with realizable stable filters. 

We limit ourselves in the following to one significant example each for the two 

essential filter types of FIR filters (Finite Impulse Response Filters) and IIR filters 

(Infinite Impulse Response Filters). If the readers’ interest is aroused to deepen the 

fundamental concepts presented with the rich further literature on discrete signal 

processing and its applications, they will find excellent sources in the books by 

Oppenheim and Schafer (2013), Jury (1973), and Tietze and Schenk (2008). 

Causal FIR Filters with Real Coefficients and Linear Phase 

FIR filters are filters with finite impulse response. Such filters are always stable, as 

their frequency responses are trigonometric polynomials. We first show that causal 

FIR filters with real coefficients and constant group delay can be constructed by 

imposing certain symmetry conditions on the filter coefficients. Consider a filter of 

length N ≥ 1.with a transfer function H of the form 

. H(z) =
N 1 

n=0
hnz

 n

with real coefficients hn . and the symmetry hn = hN 1 n.. It follows that 

. 2H(z)=
N 1 

n=0
hn(z

n+1 N + z n)=z(1 N)/2
N 1 

n=0
hn

 
zn (N 1)/2 + z n+(N 1)/2

 
.

With z = ejωa . (a our time step width) we obtain the corresponding frequency 

response  h.with the constant group delay (N  1)a/2.:
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.  h(ω) = H
 
ejωa

 
= ej (1 N)ωa/2

N 1 

n=0
hn cos

  
N  1

2
 n

 
ωa

 
.

Remark FIR filters with the coefficient symmetry used above are called FIR filters 

of type I when N is odd and FIR filters of type II when N is even. Similarly, filters 

of the so-called types III and IV can be constructed if the above symmetry condition 

is replaced by the condition hn =  hN 1 n .. FIR filters are also referred to as non-
recursive filters, while IIR filters are called recursive filters. 

Since the number of coefficients of the filter corresponds to the number of 

multipliers in a circuit implementation or programming (see p. 366), a more 

efficient representation in terms of the number of multiplications, utilizing the given 

symmetry, is useful. As an exercise, calculate that for an even filter length N ≥ 2. 

the transfer function of our FIR filter is given by 

. H(z) =
(N 2)/2 

n=0
hn(z

 n + z N+n+1)

and for odd N ≥ 3. by 

. H(z) = h(N 1)/2 z
 (N 1)/2 +

(N 3)/2 

n=0
hn(z

 n + z N+n+1).

Design of FIR Filters by Approximation with a Window Function 

Since the frequency responses of discrete filters are periodic, it is natural to 

approximate them by weighted partial sums of their Fourier series expansions. For 

input signals of finite duration, i.e., in X ∩E  ., or signals from l2d ., we consider the Ω .-

periodic frequency response of an ideal lowpass filter with cutoff angular frequency 

0 < ωc < Ω/2 = π/a . 

.  g(ω) =
 
1 for |ω| ≤ ωc

0 for ωc < |ω| < Ω/2.

With gn =
1

Ω

+ωc
´

 ωc

ejnωa dω . the transfer function G would be given by 

.G(z) =
+∞ 

n= ∞
z ngn =

2ωc

Ω

+∞ 

n= ∞
z n

sin(nωca)

nωca
.
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This transfer function has infinitely many coefficients and is also noncausal. An 

approximation with a partial sum, i.e., an approximation by multiplying G with a 

rectangular window, results in the Gibbs phenomenon in the frequency response 

(see p. 25 and p. 136). Analogous to the elimination of the Gibbs phenomenon 

by Fejér means, i.e., by weighting with a triangular window (see p. 31), other 

window functions can be used. There are many different window functions that 

are used in practice. All windows share the common feature that the weights wn . 

used decrease to zero toward the higher frequencies, thus counteracting the Gibbs 

phenomenon. Compare also Sect. 12.6, in which we examine window effects in the 

discrete Fourier transform in more detail. A detailed discussion of window functions 

can be found in Slepian (1983) or Harris (1978). 

With a symmetric discrete window of the form w =
N 1 

n=1 N
wnδn . and w n =

w+n ., the modified transfer function  G. is formed from G 

.  G(z) =
N 1 

n=1 N
wnz

 ngn.

From this noncausal transfer function  G., a causal transfer function H is finally 

obtained, with which the lowpass filter is approximated. By delay, here multi-

plication by z1 N ., and using the symmetry of the values gn . and wn ., the causal 

approximating transfer function H is obtained with 

. |H(ejωa)| = | G(ejωa)|

. H(z) = z1 N  G(z) =
2(N 1) 

n=0
z n wN n 1 gN n 1.

Theorem 11.10 (FIR Filter with Constant Group Delay) With H , we have 

obtained a transfer function of a causal filter of length (2N  1)., which has real 

coefficients and the constant group delay (N  1)a . (a was the time step used in our 

discrete signals). 

The following representation shows the amplitude response of this filter in dB for 

two different windows. We choose N = 20. as the number N of filter coefficients, 

ωc = Ω/4., and two cos-windows of the form 

. wn =

⎧
⎨
⎩
α + β cos

 
nπ

N  1

 
+ γ cos

 
2nπ

N  1

 
for 1 N ≤ n ≤ N  1

0 otherwise.

The first example uses α = 0.54., β = 0.46., γ = 0., the commonly used so-called 

Hamming window (Fig. 11.15), the second with α = 0.42., β = 0.5., γ = 0.08., and



11.6 Discrete Linear Filters and z-Transform 375

Fig. 11.15 Lowpass, 

Hamming window 

Fig. 11.16 Lowpass, 

Blackman window 

the so-called Blackman window with slightly higher attenuation in the stopband at 

the cost of a less steep roll-off in the transition band compared to the design with 

the Hamming window (Fig. 11.16). Due to periodicity, the frequency response  h. of 

a discrete filter is generally only usable up to half the sampling frequency 1/(2a).. 

Plotted is the amplitude response in dB as a function of sΩ ., 0 ≤ s ≤ 0.5., and the 

cutoff angular frequency ωc . is therefore at s = 1/4. on the abscissa. 

Alternative design methods for FIR filters are based on a tolerance scheme as 

shown on p.  332 and calculate the filter coefficients according to given optimality 

criteria. 

Such criteria can be the minimization of the maximum approximation error or, 

for example, frequency-weighted error criteria. A frequently used method of this 

type is the Parks-McClellan algorithm. It is discussed in detail in the book by 

Oppenheim and Schafer (2013), to which we refer here. 

Today, typical filter lengths N of FIR filters are in the range of N = 58. in multi-

band graphic equalizers toN = 160. and more when used in CD players. Particularly 

important applications of FIR filters are adaptive filtering on the receiving side to 

compensate for distortions in transmission channels and multi-rate signal processing 

in systems with different sampling rates. In this context, FIR filters are used for 

decimation and interpolation. Again, we refer to the specialized literature on digital 

signal processing already cited above. 

Design of IIR Filters Using the Bilinear Transformation 

Rational transfer functions, whose denominator polynomial is not constant, have an 

infinitely long impulse response due to the feedbacks seen in the block diagram on 

p. 366. They are therefore called IIR filters (Infinite Impulse Response). As with FIR 

filters, there are different design methods for IIR filters depending on the purpose. 

As an example, we explain the method of bilinear transformation, by which a stable
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discrete filter is constructed from the frequency response of a stable analog filter 

through a transformation of the frequency axis. 

Given is a rational frequency response R(jω). of a stable analog filter (cf. 

page 339). To obtain from it a 2π/a .-periodic frequency response of a stable discrete 

filter, the frequency axis of the analog filter is bijectively mapped onto the interval 

]  π/a, π/a[.. A mapping T that accomplishes this is 

T (ω) = 2

a
arctan

 ωa
2V

 
.with inverse mapping T  1(Ω) = 2

a
V tan

 
Ωa

2

 
= ω.. 

Here, Ω . denotes the angular frequency in the discrete case, 1/a . the sampling 

frequency of the intended discrete system, and V a factor with which a pre-distortion 

can be achieved, so that, for example, a desired cutoff frequency ωc/(2π). is a fixed 

point under the mapping T . Thus, we define the desired frequency response  h(Ω). 

of the sought discrete filter by h(Ω) = R(jT  1(Ω)) for Ω ∈
 
 π

a
,
π

a

 
.. That this 

frequency response  h. is rational in z = ejΩa
. can be seen as follows: 

The Möbius transform B : C→ C. of the compactified complex plane by adding 

the point ∞., defined by 

. B(z) = 2V

a

1 z 1

1+ z 1
= s for z ∈ C, B( 1) = ∞, B(∞) = 2V

a
,

is bijective with the inverse mapping B 1(s) = (2V/a + s)/(2V/a  s) = z. for 

s ∈ C.. This mapping B is called bilinear transformation. 

One easily verifies the following properties of the bilinear transformation B, 

which ensure the stability of the discrete filter designed with it: For the real part 

of s = B(z)., the equivalences 

.  (s) =  (B(z)) < 0⇐⇒ |z| < 1

 (s) =  (B(z)) = 0⇐⇒ |z| = 1

 (s) =  (B(z)) > 0⇐⇒ |z| > 1

hold. For z = ejΩa
., it follows from j tan(x) = (1  e 2jx)/(1 + e 2jx). that  h. is 

rational in z: h(Ω) = R(jT  1(Ω)) = R

 
2V

a

1 z 1

1+ z 1

 
= R(B(z)).. 

Theorem 11.11 (Bilinear Transform) H(z) = R(B(z)). is the rational transfer 

function of the discrete linear filter with the 2π/a .-periodic frequency response 
 h(Ω) = H

 
ejΩa

 
.. If R(jω). is the frequency response of a stable analog filter 

as assumed, then the discrete filter with the transfer function H is also stable. 

Example We demonstrate the approach using the example of the third-order Butter-

worth filter, whose frequency response we calculated on p. 335. Its cutoff frequency 

was ωc/(2π) = 4.2. kHz. To keep this cutoff frequency invariant for the discrete 

lowpass filter generated as above, we choose as prewarping V = ωca/2 cot(ωca/2).. 

Thus, it follows that T (ωc) = ωc = T  1(ωc). and h(ωc) = R(jωc).. The frequency
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Fig. 11.17 Amplitude 

response, analog and discrete 

Butterworth lowpass 

compared 

Fig. 11.18 Phase response, 

analog and discrete 

Butterworth lowpass 

compared 

response R(jω). of our example was 

. R(jω) = 1

(1+ jω/ωc)(1+ jω/ωc + (jω/ωc)2)
.

Replacing jω . with B(z). yields with c = ωca . the transfer function H(z). of the 

discrete analog, which can be realized according to the block diagram on p. 366: 

. H(z) =
 
1+ 2V

c

1 z 1

1+ z 1

  1  
1+ 2V

c

1 z 1

1+ z 1
+ 4V 2

c2

(1 z 1)2

(1+ z 1)2

  1
.

The following illustrations—each as a function of sωc ., 0 ≤ s ≤ 4.—show in 

Fig. 11.17 the amplitude response of the analog Butterworth filter and the (2π)/a .-

periodic amplitude response of the corresponding discrete filter generated as above 

and in Fig. 11.18 the phase responses of the two filters. A sampling frequency of 

44.1 kHz was chosen as 1/a .. The thicker plotted curves are those of the discrete 

filter. The cutoff angular frequency ωc . is at s = 1. on the abscissa. 

For comparison, some key figures are as follows: At the passband edge 3 kHz, the 

amplitude of the analog filter’s frequency response is 0.9395, and that of the discrete 

filter is 0.9443. The corresponding values at the stopband edge 10 kHz are 0.0739 

for the analog filter and 0.0455 for the discrete filter. At half the cutoff frequency 

2.1 kHz, the value is 0.9923 for the analog filter and 0.9932 for the discrete filter. 

At the cutoff frequency 4.2 kHz, both frequency responses have the same amplitude 

value of 0.7071 due to the chosen prewarping. 

In an analogous way, other filter types than lowpass filters can also be obtained 

using the bilinear transformation. As alternative design methods, approaches are 

to be mentioned in which a corresponding discrete filter is constructed from the 

sample values of the impulse response or the frequency response of an analog 

filter to be emulated. In doing so, as with the discrete Fourier transform and 

the sampling theorem of Shannon discussed in the following section, aliasing
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effects must be considered at too low sampling frequencies. These methods can 

be found in the literature on digital signal processing already cited above. An 

advantage of IIR filters compared to FIR filters is that a much lower filter order 

is required to approximate a desired amplitude response than with FIR filters. 

Disadvantages include nonlinear distortions of the frequency axis as with the 

bilinear transformation, a hardly achievable linear phase response, feedback of 

rounding and quantization errors affecting stability, and other issues that require 

great care when implementing IIR filters. If there is interest, one should therefore 

refer to the extensive literature on the subject. 

Notes on Applications of Noncausal Discrete Filters 

Since our main focus so far has been on causal linear filters, it should not go 

unmentioned at the end of this chapter that noncausal filters can also be used in 

many application areas. If one disregards real-time signal processing and instead 

thinks of processing complete datasets, such as audio data from music tracks on 

a CD or image data, it becomes immediately clear that noncausal filters can also 

be used for processing. Most readers will already be familiar with a whole range 

of different filters from image editing programs—such as for edge sharpening or 

smoothing, etc. Reference to literature on special fields is again made here. 

Noncausal filters can also be used for time series in “near real-time” processing 

with sufficient data buffering. Applications of noncausal smoothing filters in radio 

telemetry, as in Hurd (1997) and in other sources, are such as the Deep Space 

Network Galileo Telemetry System on the NASA Technical Reports Server. 

Summary Fourier analysis and distribution theory have enabled the unified and 

effective representation and treatment of analog and discrete translation-invariant 

linear systemsL : Z → A.using the samemathematical tools. Such systems differ in 

their mathematical model essentially only by the choice of the signal spaces Z . and 

A.. Fundamental system properties, under appropriate signal spaces and continuity 

conditions, follow from representations as linear filters and their characterization by 

the impulse response and frequency response. In examples, we have seen how linear 

filters can be constructed according to given criteria. In the mathematical model, 

functions or distributions are processed by the operator L, and in the special case of 

discrete systems, sequences of impulses are processed. In practical applications, the 

idealized models are realized approximately, with analog filters shown by suitable 

circuits as exemplified by the Butterworth lowpass filter. For discrete systems, the 

coefficients of the impulse sequences in the mathematical model are very often 

proportional to quantized samples of analog signals in practice. Signal processing by 

linear filters can then be performed in processors by processing only the coefficients. 

Coefficient sequences resulting from output signals can be fed back into analog 

systems through digital-to-analog conversion. Examples include signal processing 

in images or music and in applications such as WLAN, DSL, DVB-T, and many
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others. A schematic representation in a signal flow diagram is seen in Sect. 12.2 

on sampling and interpolations with linear filters. All discussed filters are available 

today as components at low cost or as software in countless applications. 

11.7 Exercises 

For the following exercises, it is useful to use mathematical software. 

(A1) When connecting electrical devices to the power grid, an interference filter 

is often used, which is intended to keep high-frequency oscillations away 

from the user: 

What is the amplitude of Ua . at low frequencies (|ω| → 0.) and at high 

frequencies (|ω| → ∞.) for an input quantity Ue(t) = U0 sin(ωt).? 

(A2) Calculate a Butterworth lowpass filter (cf. p. 332) for DC  gain K = 1., 

passband edge ω1/(2π)=3 .kHz, and stopband edge ω2/(2π)=5 .kHz, with 

minimum passband gain ĥ1=0.9. and maximum stopband gain ĥ2=0.1.. 

(A3) The active circuit depicted with an operational amplifier will become a 

second-order lowpass filter (Sallen-Key Biquad Filter type) with appropri-

ate choice of capacitors C1 and C2 and resistors R1 and R2. 

(a) Derive the frequency response of the circuit. 

(b) Compute the resistors R1 and R2 with C1 = 8. nF, C2 = 4. nF and 

cutoff frequency 10 kHz so that the circuit yields a Butterworth second-

order lowpass filter with hLP(ω) =
1

1+ j
√
2ω/ωc  ω2/ω2

c

.. 

(c) If you interchange the resistors and capacitors in the circuit (with anal-

ogous numbering), you obtain a second-order highpass filter. Compute 

its transfer function, amplitude, and phase response with C1 = C2 =
100. nF and ωc/(2π) = 1000. Hz, so that the filter has frequency 

response
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.  hHP(ω) =
(jω)2

ω2
c

 hLP(ω)

with the Butterworth response  hLP . from (b) (lowpass to highpass 

transformation, p. 342). 

(A4) Verify the statements in Example 2 on p. 342. 

(A5) (a) Verify the statements in Examples 3 and 4 on p. 343. 

(b) Compute the amplitude and phase responses of the bandpass and 

bandstop filters in the graphs on p. 343 using the given data. 

(c) Compute the poles with B = 1/3. in the right image on p. 342, 

which were mentioned in Examples 2–4 on pages 342–343 for the 

transfer functions of highpass, bandpass, and bandstop filters. Use a 

computer algebra system and the inverse of the Joukowsky mapping as 

in Exercise A26 of Chap. 5. 

(d) Create a corresponding discrete filter from the bandpass filter in 

(b) using the bilinear transformation. Plot the amplitude and phase 

responses of the filter. Compare analog and discrete filters. 

(A6) Consider the triangular function f (t) = (1  |t |)(u(t + 1)  u(t  1))., 

where u(t). is the unit step function. 

(a) Compute a DFT (cf. Sect. 6) with eight equidistant samples of f and 

step size 1/4. in the interval [ 1, 1].. Graphically represent a first 
approximation for the (real, even) Fourier transform of f using the 

computed DFT coefficients by a polygonal line (cf. p. 275 and p. 347). 

Pay attention to the correct assignment of frequencies and the duration 

T of sampling. 

(b) Then, extend the vector of samples of f by appending 2040 zeros (zero 

padding). Perform a DFT again with this extended vector, and use it to 

represent another approximation for  f . as above. Compare the results, 

and explain why the approximation has improved with zero padding. 

(A7) A realizable discrete filter has the transfer functionH(z) = z2 + 1

z2  1
..Provide 

the impulse response. 

(A8) Let X(z). be the z-transform of the signal x =
+∞ 

k= ∞
xkδk.. Compute 

relationships of the z-transforms of 

.x =
+∞ 

k= ∞
x kδk, xα =

+∞ 

k= ∞
αkxkδk (α  = 0) and v =

+∞ 

k= ∞
kxkδk.
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(A9) An analog frequency response of a bandstop filter (notch filter), which 

blocks the angular frequency ωc ., is R(jω) = A0(1+ (jω/ωc)
2)

1+ jω/(ωcQ)+ (jω/ωc)2
.. 

(a) Present the amplitude and phase response of the filter for A0 = 1. and 

for two different quality factors Q1 = 0.5. and Q2 = 10. graphically. 

(b) Discrete Bandstop Filters. Develop a program that implements a 

discrete bandstop filter using the bilinear transformation with quality 

factor Q, sampling frequency 1/a ., and stop frequency ωc/(2π).. 

(c) Acquire an audio recording of a football match from the 2010 World 

Cup in South Africa with strong vuvuzela noise. Create a cascade 

filter of appropriate quality to block the fundamental frequency of 

the vuvuzela around 233 Hz (note A sharp) and its three subsequent 

harmonics (octave, fifth, and octave), and limit the output signal 

through lowpass filtering to the voice bandwidth. Apply your “anti-

vuvuzela filter” to the recording, and test the result. 

(A10) Discrete Chebyshev Lowpass Filters. From the analog filter of Task 26 in 

Chap. 5, generate a discrete Chebyshev filter using the bilinear transforma-

tion with the same cutoff frequency and attenuation specifications. 

(A11) Calculate the impulse responses and frequency responses of the filters with 

the transfer functions H(z) = 60 8z 1  4z 2

60+ 15z 2
. and Hinv = 1/H(z).. 

(A12) Discrete Allpass Filters. In this task, all filters are assumed to be discrete 

causal and stable filters with a rational transfer function H . It then holds 

that | h(ω)|2 = C(ejωa) = H(ejωa)H ∗(e jωa).with H ∗(z) = H(z).. 

(a) Assume the transfer function is H(z) = a0z
 n

N 

k=1
(1 ckz

 1)

M 

k=1
(1 dkz

 1)

,.which 

is assumed to be completely simplified with ck  = 0., dk  = 0.,M,N ∈ N., 
n∈N0 ., and a0∈C..Show that | h(ω)|2=1.holds precisely when H takes 

the form 

. H(z) = ejϕ z n
M 

k=1

z 1  ak

1 akz 1

with ak ∈C., |ak|<1., and ϕ∈[0, 2π [.. 
(b) Show that an allpass filter as in (a) has a positive group delay. 

(A13)  . Discrete Minimum Phase Filters. Discrete causal stable filters with a 

rational transfer function, having as many zeros as poles and with their
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zeros and poles inside the unit circle, are called minimum phase filters (cf. 

Oppenheim & Schafer, 2013). They have causal stable inverses. 

(a) Show that discrete causal stable filters with a rational transfer function 

H can be represented byH = Hmin Hall .orH = Hmin Huc Hall .with the 

transfer function Hmin . of a minimal-phase filter, the transfer function 

Huc . of a filter whose zeros lie on the unit circle, and the transfer 

function Hall . of an allpass filter. Demonstrate the decomposition with 

the help of some pole-zero diagrams. 

(b) Conclude that a minimal-phase filter has the smallest group delay 

among all filters with the same amplitude response. 

(A14)  . Ideal DC Blocking Operator. Consider the operator Lx =
+∞ 

m= ∞
ymδm .with 

ym = xm  m(C,1)(x)., defined for x ∈ l∞d .where the limit 

. m(C,1)(x) = lim
N→∞

1

2N + 1

+N 

k= N
xk

of the Cesáro mean exists. Extend L to a continuous linear translation-

invariant operator on the entire space l∞d .. 

Consider the set M = {x ∈ l∞d : m(C,1)(x) = 0}. and the set K = {P ∈
l∞d
 : P(M) = 0,  P = 1 = P(1)}. as in Example on page p. 355, and 

show as there that there exists a translation-invariant functional P0 . in K . 

Show that Lx = x  1 · P0(x). is continuous and translation-invariant, but 

not a convolution operator. Consider Lδ0 . and Lu for u =
∞ 

k=0
δk..



Chapter 12 

Further Applications of the Fourier 
Transform 

Abstract Further applications of Fourier analysis are examined. Shannon’s sam-

pling theorem is proven and discussed. The spectral properties of sampling appli-

cations are considered and a basic digital transmission system is shown. The 

transmission of signals with a linear multi-carrier system, such as WLAN or 

mobile data transmission, is treated as a current everyday application. The method 

is orthogonal frequency division multiplexing (OFDM), which uses the FFT and 

linear filters. Further sections examine the Heisenberg uncertainty principle and 

its consequences for the time-bandwidth product of signals. Closely related to this 

is the windowed Fourier transform (STFT) as a tool for time-frequency analysis. 

Inversion formulas for the STFT with continuous and discrete parameters are 

proven. The use of time windows in the DFT to reduce alias effects is discussed. 

In further sections, initial value problems for the homogeneous and inhomogeneous 

wave and heat equations in two and three dimensions are solved. The Fourier 

transform of distributions is used to solve these equations. The Huygens’ principle 

for waves is explained. For the heat equation, an inhomogeneous boundary value 

3D problem is solved approximately as a further application of the FEM method 

and the solution is displayed graphically. 

12.1 Shannon’s Sampling Theorem 

The theoretical starting point for signal transmission methods, where discrete 

approximations of f (t).are transmitted instead of a continuous analog signal f (t)., is  

Shannon’s sampling theorem (1949). It states that a signal f (t). can be reconstructed 

from its samples under suitable conditions. A recommended read on the history of 

the theorem and its developments, with a wealth of relevant references, is the article 

“Sampling—50 Years After Shannon” by Unser (2000). 
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Shannon’s Sampling Theorem for Bandlimited Functions 

Theorem 12.1 (Sampling Theorem) If f is an integrable function that is bandlim-

ited by ωc > 0. , i.e.,  f (ω) = 0. for |ω| > ωc ., and if tf (t). is also integrable with 

f (t)., then for all t ∈ R. with ta = π/ωc ., the following sampling formula holds: 

. f (t) =
+∞ 

k=−∞
f

 
kπ

ωc

 
sin(ωct − kπ)

ωct − kπ
=

+∞ 

k=−∞
f (kta)

sin(ωc(t − kta))

ωc(t − kta)
,

the series being absolutely and uniformly convergent. 

Proof From the assumptions, it follows that the spectral function  f . is continuously 

differentiable (cf. p. 282). Hence, it is represented pointwise by its Fourier series in 

[−ωc, ωc]., and this series is absolutely and uniformly convergent (cf. p. 28): 

.  f (ω) =
+∞ 

k=−∞
ck e−jkωta (ta = π/ωc, |ω|  ωc)

ck =
1

2ωc

+ωc
ˆ

−ωc

 f (ω) ejkωta dω =
π

ωc

f (kta).

Term-by-term integration of the series is possible because the series converges 

uniformly. Since bandlimited functions are infinitely differentiable (cf. p. 282), the 

sampling theorem follows from the Fourier inversion formula: 

. f (t) =
1

2π

+ωc
ˆ

−ωc

 f (ω) ejωt dω =
1

2π

+ωc
ˆ

−ωc

+∞ 

k=−∞
ck e−jkωta ejωt dω

=
+∞ 

k=−∞

1

2ωc

f (kta)

+ωc
ˆ

−ωc

ejω(t−kta) dω =
+∞ 

k=−∞
f

 
kπ

ωc

 
sin(ωct − kπ)

ωct − kπ
.

  

Remark As a reference for variants and generalizations of the theorem, see Jerri 

(1977) or Butzer et al. (1988). For example, with theorems of Paley and Wiener 

(1934) it can be shown that the sampling series converges absolutely and uniformly 

for bandlimited square-integrable functions. 

The sampling theorem provides a formula that allows for the interpolation of 

the values of f at times t  = kπ/ωc ., given all discrete values f (kπ/ωc)., k ∈ Z.. 
The sampling frequency must be at least twice the cutoff frequency ωc/(2π).. 

By increasing the sampling frequency ωc/π ., the formula applies to signals of
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correspondingly higher frequency bandwidth. With a lower sampling frequency than 

ωc/π . and given bandwidth ωc . of f , aliasing effects occur with the sampling series 

(see p. 387). 

For direct practical implementation in signal transmission, the formula is not 

suitable because it is not causal. To reconstruct f (t0). at time t0 ., one would also 

need all values f (kπ/ωc)., kπ/ωc > t0 .. However, a function f whose spectrum 
 f . vanishes outside an interval [−ωc, ωc]. is not time-limited (cf. p. 303), meaning 

the sampling formula requires nonzero values of f from the entire future t > t0 .. 

Nevertheless, the sampling theorem is a starting point for practical approximation 

methods for reconstructing f from sample values. In these methods, a realizable 

filter for interpolation is used, replacing the impulse response of the ideal lowpass 

filter used below. 

To illustrate, consider finitely many samples f (kπ/ωc),−M ≤ k ≤ N .. From  

the impulse sequence
π

ωc

+N 

k=−M

f

 
k
π

ωc

 
δ

 
t − k

π

ωc

 
. as the input signal for an 

ideal lowpass filter with the frequency response  h(ω) = A0 e−jωt0 . for |ω| ≤ ωc ., 
 h(ω) = 0. for |ω| > ωc ., then at the output of the lowpass filter, we get (see Fig. 12.1) 

. 
π

ωc

+N 

k=−M

f

 
k
π

ωc

 
δ

 
t −

kπ

ωc

 
∗
A0 sin (ωc(t − t0))

π(t − t0)

= A0

+N 

k=−M

f

 
k
π

ωc

 
sin (ωc(t − t0) − kπ)

ωc(t − t0) − kπ
.

Except for a factor and the time delay of t0 ., the right side is an approximation of f 

that converges to A0f (t − t0). as N,M → ∞.. 

Remarks 

(1) The functions ek(t) =
 

ωc

π

sin(ωct − kπ)

ωct − kπ
. (k ∈ Z.) form a complete 

orthonormal system in the space of L2
. functions bandlimited by ωc .. The  

sampling formula is thus precisely the development of f with respect to 

these basis functions. The proof of the sampling theorem shows that  ek(ω) =

Fig. 12.1 Schematic digital-to-analog conversion
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√
π/ωc e

−jωkπ/ωc . holds for |ω| ≤ ωc .,  ek(ω) = 0. otherwise. Completeness and 

orthogonality of the functions ek(t). therefore follow from Plancherel’s equation 

(p. 308) and the fact that the functions  ek(ω). form a complete orthogonal system 

in L2([−ωc, ωc]).. 
(2) The sampling series converges very slowly because the interpolation function 

sin(t)/t . decays slowly for |t | → ∞.. With oversampling, i.e., replacing 

the sampling points kπ/ωc . by kπ/(αωc). with α > 1., one can obtain an 

interpolation function that decays like 1/t2
. for |t | → ∞.. To see this precisely, 

solve the corresponding exercise A1 in the exercise part 12.9. 

(3) With additional assumptions about f , such as information about the energy 

distribution of f or its decay behavior, error estimates for the truncation error 

of the above approximation can be shown. Similarly, there are error estimates 

for the case when the sampling points are not exactly maintained and instead of 

f (kπ/ωc). the values f (kπ/ωc + εk). are sampled (the so-called jitter errors). 

In addition, in practical transmission systems, the sampled values are not 

transmitted continuously, but the value range is discretized and only a finite 

number of rounded values are transmitted. The resulting signal distortion, called 

quantization noise, corresponds in the time domain to the addition of an impulse 

train with the consequence of a broadband noise spectrum. There are also 

studies on the rounding errors resulting from this. For readers interested in error 

analysis, it is recommended to start with works such as Jerri (1977). 

(4) Sampling methods with irregularly distributed sampling points (irregular sam-

pling) play a role, for example, in radar technology. For this, see the works 

of H.-G. Feichtinger and K. Gröchenig (detailed references can be found in 

Unser (2000)). 

Generalizations 

There are numerous generalizations of the presented sampling theorem. These 

include, in particular, sampling theorems for time-limited, generally non-

bandlimited functions with statements about the approximation quality of the 

considered sampling series. In general, representations of the form 

. f (t) =
 

k∈Z
f
 
k
π

Ω

 
ϕ(Ωt − kπ) or f (t) = lim

Ω→∞

 

k∈Z
f
 
k
π

Ω

 
ϕ(Ωt − kπ)

are sought for functions f of certain function classes and bandwidths Ω ., and the 

approximation properties of the sampling series are derived from the assumptions 

about the function f and the properties of the kernels ϕ .. Such properties can be time 

or band limitation, decay behavior, etc. This topic will not be further addressed here, 

but rather reference is made to further literature such as Butzer and Stens (1992) or  

Unser (2000) and the references cited therein. Further aspects can also be found in 

the following Sect. 12.5 on time-frequency analysis (see p. 415) and Sect. 14.2 on 

wavelets (see p. 468).
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12.2 Sampling as the Basis of Digital Transmission 

Technology 

Sampling, Critical Sampling, Over-, and Undersampling 

Equidistant sampling of a bandlimited—and therefore infinitely differentiable— 

slowly increasing function f ∈ OM ., with a sampling frequency 1/ta ., can be 

described as the multiplication of f with a sequence of impulses at the times kta .. 

With the note on p. 163 and impulse strengths taf (kta). the resulting discrete signal 

fd . and f as well as  fd . and  f . each have the same physical units (see also p. 388 

for the reconstruction of f from sampled values or literature on the functionality of 

D/A converters for voltage signals in volts). For fd .—understood as a distribution 

with time parameter t—the following applies 

. fd(t) = f (t) ·
+∞ 

k=−∞
taδ(t − kta) = ta

+∞ 

k=−∞
f (kta)δ(t − kta).

Therefore, from the theorems on the convergence of convolutions (p. 197) and on 

Fourier transforms of impulse trains (p. 298) and of products (p. 300), the following 

fundamental relationship between the spectrum  f . of f and the periodic spectrum 

of the discrete signal fd . follows (cf. 347): 

Theorem 12.2 The spectrum of the discrete signal fd ., which is generated by 

sampling a bandlimited function f ∈ OM . with sampling frequency 1/ta ., is given by 

.  fd(ω) =  f ∗
+∞ 

k=−∞
δ(ω − 2πk/ta) =

+∞ 

k=−∞

 f (ω − 2πk/ta).

For k  = 0., the spectra  f (ω − 2πk/ta). are replicas of  f .. In the case of critical 

sampling with the sampling rate 1/ta = ωc/π ., referred to as the Nyquist frequency, 

these replicated spectra immediately adjoin each other. A reconstruction of f from 

the sample values using a realizable lowpass filter is generally not possible, as 

this requires a transition region from the passband to the stopband (cf. p. 335). 

This transition region only arises at sampling rates 1/ta > ωc/π ., i.e., through 

oversampling (Fig. 12.2). In the case of undersampling with rates 1/ta < ωc/π ., 

overlaps of the replicated spectra occur in the spectrum of fd .. A reconstruction of 

f from the corresponding sample values is then not possible, as aliasing effects 

occur in the signal spectrum, especially at higher frequencies (Fig. 12.3). The 

following schematic diagram shows the first graphic as a magnitude spectrum of 

fd . with oversampling ta < π/ωc ., the second as a magnitude spectrum of fd . with 

undersampling ta > π/ωc ..
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Fig. 12.2 Sampling without 

aliasing 

Fig. 12.3 Sampling with 

aliasing 

The Scheme of Digital Transmission in Practice 

In practical implementations, the sampling theorem suggests the recipe that lowpass 

filtering of the impulse sequence obtained from the sample values yields an 

approximation of the continuous signal. An impression is given by the following 

diagram. Sampling is technically done through sample and holds circuits (S&H .). 

The values of the resulting step function are proportional to the quantized sample 

values of the signal. The impulse sequence for reconstruction from the quantized 

sample values is approximated by a sequence of rectangular pulses. An impulse 

δ(t − kta). at sampling frequency FS = 1/ta . (DAC sampling frequency clock 

FS) is replaced by the rectangle R(t − kta)/ta ., R being the indicator function of 

[0 , ta [. (“rectangle area” equal to one), i.e., an impulse taδ(t − kta). of strength ta . 

is replaced by the convolution taδ(t − kta) ∗ R(t)/ta = R(t − kta).. This creates 

a step function with the quantized sample values, i.e., in addition to quantization 

errors, there are distortions compared to the spectrum of the discrete signal model 

fd ., as the spectrum ta e−jωkta . of an impulse taδ(t − kta). is multiplied by the 

spectrum e−jωta/2 sin(ωta/2)/(ωta/2). of the rectangle R(t)/ta . (cf. p. 275). These 

distortions can be compensated by a correction filter (inverse sin(x)/x . filter) with 

digital filtering before the D/A conversion or afterward with an analog filter (see 

Fig. 12.4). 

Specifically, for example, in digital telephony with ISDN, and similarly in newer 

methods like Voice over IP, a frequency range up to 3700 .Hz is transmitted and 

filtered with a stopband starting at 4000 .Hz. In standard telephone quality, speech 

signals are sampled at 8 kHz according to the sampling theorem, i.e., at time 

intervals of 125 µs.. Only quantized, rounded values are transmitted, which can 

be encoded as 8-bit-long digital code words. In Voice over IP, optionally lossy 

compressions are also used, similar to the MP3 encoding mentioned later, i.e., 

code words with less than 8 bits per sample value are used to ultimately reduce 

the required bandwidth during transmission.



12.2 Sampling as the Basis of Digital Transmission Technology 389

Fig. 12.4 Illustratively a digital transmission system 

Fig. 12.5 PCM30 bit frame 

with 8-bit code word per 

sample of the conversation on 

channel 4 

In the European PCM30 system (PCM stands for Pulse Code Modulation) for 

landline connections, 32 channels per transmission device are transmitted in a bit 

frame of 32 × 8 bit = 256 bit. per pulse frame, i.e., every 125 µs.. One of the 32 

channels contains a frame synchronization word, another channel contains signaling 

information (e.g., dialed phone numbers), and the remaining 30 channels contain the 

voice signals of 30 different conversations, which can be transmitted over shared 

line routes through cyclic aggregation (multiplexing; see the following graphic for 

a PCM30 bit frame). 

The simultaneous transmission of multiple signals over a shared line between 

switching centers is possible through time utilization between the sampling points 

of a signal. During this time, other signals are sampled and transmitted. In this 

technique, the bit rate per telephone channel is 8 × 8 000 bit = 64 kbit/s., resulting 

in a bit rate for the transmission device for 32 channels of 32 × 64 kbit/s =
2.048 Mbit/s. (see Fig. 12.5). The economic benefit in digital telephony is an 

increase in switching capacity and the high utilization of expensive lines between the 

switching centers. This technology is still in use but is increasingly being replaced 

by the aforementioned Internet telephony, which saves costs for operators through 

higher bandwidth usage and cheaper equipment in the switching centers. 

A well-known additional application example of the sampling theorem is audio 

files in the so-called WAV format. Here, sampling is done with 44100 values per 

second, i.e., a bandwidth of about 20 kHz is achieved. In the MP3 format, the 

frequency range is divided into several subbands. The FFT values of time sections of 

the acoustic signal are then quantized and transmitted with a varying number of bits
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based on psychoacoustic criteria depending on the location in the frequency range. 

At the receiver, an approximation of the signal is reconstructed from these spectral 

values. Details on this can be quickly found in an MP3 specification if interested. 

Modulation with Nyquist Pulses 

The starting point of discrete signal processing in today’s digital transmission 

methods are discrete values xk ., k ∈ Z., in which the useful information is 

transported. In the mathematical model, an impulse sequence xd = ta
 

k∈Z
xkδk =

ta
 

k∈Z
xkδ(t − kta). is present, from which a continuous signal s = xd ∗ h. is 

generated through a linear filter with regular impulse response h. We assume that the 

convolution xd ∗ h. is possible and all sampling values h(nta). exist (e.g., supp(xd). 

bounded, h ∈ S  
. continuous). 

. s(t) = (xd ∗ h)(t) =
 

k∈Z
xktah(t − kta).

With h, the transmission and reception filters and a linear filter describing the 

transmission channel are combined, i.e., s(t). is the received signal. It is immediately 

apparent that the sampling values s(nta) = xn . yield exactly the desired useful 

information if tah(0) = 1. and h(nta) = 0. for n  = 0.. Filters h, also called pulse 

shapes with this property (zero crossing property), are called Nyquist Pulses. 

Example If the values xk . are sampled values xk = f (kta). of a function f 

bandlimited by ωc . as in the previous Shannon sampling theorem and the function 

h(t) =
sin(ωct)

πt
. with ωc = π/ta ., then according to the proof of the sampling 

theorem s(t) = f (t).. The function h is a Nyquist pulse, as are products of h with 

functions g that have the value g(0) = 1. at zero. The so-called “raised cosine filter” 

hRC,α ., which in practice is often used and falls off much faster than h for |t | → ∞., 

is an example of this (see also later on p. 398, where it is given as a pulse shape in 

the frequency domain): 

. hRC,α(t) =
sin(πt/ta)

πt
·

cos(παt/ta)

1 − (2αt/ta)2
.

The parameter α . controls the bandwidth extension (excess bandwidth) compared to 

the spectrum of the sinc pulse h. The spectrum  hRC,α . with falling cosine flanks, 

from which this pulse shape gets its name, is given in Exercise A10 to Chap. 10, 

p. 319 (there π/ta = b, a = αb.). Applications of various Nyquist pulses can be 

found in Proakis and Salehi (2013).
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Nyquist pulses h allow the reconstruction of the values xk . by sampling s(t). even 

if h and therefore s are not bandlimited, thus despite aliasing effects in the spectrum 

of the pulse train sd(t) =
+∞ 

k=−∞
tas(kta)δ(t − kta).. In applications, h is often a 

function with bounded support (see later p. 394). If the xk . are referred to as symbols 

to be transmitted, then transmissions with Nyquist pulses are free from intersymbol 

interference (abbreviated ISI in literature). 

Modulations with Pulse Shapes That Are Not Nyquist Pulses 

If we consider the task of reconstructing the values xk . from the sampled values 

sk = s(kta)., k ∈ Z., of the received signal s(t). as a discrete linear filter problem, 

then with the results on inverse discrete filters, we obtain (see 11.6, p.  368 and 8.7, 

p. 195): 

Theorem 12.3 If a pulse shape h corresponds to a discrete filter with impulse 

response hd = ta
 

k∈Z
h(kta)δk . that has an inverse with impulse response hd,inv =

 

k∈Z
gkδk ., so that (xd ∗ hd) ∗ hd,inv = xd ∗ (hd ∗ hd,inv). is associative,1 then 

xd = ta
 

k∈Z
xkδk . is reconstructed by the discrete convolution xd = sd ∗ hd,inv ., 

i.e., 

. xn =
 

k∈Z
skgn−k for n ∈ Z.

Theorems on discrete filters in different signal spaces, on stability, causality, 

invertibility, and possible design methods for FIR or IIR filters were already 

presented in Sect. 11.6. Starting from the modulation of discrete information with 

various pulse shapes as impulse responses of linear filters, a variety of signal pro-

cessing algorithms have been developed. Some aspects of this follow in Sect. 12.5 

on time-frequency analysis and Sect. 14.2 on wavelets. For an in-depth study of 

various methods of application-specific signal processing, reference is made here 

only to the extensive literature on the subject, for example, Papoulis (1977) on  

signal analysis, Proakis and Salehi (2013), Couch (2012) on digital communication 

systems, Salditt et al. (2017) on imaging methods in biomedicine, or the works 

mentioned and referenced at the end of Sect. 12.1. 

A study of digital signal processing, which today permeates almost every area 

of life and all fields of science, requires specialized training in dealing with the 

mathematical methods and ultimately with the technology through which designed 

algorithms can be implemented.

1 The z-transforms of xd ., hd ., hd,inv . must have a common region of convergence. 
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12.3 The Basic Idea of Multi-Carrier Transmission with 

OFDM 

This section describes the basic idea of the OFDM multi-carrier method as a far-

reaching technology. OFDM (English) stands for Orthogonal Frequency Division 

Multiplexing. Nearly everyone uses this method almost around the clock today, 

because OFDM is comprehensively used for the transmission of WLAN, DSL, 

digital radio (DAB), and TV (DVB), in powerline communication and mobile 

communication with LTE, LTE+, and 5G standards. An OFDM application in 

optical transmission systems with bandwidths up to 1 Tb/s is in development (see, 

for example, Ma et al. 2010). The history of Frequency Division Multiplexing 

(FDM), back then with analog technology, goes back to the first patents on multitone 

telegraphy in the years 1875–1876 by Alexander Graham Bell, Elisha Gray, and 

Thomas Edison. A readable account of the development of OFDM methods can be 

found in Weinstein (2009). 

Today’s digital OFDM methods, referred to as DMT (Discrete Multitone Trans-

mission) in ADSL and VDSL, go back to works by Chang (1966) and Weinstein 

and Ebert (1971). They are a combination of applications of the DFT, the sampling 

theorem with filter technology, together with the use of coding and encryption 

algorithms. Additionally, methods for estimating the properties of transmission 

channels are included, based on which transmission errors are to be corrected at 

the receiver to recover the user information. Physically, the OFDM methods are 

implemented with highly developed hardware in electrical and communications 

engineering. 

Characteristic of OFDM transmission is that large parts of the required transmis-

sion and reception technology consist of discrete signal processing, which can be 

cost-effectively realized with uniquely developed algorithms on integrated circuits 

(ICs) compared to analog technology. Only because of this, today one can get a 

WLAN USB stick or digital media devices including necessary software as mass 

products for relatively low costs. 

In the literature on communications engineering, there are a number of easily 

searchable textbooks dedicated in detail to the OFDM methods. Therefore, only the 

essential ideas will be presented here in all necessary brevity, as far as they can 

be easily understood with the methods of Fourier analysis treated in the present 

text. They may serve as an incentive for readers to deepen their knowledge with 

specialized literature if interested. 

Mathematical Components of an OFDM Transmission System 

1. From the Coded Bit Stream with QAM to Trigonometric Polynomials
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Fig. 12.6 16-QAM Gray Coded Symbol Mapping without factor A 

On the sender side, there is a bit stream, i.e., a 01 sequence of data that is to 

be transmitted. The data is usually encoded and encrypted (keywords: error-

correcting codes, interleaving, possibly WPA2 encryption, etc.). 

To explain OFDM at hand of an example, let us assume that transmission is to 

be done with 16-QAM modulation. 16-QAM stands for Quadrature Amplitude 

Modulation with an alphabet of 16 complex numbers. From the bit stream, blocks 

of 4 bits each are injectively mapped to a set of 16 complex numbers, also 

referred to as QAM symbols (see Fig. 12.6). 

A 16-QAM modulation with its assignments is shown below. All complex values 

are multiplied by the scaling factor A = 1/
√

10.. This normalizes the power 

of a 16-QAM modulated uniformly distributed 01 random bit sequence in the 

transmit signal to one (cf. Couch 2012). 

To generate an OFDM symbol Si . with N carriers for a time period from iT to 

(i + 1)T ., the sequential bit stream is parallelized into n ≤ N . 4-bit blocks, which 

are mapped with 16-QAM to n complex numbers ci,k . as shown above. 

With the N carriers ej2πkt/T
. and the complex amplitudes ci,k ., a trigonometric 

polynomial with a bandwidth B ≤ (N − 1)/T .Hz is formed, which is limited 

in duration to the interval [iT , (i + 1)T ]. by multiplication with a time window 

T gi,T (t) = T gT (t − iT )., resulting in the OFDM symbol Si . in the baseband: 

. Si(t) = T

N−1 

k=0

ci,k ej2πkt/T gi,T (t).

N − n. carriers, whose frequencies are agreed upon between the transmitter 

and receiver, remain unoccupied with ci,k = 0., or they can be used with 

predetermined amplitudes as pilot carriers or—prefixed to the symbol—as 

preambles at the receiver for channel estimation and synchronization (cf. also 

Example 4, p. 94). The useful information of 4n bits is thus contained in the 

assigned complex amplitudes ci,k . of Si .. The function gT . is the impulse response 

of the transmit filter.
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We initially assume a rectangular window for gi,T . to illustrate the basic idea of 

OFDM and consider only a single time step with i = 0.. To simplify notation, 

the index i is therefore omitted, and T gi,T = wT = 1[0,T [ . is set ( wT . thus 

being the indicator function of the interval [0, T [.). The trigonometric polynomial 

component in the OFDM symbol S occupies the frequency band [0, (N −1)/T ].. 
However, the product with a time window wT . is no longer bandlimited, i.e., 

the spectrum of S results in out-of-band interference. In implementations, one 

would therefore choose other windows wT . whose amplitude spectrum falls off 

faster than that of a rectangular window. 

The functions ej2πkt/T wT (t)., k = 0, . . . , N − 1., form an orthogonal system 

in the space L2([0, T ])., the frequency band [0, (N − 1)/T ]. is divided by the 

carrier frequencies with fixed frequency spacing 1/T ., and all QAM values are 

transmitted together during the symbol duration T . Because of these properties, 

the method is called Orthogonal Frequency Division Multiplexing, abbreviated 

OFDM. Due to the orthogonality of the carriers, transmission interference at 

one of the carrier frequencies has no effect on the other carriers, i.e., there 

is no inter-carrier interference (ICI)—at least as long as the transmission 

channel does not cause frequency dispersion due to Doppler effects in moving 

receivers as in mobile communications, and it is neglected that a signal, which 

is not bandlimited due to the rectangular window wT ., is transmitted over a 

bandlimited channel. Distortions of a linear time-invariant channel, for example, 

due to multipath propagation and superpositions of multiple delayed signal 

sections arriving at the receiver, can be corrected there—with moderate noise— 

by estimating the channel impulse response. 

The following Fig. 12.7 shows the magnitude spectra of ck ej2πkt/T wT (t). for 

k = 1. and k = 4.. It can be seen that the spectra are Nyquist pulses in the 

frequency domain (cf. p. 391), i.e., |ck wT (ω − 2πk/T )| = 0. at each maximum 

point ω. of the magnitude spectra |cn wT (ω − 2πn/T )|. for n  = k . ( 0 ≤ k, n ≤
N − 1.). Figure 12.8 shows in advance the shape of a typical WLAN spectrum, 

with 48 data carriers and here for visibility exaggeratedly large 4 pilot carriers. A 

transmission with a rectangle time window had the blue spectrum. Transmission 

with a common raised cosine window, explained a little later, has much less out-

of-band emission, as is seen in the red spectrum. 

Fig. 12.7 Magnitude of two 

carriers
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Fig. 12.8 Illustratively a 

WLAN spectrum 

2. Real-Valued Transmission Signal, Quadrature Modulation, and Demodulation 

A real transmission signal is obtained from S through quadrature modulation 

(QM) with an intermediate frequency ωc .. The generated real-valued signal SR . is 

. SR(t) =  

 
ejωct

N−1 

k=0

ck ej2πkt/T

 
wT (t).

We obtain the following representation, where I (t). is called the in phase and 

Q(t). the quadrature component of S(t).: 

. SR(t) = cos(ωct)

N−1 

k=0

( (ck) cos(2πkt/T ) −  (ck) sin(2πkt/T ))wT (t)

− sin(ωct)

N−1 

k=0

( (ck) sin(2πkt/T ) +  (ck) cos(2πkt/T ))wT (t)

= (I (t) cos(ωct) − Q(t) sin(ωct))wT (t).

Pairwise orthogonality of the carriers and signal bandwidth are preserved in QM. 

The signal spectrum is shifted to the intermediate frequency fc = ωc/(2π). (for 

WLAN, fc . is about 2.4 GHz or 5 GHz). Repeated QM and lowpass filtering 

to suppress high-frequency remnants at the receiver return the complex-valued 

function S in the baseband, assuming no influences from the transmission 

channel distort the signal. Using addition theorems for cosine and sine functions, 

we find 

. 2 cos(ωct)SR(t) = I (t) + high-frequency remnant

2 sin(ωct)SR(t) = Q(t) + high-frequency remnant

S(t) = I (t) + jQ(t).

From samples of S, the receiver can then use a DFT to reconstruct the 

amplitudes ck . and, with inversion of the 16-QAM mapping, finally reconstruct 

the transmitted bit groups. In the following, it will be explained how to transition
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from this analog model with discrete signal processing to the digital transmission 

methods used today, saving much expensive analog technology. 

3. Use of Discrete Signal Processing with an IDFT 

To generate a transmission signal with discrete signal processing, samples of 

S are generated from the amplitudes ck . of the OFDM symbol with M ≥ N . 

values. To demonstrate, we choose M = 8.. An IDFT (see Sect. 6.1) of the  

amplitudes c0, . . . , cM−1 . suffices for this purpose without extensive hardware. 

For “upsampling” to M values, a zero sequence of length M − N . is simply 

appended to the amplitudes ck .. The subsequent IDFT has length M and provides 

M samples (yn)0≤n≤M−1 .. For radix-2 IFFT/FFT algorithms used in practice, 

M is a power of two, such as M = 2048. for LTE with 20 MHz bandwidth, 

1201 used carriers per OFDM symbol, 15 kHz carrier spacing, and 30.72 MHz 

sampling frequency. 

With sufficient samples, potentially after further “upsampling” the IDFT values 

with CIC filters (Cascade Integrator Comb Filter), quadrature modulation can 

also be performed discretely without analog mixers by multiplying the real and 

imaginary parts of the IDFT list with the values of the modulating cosine and 

sine functions at the corresponding sample points and subtracting the resulting 

lists point by point. For that, one can use DDS components (Direct Digital 

Synthesizer) matching the bandwidth and bit resolution of the subsequent D/A 

converter. The result is samples of the real transmission signal SR ., which are fed 

to a D/A conversion (see p. 385–387). 

Example With the data T = 1/2.s, c0 = 0., c1, . . . c4 . as on p. 393, M = 64., ωc =
64π . rad/s, the following graph shows in Fig. 12.9 the QM modulation of the analog 

signal S(t). (thin line) and the approximation (thick line), which is generated from 

IDFT values and discrete QM modulation as described. The second curve is drawn 

with a value offset of +0.4 for visible distinction. Figure 12.10 shows the amplitude 

spectrum of the first curve in dB. For both cases, the rectangular time window w =
1[0,T [ . was used, and for interpolation of the samples in the second case, the series 

from the Shannon sampling theorem with bandwidth B = 128π . rad/s. The moderate 

roll-off of the amplitude spectrum, which does not meet practical requirements for 

permissible out-of-band emissions, is apparent. 

Fig. 12.9 QM-modulated 

signals over time t , analog  

signal, and approximation 

from samples (thick) with 

offset
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Fig. 12.10 Amplitude 

spectrum in dB, plotted over 

frequency ωc/(2π) = 32.Hz 

4. Other Pulse Shapes Reducing Out-of-Band Emissions,Cyclic Prefix, and Postfix 

In practice, stronger damping in the out-of-band region is required. Specifications 

for WLAN, DAB, etc., define spectral masks that must be adhered to for 

transmission. 

There are various methods to achieve better damping in the out-of-band region. 

One can quickly find a large number of publications on this topic under keywords 

like “OFDM Pulse Shaping.” Methods such as smoothed time windows (W-

OFDM for Windowed OFDM), filter banks for pulse shaping (FBMC, “Filter 

Bank Based Multicarrier Systems”), and other variants of the multi-carrier 

method can be used. Important aspects are the Heisenberg’s uncertainty principle 

and the Balian-Low theorem regarding the time-frequency localization of signals 

(see the following sections of this chapter). 

In the following example, it is shown how the signal spectrum in the out-of-

band region can be attenuated by extending the signal duration T and using a 

time window wT (1+α) . of duration T (1 + α). with rounded edges instead of the 

previously used rectangular window. At the same time, a “Cyclic Prefix” (CP) 

and a “Postfix” are introduced by cyclically extending the signal. While  wT . 

is a Nyquist pulse in the frequency domain, this is not the case for  wT (1+α) .. 

As a result, the transmit signal experiences some inter-carrier interference 

(ICI) because the carriers ej2πkt/T wT (1+α)(t)., k = 0, . . . , N − 1., are no  

longer orthogonal to each other. This method is, on the other hand, easy to 

implement and is also used in real systems (cf. Montreuil et al. (2013), Broadcom 

Recommendations for Tx Symbol Shaping). An important advantage of the 

cyclic prefix is that the convolution with the channel impulse response h of a 

time-invariant transmission channel can be represented as a cyclic convolution 

if this impulse response does not last longer than the prefix. This allows for 

interference suppression using the sample values  h(2πk/T ). of the estimated 

channel frequency response  h.. More on this below in point 7. The time interval 

with the cyclic prefix is called the Guard Interval (GI). It often comprises 1/4. of 

the core symbol duration (e.g., LTE2 ).

2 LTE 4G with 64-QAM, 20 MHz bandwidth: 1201 subcarriers, core symbol T = 66.67 µ.s, GI 

(long) 16.67 µ.s. 
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Pulse Shaping with “Raised Cosine Window,” Cyclic Prefix, and Postfix 

The IDFT values from the previous example are now cyclically extended by a 

prefix with the last 16 IDFT samples and a postfix with the first four IDFT 

samples. The new list then has L = 84. elements. Instead of the rectangular 

time window, a window with cosine edges (“raised cosine window”) is used as 

in the previously cited Broadcom recommendations.3 Additionally, a realizable 

(analog) Butterworth lowpass filter is used for interpolating the samples of 

SR . instead of the Shannon sampling series to model the D/A conversion. For 

the weighting of the IDFT list with time window values, the time window 

wT (1+α)(t) = Tp(t). is used with α = T/16. and 

. p(t)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1/T for 0 ≤ |t | <
T (1 − α)

2
1

2T

 
1+cos

 
π

αT

 
|t |−

T (1−α)

2

   
for

T (1−α)

2
≤|t |≤

T (1 + α)

2

0 otherwise.

Weighting the cyclically extended IDFT list with values of Tp

 
t −

T (1 + α)

2

 
. 

at times tn = T (1 + α)(2n + 1)/(2L)., n = 0, . . . L − 1., results in the first 

three prefix values and the last three postfix values entering the cosine edges of 

the window, thus “rounding” the OFDM pulse shape. Below in Fig. 12.11 is the 

interpolated signal with lowpass delay and cyclic extensions at the beginning 

and end, and on the right, the resulting amplitude spectrum is shown in bold 

compared to the thinly drawn one using the rectangular window. (Try to examine 

the example yourself with a computer algebra system.) See also the figure on 

p. 395. 

From the Fourier transform  p . (cf. Exercise A10, p. 319), it can be seen that the 

amplitude spectrum of the OFDM signal in the out-of-band region is now much 

more attenuated than with the rectangular window, as can also be clearly seen in 

the following Fig. 12.12: 

Fig. 12.11 QM-modulated 

signal with the raised cosine 

window over time t in 

seconds, after interpolation 

with Butterworth lowpass 

filter, group delay in the 

passband ∼21.ms; signal 

extended by pre- and postfix

3 Broadcom is a supplier, e.g., for DSL in wired connections (DSLAMs) of various providers. 
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Fig. 12.12 dB amplitude 

spectra over frequency f 

(fc = ωc/(2π) = 32.Hz), 

bold with raised cosine 

window, thin with rectangular 

window. For f <fc . window 

effect, beyond the stopband 

edge 96 Hz, additional 

lowpass effect 

.  p(ω) =
sin(ωT /2)

ωT /2

 
cos(αωT/2)

1 − (αωT/π)2

 
.

The Butterworth filter for interpolation was designed with the following data: 

passband edge 48 Hz, stopband edge 96 Hz, minimum passband gain 0.9, 

maximum stopband gain 0.005, and DC gain K = 1. (Fig. 12.11). The order 

of the filter is 9, and the group delay approximately 21 ms in the passband (cf. 

p. 335). The attenuation gain in the range up to the intermediate frequency is due 

to the Raised Cosine Window, and the even stronger falloff of the spectrum in the 

right part of the last image is due to the additional attenuation in the stopband of 

the lowpass filter. 

5. Reconstruction of the Information with a DFT for Identical Reception of SR . 

With identical reception without distortions caused by the transmission channel, 

the receiver retrieves the in-phase component I (t). and the quadrature component 

Q(t). of the signal by extracting a time interval of duration T and inverting 

the quadrature modulation. After an N -point DFT of I (t) + jQ(t). over this 

time interval, it can be determined which complex amplitudes ck . of the OFDM 

alphabet correspond to the DFT result. One primary advantage of periodicity 

with prefix and postfix is that moderate synchronization errors (phase offset) can 

be easily corrected if pilot values among the amplitudes are known. 

Example Sampling in the previously calculated example4 with sampling times 

tn = nT/N + Δt ., N = 5., n = 0, . . . , N − 1., and Δt = 0.226.s, i.e., 

asynchronously starting in the prefix, initially yields the DFT list dft 

. dft = ( − 0.00136 + 0.00096j,−2.10649 + 2.35922j,−2.37870 + 2.08454j,

+ 3.02492 − 2.97252j,−0.37881 + 1.36073j).

Using c1 . as a pilot value results in the corrected phase (cf. Example 4, p. 94) 

giving the result ( c0, . . . , c4)., which can now be compared with the values 

(c0, . . . , c4). on p. 393. The deviations between the two lists are due to rounding

4 Recommendation: Compute the example yourself using a computer algebra system. 
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during the discrete Fourier transforms and slight inter-carrier interferences 

caused by the window wT (1+α) .: 

. 

1

A
( c0, . . . , c4) = (−0.0013644 + 0.00095966j, 1.00016 + 3.00049j,

3.0015 + 0.997246j, −2.99428 + 3.00339j, −1.00272 − 0.994806j)
1

A
(c0, . . . , c4) = ( 0, 1 + 3j, 3 + 1j, −3 + 3j, −1 − 1j ).

6. Energy Density and Spectral Power Density of an OFDM Transmission 

An OFDM transmission, like the segment under consideration, is time-limited 

and thus an energy signal. Therefore, there is no power density in the usual sense 

other than zero. The squared magnitude of  SR(ω). in the example represents 

an energy density according to its physical dimension. The spectrum of the 

approximation for SR . is, as seen in the example, essentially determined by 

the variance of the OFDM alphabet and the Fourier transforms of the window 

function and the interpolating lowpass filter. In theoretical approaches, an OFDM 

transmission can be modeled as an infinitely lasting cyclostationary stochastic 

process, and an average spectral power density can be specified. Calculations 

under various assumptions about the modulation method can be found in Couch 

(2012) or Gardner et al. (2008). The specifications of the transmission methods 

(WLAN, DVB-T, etc.) provide spectral masks for spectral power densities that 

must be adhered to—for signals in volts, then with the unit V 2 ./Hz. In practice, 

this evidence is provided through simulations for spectral estimation. For this 

purpose, several thousand OFDM symbols are generated with a random bit 

sequence, and the interpolation of the (discrete) DFT spectra is averaged for 

spectral estimation. Various averaging methods are in use (averaged periodogram 

technique, Bartlett’s method, Welch’s method, etc.). A comprehensive treatment 

of the topic spectral estimation with statements on consistency, unbiasedness, 

and variance of various estimates can be found, for example, in the textbook on 

digital signal processing by Kammeyer and Kroschel (2012). 

7. Effects of the Transmission Channel, Preambles, Pilots, and Cyclic Prefix 

The transmission channel for OFDM, whether wired or wireless, has vari-

ous effects on the functionality and quality of the transmission. These are 

summarized under the term “fading.” These include echo effects and time 

delays in multipath propagation, leading to possible cancelations or intersym-

bol interference (ISI), attenuation for various reasons (transmitter distance, 

weather), frequency dispersion due to Doppler effects with moving transmitters 

or receivers. Additionally, noise, nonlinear distortions of the RF amplifiers, 

especially in mass products designed with cost and energy optimizations, jitter 

effects in oscillators in components, and much more, which communications 

engineers must master for a robust functioning overall system during design 

and implementation. An initial impression of the topic of channel equalization 

is given by the following considerations:
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Assume that the receiver has the sampled values r(nT /N). (0 ≤ n ≤ N − 1.) 

of the received signal segment. The channel is assumed to be a noiseless causal 

linear filter. Its impulse response h should decay within the duration of a cyclic 

prefix preceding the OFDM symbol. Through the extension of the symbol with 

prefix and postfix as in the example and the decay of transient components of the 

convolution of the signal S with h within the prefix duration, the values r(nT /N). 

can be regarded as sampled values of the convolution of h with the T -periodic 

Fourier series ST ., which arises through the periodicity of the OFDM symbol. 

Since supp(h). is bounded,  h. is a multiplier in S  
.. With sampled values of the 

channel frequency response  h., the periodized received signal rT . satisfies (cf. p. 

300 and p. 344) 

. rT (t) = ST ∗ h =
N−1 

k=0

ck h(2πk/T ) ej2πkt/T .

It follows that r(nT /N) = rT (nT /N) =
N−1 

k=0

ck h(2πk/T ) ej2πkn/N
., i.e., 

r(nT /N). is the nth component of an IDFT of
 
ck h(2πk/T )

 
k=0,...,N−1

.. 

A DFT of the values r(nT /N). with result  rk . (0 ≤ k ≤ N − 1.) in the  kth 

component then shows for a desired complex amplitude ck . of the OFDM symbol: 

. ck =
 rk

 h(2πk/T )
.

Preambles and pilot symbols known to the receiver can be used for synchroniza-

tion and for estimating the impulse response h or the channel frequency response 
 h.. However, this seemingly simple channel equalization must be approached with 

caution. The necessary duration of the prefix and the channel frequency response 
 h. must be reliably estimated; the values  h(2πk/T ). must not become zero (cf. 

Sects. 5.6 and 11.6 on convolution inverses), and the convolution equation r=S∗h. 

is a typical ill-posed problem (cf. Excercise A12 in Chap. 9). Very small values 

of h(2πk/T ). in the quotient for ck . cause a strong increase in noise components 

in the received signal that were not considered. Therefore, in real practice, there 

are various modified equalization algorithms, with known  h.—for example, in 

wired transmissions—partially with preequalization already at the transmitter, 

otherwise at the receiver side. 

8. Final Remarks and Notes on Advanced Communication Technology 

There are many other topics that need to be mastered for practical real-time 

transmission (within a few µ.s per OFDM symbol, see footnote 11
.) with OFDM 

or modifications of the procedure (OFDMA, COFDM, FBMC, GFDM, etc.). 

These include, in particular, peak reduction (with many equal amplitudes ck . in 

the OFDM symbol, peak-to-average power ratio reduction, PAPR reduction), 

channel equalization with multiple frequency-selective channels (Doppler effects
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with moving transmitters or receivers with frequency dispersion), and many oth-

ers. Despite simple principles, it is a long way to robust technology, demanding 

high skill from engineers and computer scientists. Since this text can by no means 

be a comprehensive introduction to the art of communication technology, but 

only aims to describe some fundamental ideas originating in Fourier analysis and 

essentially provide suggestions for acquiring further knowledge on the subject if 

interested, the already frequently cited specialized literature on communication 

technology is recommended once again for everything else mentioned in the text. 

12.4 Heisenberg’s Uncertainty Principle 

Already in earlier sections, we had qualitatively observed that the spectral width of a 

signal is greater the shorter the signal duration is. Conversely, the impulse response 

of a lowpass filter lasts perceptibly longer in time the smaller the cutoff frequency of 

the filter is. The same aspect shows up in the scaling property f (αt)
1

|α|
 f
 ω
α

 
. 

of the Fourier transform for α  = 0. or in the fact that a time-limited signal f has a 

Fourier transform  f . that does not completely vanish in any frequency interval (see 

p. 303). For illustration, one can look again at the examples in Sects. 10.1 and 11.2, 

such as rectangular or triangular functions with their Fourier transforms on p. 275 

or the correspondences δ(t) 1. and 1 2πδ(ω).. 

To obtain quantitative statements about the observed coupling of compression 

and expansion in the time-frequency domain, a measure is needed for the duration 

and bandwidth of signals. Although there is no uniform definition of duration and 

bandwidth for the immense variety of possible signals, the definition of dispersion is 

suitable for introducing these concepts for a large class of signals. For the signals f 

considered below, we assume that the functions f are continuous and piecewise 

continuously differentiable. Furthermore, tf (t). and
.
f (t). should also be square-

integrable along with f (t).. We interpret the parameter t as a time parameter. 

Definition 

1. The dispersion Δ2
a(f ). of f  = 0. around the point a is defined by 

. Δ2
a(f ) =

+∞́

−∞
(t − a)2|f (t)|2 dt

+∞́

−∞
|f (t)|2 dt

.

2. The effective duration Dt (f ). of f  = 0. is defined by
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. Dt (f ) = Δa(f ) with a =

+∞́

−∞
t |f (t)|2 dt

´ +∞
−∞ |f (t)|2 dt

.

3. The effective bandwidth Dω(f ). of f  = 0. is defined by 

. Dω(f ) = Δb( f ) with b =

+∞́

−∞
ω| f (ω)|2 dω

+∞́

−∞
| f (ω)|2dω

.

The dispersion Δ2
a(f ). is a measure of how well or poorly f is “concentrated 

around a.” If |f (t)|. is very small outside a small neighborhood of a, then the 

factor (t − a)2
. makes the numerator of Δ2

a(f ). small compared to the denominator, 

and the dispersion is small. If |f (t)|. is large for (t − a)2 > 1., the same  

factor causes an increase in the numerator compared to the denominator, and the 

dispersion becomes large. If we interpret the function |f (t)|2 . as mass density, 

then S =
+∞́

−∞
t |f (t)|2 dt

 ´ +∞
−∞ |f (t)|2 dt . is the center of mass and Δ2

S(f ). is the 

moment of inertia with respect to the center of mass. If we interpret the function 

|f (t)|2
 ´ +∞

−∞ |f (t)|2 dt . as the density of a probability distribution, then S is the 

expected value and Δ2
S(f ). is the variance of the probability distribution. 

Examples 

1. For f (t) = (2πσ 2)−1/4 e−(t−m)2/(4σ 2)
., σ > 0., the function |f (t)|2 . is the density 

of the Gaussian distribution known from probability theory with mean m and 

variance σ 2
.. The effective duration of f is therefore according to the previous 

remark Dt (f ) = σ .. Using  Plancherel’s theorem and the differentiation rule for 

the Fourier transform, the effective bandwidth follows: 

. D2
ω(f ) = Δ2

0(
 f ) =

1

2π

+∞
ˆ

−∞

ω2| f (ω)|2 dω =
1

2π

+∞
ˆ

−∞

| 
.
f (ω)|2 dω

=
+∞
ˆ

−∞

|
.
f (t)|2 dt =

1

4σ 4

+∞
ˆ

−∞

(t − m)2|f (t)|2 dt =
1

4σ 2
.

The product of effective duration and bandwidth yields Dt (f )Dω(f ) =
1

2
..
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2. For the triangular function f (t) =

 
A(1 − |t |/T ) for |t | ≤ T

0 for |t | > T
., one calculates 

. 

+∞
ˆ

−∞

|f (t)|2 dt =
2A2T

3
and the effective duration is Dt (f ) =

T
√

10
.

According to Plancherel’s theorem,
+∞́

−∞
| f (ω)|2 dω =

4πA2T

3
.. The center of 

mass of | f |2 . is zero because | f |2 . is an even function. As in the first example, it 

follows that 

. 

+∞
ˆ

−∞

ω2| f (ω)|2 dω =
+∞
ˆ

−∞

| 
.
f (ω)|2 dω = 2π

+∞
ˆ

−∞

|
.
f (t)|2 dt =

4πA2

T
.

The effective bandwidth is thus Dω(f ) =
√

3/T .. The time-bandwidth product 

is 

. Dt (f )Dω(f ) =
√

3/
√

10 ≈ 0.548,

i.e., about 9.6%. larger than in the first example with the Gaussian function. 

Illustratively The calculations in these examples show us that ω f (ω). is square-

integrable if and only if
.
f (t). has this property. Since the bandwidth is given 

by an integral over the squared magnitude of the derivative 
.
f . of a time signal 

f , a compression of the signal f must cause an increase in the bandwidth 

through simultaneously growing slopes. Therefore, the functions f and  f . cannot 

be simultaneously concentrated near individual points. A quantitative description of 

this fact is provided by Heisenberg’s uncertainty principle. It was discovered by W. 

Heisenberg in 1927 in quantum mechanics. Its significance for signal transmission 

was investigated by Gabor (1946) . In our context, it reads as follows: 

Uncertainty Principle for the Time-Bandwidth Product 

Theorem 12.4 (Time-Bandwidth Product) For square-integrable signals f  = 0. 

and any a, b ∈ R. the following holds 

.Δ2
a(f )Δ

2
b(
 f ) ≥

1

4
.
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In particular, for the time-bandwidth product, it always holds that Dt (f )Dω(f ) ≥
1

2
.. 

Equality Dt (f )Dω(f ) = 1/2. holds if and only if |f |. is a Gaussian function, i.e., if 

f (t) = c ejat e−(t−m)2/(4σ 2)
. with any real constants a, m, c  = 0., σ  = 0.. 

Proof We can assume that with f , also  tf (t). and
.
f (t). are square-integrable, 

otherwise Δ2
a(f ) = ∞. or Δ2

b(
 f ) = ∞. would hold, and the inequality would be 

trivially satisfied. For a = b = 0., integration by parts yields 

. 

β̂

α

tf (t)
.
f (t) dt = t |f (t)|2

    
β

α

−
β̂

α

 
|f (t)|2 + tf (t)

.
f (t)

 
dt,

so 

. 

β̂

α

|f (t)|2 dt = −2 

 
ˆ β

α

tf (t)
.
f (t) dt

 
+ t |f (t)|2

    
β

α

.

Due to the assumptions about f (cf. p. 402), the limits of the integrals exist for α →
−∞., β → +∞., and it holds that limα→−∞ α|f (α)|2 = limβ→+∞ β|f (β)|2 = 0.. 

Thus, it follows 

. 

+∞
ˆ

−∞

|f (t)|2 dt = −2 

 
ˆ +∞

−∞
tf (t)

.
f (t) dt

 
.

Using the Cauchy-Schwarz inequality and Plancherel’s theorem we obtain 

. 

 +∞
ˆ

−∞

|f (t)|2 dt

 2

≤ 4

 +∞
ˆ

−∞

t2|f (t)|2 dt

  +∞
ˆ

−∞

|
.
f (t)|2 dt

 

= 4

 +∞
ˆ

−∞

t2|f (t)|2 dt

  
1

2π

+∞
ˆ

−∞

ω2| f (ω)|2 dω

 

and hence the uncertainty relation Δ2
0(f )Δ

2
0(
 f ) ≥

1

4
.. 

The general case for a  = 0. or b  = 0. can be obtained with g(t) = e−jbt f (t + a).. 

Since Δ2
a(f ) = Δ2

0(g). and Δ2
b(
 f ) = Δ2

0( g). hold, it follows 

. Δ2
a(f )Δ

2
b(
 f ) = Δ2

0(g)Δ
2
0( g) ≥

1

4
.

The Cauchy-Schwarz inequality above becomes an equality if and only if tf (t). and .
f (t). are linearly dependent, i.e., if the differential equation ktf (t) =

.
f (t). holds (cf.
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p. 308). The only nontrivial, square-integrable solutions of this differential equation 

are of the form f (t) = c ekt
2/2

. with c  = 0., k < 0.. With k = −1/(2σ 2)., the last  

statement of the theorem follows.   

Remark The smoothness assumptions on f from p. 402 can be omitted as with 

Plancherel’s theorem (cf. p. 285), i.e., the Heisenberg uncertainty relation holds for 

any square-integrable functions f . A proof of this more general statement was given 

in 1931 by W. Pauli and H. Weyl. It can be found, for example, in the textbook of 

Dym and McKean (1985). 

Application Examples 

1. Resolution in the Time Domain. In electrical measurement technology, it is 

known that, for example, with an oscilloscope of 100 MHz. effective bandwidth 

(Dω = 2π ·100 .MHz), only a temporal resolution in the order of 1 .ns is possible, 

with Dω . as above, Dt ≥ 1/(2Dω) ≈ 0.8 · 10−9
.s. For signals of shorter effective 

duration, the oscilloscope acts as a lowpass filter, and the signals are no longer 

exactly reproduced, but smoothed in reproduction and prolonged in duration. 

Start and stop pulses for measuring time intervals below the duration given by 

the uncertainty principle then merge in the reconstruction; a time measurement 

of such short intervals is therefore no longer possible. 

2. Resolution in the Frequency Domain. The effective duration Dt . for which one 

must sing a tone or play an instrument to assign it a pitch or frequency with 

the accuracy Dω . is, according to the uncertainty principle, at least 1/(2Dω).. For  

instance, if Dω = 2π ·1 .Hz, then Dt . must be greater than about 8 ·10−2
.s. In very 

fast passages of a musical piece, slight intonation weaknesses of the virtuosos 

cannot be noticed. Therefore, amateur musicians are recommended to choose the 

fastest possible musical pieces for a potential performance. 

3. Ultra-Short-Pulse Laser of High Bandwidth. The pulse duration of today’s 

mode-locked short-pulse lasers is in the range of a few femtoseconds (1 fs 

= 10−15
.s) with typical pulse repetition rates of 80–100 MHz up to 20–30 GHz. 

The corresponding enormous bandwidths enable time-resolved spectroscopy, 

for example, in the analysis of chemical reactions. In terahertz time-domain 

spectroscopy (THz-TDS), a noninvasive broadband method for investigating 

material properties in the far infrared is available. Application areas include 

investigations of crystal structures, biomedical diagnostics, or pharmaceutical 

quality control. Readers interested in laser technology are referred to the textbook 

Rullière (1998).
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Heisenberg’s Uncertainty Principle in Quantum Mechanics 

Since the Copenhagen Conference in 1927, atomic physics has undergone a 

probabilistic interpretation with quantum mechanics. In this interpretation, exper-

imental experiences, their theoretical description, and interpretation were brought 

together, unifying both the wave model and the particle model of matter without 

contradiction. Historical developments of quantum mechanics and its mathematical 

foundations can be found in works by P. A. M. Dirac (1958), Messiah (2003), or 

other relevant literature. 

Heisenberg’s uncertainty principle holds a central position in the development 

and interpretation of quantum theory. To formulate it in the language of quantum 

mechanics, we consider a free electron moving along the x-axis. However, its state 

at a fixed time cannot be specified by a position x0 ∈ R. and a momentum p0 ∈ R. 
as in classical mechanics but is described by a complex-valued, square-integrable 

wave function ψ(x)., whose L2
. norm is 

.  ψ 2 =
 +∞
ˆ

−∞

|ψ(x)|2 dx

 1/2

= 1.

The functions xψ(x). and
.
ψ(x). are also assumed to be square-integrable with 

ψ(x).. The function |ψ |2 . is interpreted as the probability density of the electron’s 

presence. The position of the particle is thus a random variable with the expected 

value a =
+∞́

−∞
x|ψ(x)|2 dx . and the variance Δ2

a(ψ).. The probability that a position 

measurement in the state ψ . yields a value x ∈ [x1, x2]. is
´ x2

x1
|ψ(x)|2 dx .. 

The variance Δ2
a(ψ). is a measure of the uncertainty of the position, as the larger 

the variance, the greater the probability of presence in intervals that do not contain 

the expected value a. If the variance is very small, then the position is said to be 

sharply determined. The probability of presence in very small intervals around a 

is then large because the density function |ψ |2 . is concentrated around a for small 

variance. 

The momentum of the electron is essentially given by the Fourier transform of 

ψ ., namely by the function 

.  ψ(p) = (2πh̄)−1/2 ψ(p/h̄).

The constant h̄. is the reduced Planck constant. The momentum is also a random 

variable. The function | ψ |2 . is interpreted as the probability density for the momen-

tum distribution. The expected value b for a momentum measurement is then
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. b =
+∞
ˆ

−∞

p| ψ(p)|2 dp =
h̄

2π

+∞
ˆ

−∞

p| ψ(p)|2 dp.

The variance Δ2
b(
 ψ). is a measure of the uncertainty of the particle’s momentum. 

The sharper the momentum is determined, the smaller Δ2
b(
 ψ). is. For the product 

of the variances of ψ . and  ψ ., the uncertainty relation Δ2
a(ψ)Δ2

b/h̄(
 ψ) ≥ 1/4. holds 

according to p. 404. From  

. Δ2
b(
 ψ) =

1

2πh̄

+∞
ˆ

−∞

(p − b)2

     ψ
 
p

h̄

     
2

dp

=
h̄2

2π

+∞
ˆ

−∞

 
p −

b

h̄

 2

| ψ(p)|2 dp = h̄2Δ2
b/h̄(

 ψ)

the following uncertainty principle, discovered by W. Heisenberg (1901–1976) in 

1927, results. It is one of the fundamental statements of quantum mechanics. 

Heisenberg’s Uncertainty Principle Position and momentum of an electron in 

the state ψ . are not simultaneously sharply defined, but rather afflicted with an 

uncertainty. For the wave functions ψ . and  ψ ., the following uncertainty relation 

holds 

. Δa(ψ)Δb( ψ) ≥ h̄/2.

The statement also applies to wave functions in three-dimensional space. One 

just needs to apply the Fourier transform for functions of several variables. The 

uncertainty relation is not based on limits of measurement accuracy but is a general 

property of functions. For example, one can speak of the frequency of an oscillation 

“in the pure sense” only if the oscillation process is periodic and thus particularly 

unlimited in time. A duration is then entirely undefined. Conversely, the shorter 

the process lasts, the more questionable it is to speak of periodicity and thus of 

frequency; the concept itself becomes fuzzy, the process must be mathematically 

described by the corresponding spectral function instead of a pure frequency, and 

uncertainty relations arise. In electrical engineering, this fact is known, as we have 

seen, in the case of the time-duration-bandwidth product. Quantum mechanics 

shows that even position and momentum in the physical description of atomic 

particles through probability densities are subject to such uncertainties. The same 

applies to other quantities whose product yields an action. For example, one obtains 

an analogous uncertainty relation for the product of energy and duration of an atomic 

event. Applications of the uncertainty principle to questions in physics, such as the 

explanation of the tunneling effect, can be found in the according literature.
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12.5 Time-Frequency Analysis, Windowed Fourier 

Transforms 

For many applications in signal processing, the Fourier transform in its original form 

is not suitable. Because the Fourier integral extends over the entire time axis, a full 

knowledge of the signal’s time course would be necessary to analyze the spectral 

properties of a signal, including knowledge of all future signal values t > t0 . for 

analysis at a fixed time t0 .. Furthermore, the asymptotic properties of the Fourier 

transform show that even temporally narrow disturbances affect the entire spectrum 

(see p. 282). In its classical form, the Fourier transform also does not allow for 

simultaneous time-frequency analysis. For example, speech or a piece of music 

in our everyday experience has a specific “time pattern” and at the same time a 

specific “frequency pattern.” However, the spectral function of a signal does not 

show at what times and with what respective amplitudes a specific angular frequency 

ω . occurs in a signal f , but rather accumulates contributions of the same angular 

frequency ω . over the entire time course of f in  f (ω).. D. Gabor (1900–1979) 

already noticed these disadvantages for signal processing purposes, and in 1946 

in his work “Theory of Communication,” he proposed time-frequency localization 

through Fourier transforms with window functions. 

To obtain information about the “time-frequency pattern” of a signal, one 

determines not the spectral function  f . of the entire signal, but the spectral functions 

for time segments of f . Time segments of a signal f are obtained by multiplying f 

with functions of finite effective duration. Such functions are referred to as window 

functions or time windows. 

Windowed Fourier Transforms, Gabor Transform 

All signals f and window functions w are assumed to be piecewise continuously 

differentiable and square-integrable. For window functions w, we assume that 

w  = 0. and furthermore that with w(t). and  w(ω)., both tw(t). and ω w(ω). are also 

square-integrable. The window functions w then have finite effective duration and 

bandwidth (see Sect. 12.4). In particular, |t |1/2w(t). and (1 + |t |)w(t). are square-

integrable, and the Cauchy-Schwarz inequality for the product (1 + |t |)−1(1 +
|t |)w(t). shows that w(t). is integrable. 

Analogously,  w(ω). is integrable. The functions w(t). and  w(ω). are then also 

continuous. As in previous sections (see p. 311), we use the notations  f (t)|g(t) =
+∞́

−∞
f (t)g(t) dt . for the inner product of square-integrable functions and  f  =

 f (t)|f (t) 1/2
. for the norm of f in L2(R).. The quantities 

.t∗ =  tw(t)|w(t) / w 2 or ω∗ =  ω w(ω)| w(ω) /  w 2



410 12 Further Applications of the Fourier Transform

Fig. 12.13 From “Syrinx” of Claude Debussy 

Fig. 12.14 Time-frequency localization of the “note” wω0,t0 . in the time-frequency window [t0 +
t∗ − Dt (w), t0 + t∗ + Dt (w)] × [ω0 + ω∗ − Dω(w), ω0 + ω∗ + Dω(w)]. 

are referred to as the time center and frequency center of a window w  = 0. (see 

p. 403). 

Definition The transform Gw ., which maps a signal f to the function Gwf =  f ., 

defined by  f (ω, t) =  f (s)|w(s − t) ejωs =
+∞́

−∞
f (s)w(s − t) e−jωs ds,. is called 

the windowed Fourier transform with the time window w. It is also abbreviated as 

STFT (Short-Time Fourier Transform). The windowed Fourier transform with the 

Gaussian window w(t) = gα(t) = (4πα)−1/2 e−t2/(4α)
., α > 0,. is referred to as the 

Gabor transform Gα .. 

Instead of periodic harmonic oscillations ejωt ., the windowed Fourier transform 

uses translations of amplitude-modulated oscillations with the envelope w. To give  

an illustrative interpretation of  f (ω0, t0). for fixed ω0 . and t0 ., consider the first 

two bars5 of the wonderful flute piece “ Syrinx” of Claude Debussy (1862–1918) 

(Fig. 12.13): 

The “time-frequency pattern” is given in musical notation by the positions and 

note values of the individual notes, supplemented by dynamic indications such as 

“forte” or “piano.” Similarly, one can consider the function 

. wω0,t0(s) = w(s − t0) ejω0s

for a time window w with the time center t∗ . and the frequency center ω∗
. as a 

“note”, which is localized in the frequency range around ω0 + ω∗
. with the effective 

bandwidth Dω(w). and in the time range around t0 + t∗ . with the effective duration 

Dt (w). (Fig. 12.14).

5 The invention of musical notation is—like others—an ingenious human achievement and its 

expressive possibilities are inexhaustible. 
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The complex number  f (ω0, t0) =  f (s)|wω0,t0(s) . then indicates (see p. 60), 

the extent to which the “note” wω0,t0 . is present in the signal f , i.e., whether 

approximately at the time t0 + t∗ . the angular frequency ω0 + ω∗
. is represented 

in the signal, and if so, with what amplitude and phase. 

The approximation error is due to the time duration Dt (w) > 0. and the 

bandwidth Dω(w) > 0. of the window w  = 0., and thus due to the fact that the values 

of wω0,t0 . and  wω0,t0 . in the corresponding time-frequency window (see figure) with 

appropriate weight enter into the integral 

.  f (ω0, t0) =  f (s)|wω0,t0(s) = (2π)−1  f (ω)| wω0,t0(ω) .

The smaller Dt (w). is, the better  f (ω, t1). and  f (ω, t2). can be distinguished for 

adjacent time points t1 . and t2 ., i.e., the more easily the frequencies present in the 

signal can be assigned to the different times at which they occur. Therefore, the 

smaller Dt (w). is, the better the time resolution by  f .. The smaller the bandwidth 

Dω(w). is, the better the corresponding resolution of different frequencies. However, 

as we saw in the last section, the quality of a simultaneous time-frequency 

localization is limited by the uncertainty relation Dt (w)Dω(w) ≥ 1/2.. The best 

compromise with regard to the uncertainty relation is therefore the windowed 

Fourier transform with Gaussian windows proposed by Dennis Gabor (1900–1979), 

known as the Gabor transform (see p. 404). 

Example A short-term model for a siren tone or chirp is approximately the function 

f (t) = A sin(g(t)) with g(t) = 2πt
 
αt + βt2

 
. for 0 ≤ t ≤ 10.s and constants 

A, α, β.. The derivative of the argument g (t) = 2πt(2α + 3βt). can be considered 

as the instantaneous angular frequency at time t . The magnitude spectrum, approx-

imately calculated with A = 1., α = 4. [1/s2
.], β = −4/15. [1/s3

.] over T = 10.s, 

shows a multitude of frequencies up to the maximum frequency 20 Hz, but not the 

parabolic frequency modulation and not the instantaneous frequencies at different 

times (left image below). The graph of an approximation for | f |.,  f . the windowed 

Fourier transform of f with the “Hann window” w(t) = 0.5 − 0.5 cos(ω0t). for 

0 ≤ t ≤ 1.s, w(t) = 0. otherwise (ω0 = 2π . rad/s), on the other hand, clearly 

shows the rise and fall of the instantaneous frequencies and corresponds to our 

usual impression of the variable frequency of the siren tone (right image). For 

the calculation of the approximations of | f |. and | f |. with the DFT, also compare 

p. 347 and the following Sect. 12.6. For Fig. 12.15 a 512-point DFT was used over 

a total of T = 10 .s, with the DFT coefficients | ckT |. plotted as an approximation 

for | f (2πk/T )|.. In the second case, 50 Hann windows of duration 1 s were used at 

intervals of 0.2.s each. Per time segment, a 128-point DFT was performed, and the 

resulting (single-sided) DFT magnitude spectra were combined to form the second 

image in Fig. 12.16. Neither representation shows the constant amplitude A = 1.. 

One reason is the strong aliasing effects due to the frequency modulation. The sum 

of the | ck|2 .of the left image agrees numerically very well with the quadratic mean of 

f in [0, T ]. (in both cases, the value is about 0.5). Numerical integration to calculate 

| f |. for 20 Hz at t0 = 5.s results in approximately 0.24, as shown in the spectrogram
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Fig. 12.15 DFT of the siren 

signal 

Fig. 12.16 STFT of the siren 

signal 

in Fig. 12.16. The signal values (and thus A) can only be approximately recovered 

from the signal DFT using an interpolation polynomial or the formula for discrete 

reconstruction from the data on page 415. At end of the book on page 483 you will 

see another spectrogram of a piece of music like the right image here. 

Reconstruction of a Signal from Its Windowed Fourier 

Transform 

For a fixed chosen window w  = 0., let now the transform Gwf =  f . of a signal f be 

given. An inverse formula for reconstructing the original signal f from the values of 
 f . can be obtained by representing the local part fs(t) = w(t − s)f (t). as a Fourier 

integral. For fixed s ∈ R.,  f (ω, s). is the Fourier transform of fs(t).: 

.  f (ω, s) =  fs(ω) =  f (t)|w(t − s) ejωt  =  f (t)w(t − s)| ejωt  .

According to our assumptions about f and w (cf. p. 409), fs . is integrable in t and 

piecewise continuously differentiable, so that with the Fourier inversion formula for 

each continuity point t of f (cf. p. 271), it holds 

.w(t − s)f (t) = fs(t) =
1

2π

+∞
ˆ

−∞

 f (ω, s) ejωt dω.
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Multiplying both sides of this equation with w(t − s)., then integrating with respect 

to s, and dividing by  w 2
. give, due to

+∞́

−∞
|w(t − s)|2 ds =  w 2

., the desired 

reconstruction formula. 

Theorem 12.5 (Pointwise Reconstruction Formula) At each continuity point t 

of a piecewise continuously differentiable, square-integrable function f , the value 

f (t). can be recovered from the windowed Fourier transform of f by 

. f (t) =
1

2π w 2

+∞
ˆ

−∞

+∞
ˆ

−∞

 f (ω, s)w(t − s) ejωt dω ds.

At discontinuity points t of f , the right side gives, as in the Fourier inversion 

formula, the value [f (t+) + f (t−)]/2.. 

If  f (ω, s) =  f (t)|wω,s(t) . is understood as the projection of the sig-

nal onto its time-frequency components, then the reconstruction formula is the 

“back-projection” by which the signal is recovered from the superposition of its 

components. 

Remarks From  w 2 f (t)|f (t) =
+∞́

−∞

´ +∞
−∞ |fs(t)|2 dt ds < ∞. it follows that the 

functions fs . are square-integrable with respect to t for almost all s (cf. Appendix B, 

Fubini’s theorem). Applying the Plancherel equation to the inner integral then gives 

with w  = 0. 

.  f  2 =
1

2π w 2

+∞
ˆ

−∞

ˆ +∞

−∞
| f (ω, s)|2 dω ds =

1

2π w 2
  f  2.

This equation corresponds to the Plancherel equation for the Fourier transform and 

implies that the windowed Fourier transform Gw . can be extended to a continuous 

injective mapping defined on the whole L2(R). into L2(R2). (cf. p. 308). The image 

V = Gw(L
2(R)). is a closed subspace of L2(R2)., and any function h ∈ L2(R2). can 

be uniquely decomposed (cf. p. 61 and later 14.1, p. 449) in the form h = hV + h⊥
V . 

with hV ∈ V . and 

.  v|h⊥
V  =

+∞
ˆ

−∞

ˆ +∞

−∞
v(ω, s)h⊥

V (ω, s) dω ds = 0.

The function hV . is the orthogonal projection of h onto V . The adjoint operator G∗
w . 

to the operator Gw . is defined by the equation  f |G∗
wg =  Gwf |g .. From  f  2 =

(2π w 2)−1  f  2
. it follows with the polarization equation (p. 284) that  f1|f2 =

(2π w 2)−1 f1|G∗
wGwf2 . for all f1 ., f2 ∈ L2(R).. Thus, f = (2π w 2)−1G∗

wGwf .
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holds for all f ∈ L2(R).. The inverse transform to Gw . is therefore the restriction 

of (2π w 2)−1G∗
w . to the image V of Gw .. For the signals we consider, it is given 

as an integral transformation by the right side of the reconstruction formula. If h ∈
L2(R2). has the decomposition h = hV + h⊥

V . with the part h⊥
V . orthogonal to V , 

then  f |G∗
wh

⊥
V  =  Gwf |h⊥

V  = 0. for all f ∈ L2(R)., thus G∗
wh

⊥
V = 0.. With f =

(2π w 2)−1G∗
whV ., Gwf = hV ., it follows 

. (2π w 2)−1GwG
∗
wh = (2π w 2)−1GwG

∗
whV = hV .

The orthogonal projection of L2(R2).onto V is thus the mapping (2π w 2)−1GwG
∗
w .. 

For more detailed information about adjoint operators and orthogonal projections, 

see for example Weidmann (1980). 

With these remarks, it can be seen how desired time-frequency properties can be 

approximated in signal processing. 

Signal Processing with Windowed Fourier Transforms 

Given a windowed Fourier transform Gw . for a fixed chosen window w  = 0., since 

the functions Gwf ., f ∈ L2(R)., are bounded and L2(R2). also contains unbounded 

functions, not every square-integrable function h(ω, t). can be the windowed Fourier 

transform of a function f ∈ L2(R).: 

V = Gw(L2(R))  = L2(R2).. Otherwise, signals with arbitrary time-frequency 

properties could be constructed—in contradiction to Heisenberg’s uncertainty 

principle. However, one can proceed as follows to obtain signals that approximate 

the desired time-frequency properties as closely as possible: 

For a given signal f (t)., the windowed Fourier transform  f = Gwf . is computed 

and  f . is processed as desired to h from L2(R2)., for example, by filtering, shifting 

values, amplifying, etc. The function h is the model of the desired time-frequency 

properties. However, in general, there is no signal g such that h = Gwg .. The signal 

fh . in L2(R)., whose time-frequency properties are very close to those of h, is  fh =
(2π w 2)−1G∗

wh., because according to the preceding remarks, the function  fh . as 

the orthogonal projection of h onto V minimizes the mean square error  h −  f  ., 

f ∈ L2(R). (cf. also later Sect. 14.1, p.  449). 

Discrete Windowed Fourier Transform 

Of great importance for numerical approximation and thus for digital signal 

processing is the question of whether a signal can be reconstructed from the 

sampled values of its windowed Fourier transform. We present a sampling theorem
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and illustrate some fundamental aspects of discrete time-frequency analysis with 

windowed Fourier transforms. 

Under the same conditions as for the reconstruction formula on p. 413, we  

assume that the window function w  = 0. vanishes outside an interval [a, b].. For  

a fixed value of s, the support of fs(t) = w(t − s)f (t). is contained in [a+ s, b+ s].. 
Fourier series expansion of fs . in this interval yields for each continuity point t of f 

in [a + s, b + s]. 

. fs(t) =
+∞ 

k=−∞
ck(s) ejkω0t with ω0 =

2π

b − a
,

ck(s) =
1

b − a

b+s
ˆ

a+s

f (t)w(t − s) e−jkω0t dt =
ω0

2π
 f (kω0, s).

Multiplying fs(t). by w(t − s). results in the functions wkω0,s ., which were defined 

by wkω0,s(t) = w(t − s) ejkω0t .: 

. |w(t − s)|2f (t) =
ω0

2π

+∞ 

k=−∞

 f (kω0, s)wkω0,s(t).

Instead of integrating this equation over s and dividing by  w 2
. as in the 

reconstruction formula on p. 413, we form a discrete approximation for  w 2 =
+∞́

−∞
|w(t − s)|2 ds . by At0(t) = t0

+∞ 

n=−∞
|w(t −nt0)|2 . and sum over sn = nt0 ., n ∈ Z.: 

. At0(t)f (t) =
ω0t0

2π

+∞ 

n=−∞

+∞ 

k=−∞

 f (kω0, nt0)wkω0,nt0(t).

Due to the limited support of w, the series for At0(t). has only finitely many nonzero 

terms. Now we obtain the desired sampling theorem, i.e., a discrete reconstruction 

formula under the condition At0(t)  = 0.: 

Theorem 12.6 (Discrete Reconstruction) If At0(t)  = 0. everywhere, then the 

signal f is given at each continuity point t by 

. f (t) =
ω0t0

2π

+∞ 

n=−∞

+∞ 

k=−∞

 f (kω0, nt0)wkω0,nt0(t)At0(t)
−1.

The better the time-frequency localization of w, the faster the values |wkω0,nt0(t)|. 
will decrease. In practice, for bandlimited signals f , finite partial sums of the right



416 12 Further Applications of the Fourier Transform

side with discrete approximations of the values of  f . yield good approximations for 

f (t).. 

From the derivation of the formula, the following conditions for a stable 

reconstruction are determined: 

1. For numerically stable reconstruction, it is not enough to require At0(t) > 0., 

but inft∈R At0(t) > 0.. Otherwise, small errors in the calculation of the values 
 f (kω0, nt0). would lead to very large errors in f (t). at points t where the value 

of At0(t). is very close to zero. This is a condition on the sampling rate because 

limt0→0+ At0(t) =  w 2  = 0. holds for all t if the window is assumed to be 

continuous. Thus, this stability condition can be maintained for sufficiently small 

t0 .. 

2. A necessary condition for At0(t) > 0. is 0 < t0 ≤ b − a ., otherwise At0(t) = 0. 

for b < t < a + t0 .. The given discrete reconstruction is therefore certainly not 

possible if ω0t0 > 2π .. 

Such conditions are typical when searching for stable discrete reconstruction 

formulas. Considering window functions w that are not time-limited, we will 

analogously demand, as in point 1, that supt∈R At0(t) < ∞. and that both this upper 

bound and the lower bound from point 1 converge to  w 2
. as t0 → 0+.. 

The mathematical task in the search for sampling formulas is to find conditions 

on the window function and the set of sampling points (kω0, nt0)., k, n ∈ Z., such that 

the operator G
ω0,t0
w ., which maps a signal to the sequence

 
 f (t)|wkω0,nt0(t) 

 
k,n∈Z ., 

is injective. To obtain numerically stable formulas, G
ω0,t0
w . must additionally be 

continuous in an appropriate sense and have a continuous inverse mapping. This task 

leads in modern signal processing to the study of complete orthonormal systems in 

suitable function spaces. Instead of pointwise convergent sampling series, we then 

consider series that approximate the analyzed signals in the norm of the function 

space used. The considered signals can also be functions f (t, x). that depend not 

only on time t but also on a spatial variable x.. Such signals appear, for example, 

in image processing. Accordingly, systems of functions with multiple variables are 

used. Readers who find this section a motivation to delve deeper into the subject, 

given the importance of digital signal processing in audio and video technology but 

also in many other areas of engineering and natural sciences, are referred to further 

literature, such as Daubechies (1992), Feichtinger and Strohmer (2003), Gröchenig 

(2001), or Meyer (1993). 

Finally, some central results of discrete time-frequency analysis with windowed 

Fourier transforms are cited: 

1. If the product ω0t0 > 2π . holds, then for any choice of window w, there 

are always signals f ∈ L2(R)., f  = 0., that are orthogonal to all functions 

wkω0,nt0 .. Therefore, a reconstruction of such signals from their windowed Fourier 

transforms G
ω0,t0
w f . is not possible. Discrete reconstruction formulas are generally 

subject to the condition ω0t0 ≤ 2π .. 

2. If the function system wkω0,nt0 ., k, n ∈ Z., forms a complete orthogonal system in 

L2(R)., then necessarily ω0t0 = 2π . must hold.
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3. Even for ω0t0 = 2π ., the functions wkω0,nt0 ., k, n ∈ Z., with the Gaussian window 

proposed by D. Gabor w(t) = (2π)−1/4 e−t2/4
., do not form an orthonormal 

system in L2(R).. It can be shown that 

. inf
 
 f  −2

 

k,n∈Z
| f |wkω0,nt0 |

2 : f ∈ L2(R), f  = 0
 

= 0

holds. Although the functions wkω0,nt0 ., k, n ∈ Z., form a complete system in 

L2(R). (i.e., any f ∈ L2(R). can be approximated arbitrarily well by linear 

combinations of the wkω0,nt0 . with respect to the norm of L2(R).), a numerically 

stable reconstruction of signals f ∈ L2(R). from the coefficients  f |wkω0,nt0 . is 

generally not possible. 

4. While orthogonality relations for the functions wkω0,nt0 . would be desirable, 

practical requirements for good time-frequency localization of the windows even 

force ω0t0 < 2π ., i.e., higher sampling rates are necessary than those that allow 

for the orthogonality of the system wkω0,nt0 .. This statement is contained in the 

uncertainty principle of R. Balian and F. Low: 

If the functions wkω0,nt0 . form a complete orthonormal system in L2(R). for a 

window w ∈ L2(R). with ω0t0 = 2π ., then it holds that 

. 

+∞
ˆ

−∞

t2|w(t)|2 dt = ∞ or

+∞
ˆ

−∞

ω2| w(ω)|2 dω = ∞.

5. For ω0t0 < 2π ., there are windows w and corresponding complete function 

systems (the so-called Gabor frames) wkω0,nt0 ., k, n ∈ Z. that enable stable 

reconstruction with very good time-frequency localization, i.e., with 

. 

+∞
ˆ

−∞

t2|w(t)|2 dt < ∞ and

+∞
ˆ

−∞

ω2| w(ω)|2 dω < ∞.

A derivation and detailed discussion of these results can be found, for example, in 

the already mentioned book of Daubechies (1992) or in Gröchenig (2001). Aspects 

of the window functions when using the DFT to approximate windowed Fourier 

transforms are discussed in the following section. 

12.6 Time Windows with the Discrete Fourier Transform 

In practice, the spectrum of a signal f can often not be calculated exactly. Instead, 

one usually uses the spectral function of a signal segment fwT . with a time window 

wT  = 0. as an approximation. Also, when analyzing unknown signals f , the
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observation duration T is necessarily finite, so that only information about time 

segments fwT . can be processed. In time-frequency analysis, as in the last section, 

the interest is also in the spectral functions of such time segments of the signal. 

For the approximate calculation of the Fourier transform of fwT ., the discrete 

Fourier transform is often used (see p. 347 and Sect. 6). The spectrum fwT . of 

the signal segment fwT . is different from the actual spectrum  f . of f . If  wT . is a 

time window with support in [0, T ]., then according to the modulation theorem from 

p. 283 for square-integrable or bandlimited signals f 

. fwT =
1

2π
 f ∗  wT . (12.1) 

The spectral function of fwT . is compared to  f . “smeared, smoothed, and blurred” 

due to the convolution of  f . with  wT .. The shorter the observation duration T , the  

greater the bandwidth of wT . according to the uncertainty principle, and the worse 

the frequency localization of wT . and thus of fwT . (see Sects. 12.4 and 12.5). A 

typical problem is then, for example, the resolution of periodic signal components 

of closely adjacent frequencies, especially when these signal components have very 

different amplitudes. 

The observation duration T and the shape of the time window wT . also have 

an impact on the quality of the approximations for fwT ., which are obtained with 

a finite discrete Fourier transform from sampled values of fwT .. Therefore, when 

using the discrete Fourier transform, some fundamental aspects of the interaction 

between the observation duration T , the properties of the weighting function wT ., 

and the sampling rate used for the discrete Fourier transform must be considered. 

Truncation Effects in the Discrete Fourier Transform 

In the discrete Fourier transform, from finitely many values yn = f (nΔt)., Δt > 0., 

n = 0, . . . , N − 1., of a signal f , the Fourier coefficients 

.  ck =
1

N

N−1 

n=0

yn e−jkn2π/N

are calculated for k = 0, . . . , N − 1. (see 6, p. 86). We assume the signal f to 

be continuous in [0, T [. with the limit value f (T−). and piecewise continuously 

differentiable. The sampled time section of f beyond the sampling period of 

duration Ta = (N − 1)Δt . can be arbitrarily extended to a periodic function fp . 

with the period p = NΔt = T ., for example as in the following figure, where we 

have added a straight segment between Ta . and T so that fp . becomes continuous 

(see Fig. 12.17).
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Fig. 12.17 Last sample time is Ta < T ., and a possible T -periodic extension could be fp . 

Let us denote by wT . the rectangle window 

. wT (t)=1 for 0 ≤ t < T , wT (t)=0 otherwise,

then the quantities  ck .are on one hand approximations for Fourier coefficients ck(fp). 

of fp ., and on the other hand, according to p. 347, they also yield approximations 

for sample values of fwT . and thus approximations for the Fourier coefficients 

ck = ck(fwT ). of fwT .. In many applications  ckT . also serves as an estimator for 
 f (2πk/T ). (see also Exercise A4 of Chap. 11). 

If, for instance, N is an even number, then one uses the value  ck . for the 

indices k = 0, . . . , (N − 2)/2., respectively, as an approximation for the Fourier 

coefficient ck . of fwT .. For k = (N + 2)/2, . . . , N − 1.,  ck . serves accordingly as 

an approximation for c−N+k . and  cN/2 . as an approximation for (c−N/2 + cN/2)/2. 

(see p. 88). The corresponding oscillations to the fundamental circular frequency 

ω0 = 2π/T . 

. v0(t) = 1, v1(t) = ejω0t , . . . , v(N−2)/2(t) = ej (N−2)ω0t/2, vN/2(t)

= cos(Nω0t/2), v(N+2)/2(t) = e−j (N−2)ω0t/2, . . . . . . , vN−1(t) = e−jω0t ,

generate an N -dimensional function vector space V in L2([0, T ]). (see p. 12). 

For the rectangle window wT ., the  T -periodic extension of fwT . has jump 

discontinuities at t = kT ., k ∈ Z., if f (0)  = f (T−).. According to p. 87, with 

continuous fp . as above, the aliasing relationships hold 

. ck =
+∞ 

m=−∞
ck+mN (fwT ) +

1

2N
(f (0) − f (T −)) =

+∞ 

m=−∞
ck+mN (fp). (12.2) 

If the signal f is a mixture of harmonic oscillations with circular frequencies kω0 ., 

k = 0, . . . , N/2., i.e., if f (t)=
N−1 

k=0

αkvk(t). is a linear combination of the functions 

v0, . . . , vN−1 ., then f (0)=f (T−)., and with the inner product from p. 12, it follows 

from the aliasing relationship (12.2)
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. ck =  f (t)|vk(t) =
1

T

T̂

0

f (t)vk(t) dt = αk. (12.3) 

The orthogonal projections of f onto the one-dimensional subspaces of V generated 

by the functions vk . then yield the exact spectral values of f . 

It is different if the periodic extension of fwT . has a jump discontinuity at t = T . 

or if the originally observed signal f contains harmonic oscillations whose period 

duration does not match T . In practice, this will often be the case when analyzing 

unknown signals f , which are sampled over an arbitrarily chosen time period. 

Simple examples of such cases are given by the functions f1(t) = cos(t). and 

f2(t) = − cos(t/2) + cos(t)/2.. For  T = π ., the  T -periodic extension of f1wT . 

with the rectangle window wT . has a jump discontinuity at T , while that of f2wT . is 

continuous, but f2 . is not T -periodic. 

If fwT (0)  = fwT (T−)., then every T -periodic extension, T = NΔt ., of  f 

beyond the interval [0, Ta]., Ta = (N − 1)Δt ., has jump discontinuities or steep 

flanks in the vicinities of the points kT , k ∈ Z. (see last figure). From considerations 

on the asymptotics of Fourier coefficients (p. 48), it follows that the magnitudes 

of the coefficients ck . of a T -periodic extension of the signal section for |k| → ∞. 

decrease only slowly. Consequences are, according to Eq. (12.2), aliasing effects in 

the coefficients  ck . of the discrete Fourier transform. 

Even if by chance fwT (0) = fwT (T−). as in the example f2wT . above, 

aliasing effects arise as soon as f contains oscillation components with frequencies 

ν  = k/T ., and also if they lie within the Nyquist interval with the cutoff frequency 

N/(2T ).. 

Every signal component with a circular frequency ω1  = 2πk/T . has nonzero 

projections in all subspaces of L2([0, T ])., which are generated by the functions vk . 

for k = 0, . . . , N − 1.: 

.  ejω1t wT (t)|vk(t)  = 0 for all k = 0, . . . , N − 1.

Example Consider for example the signal g(t) = A ejω1t ., and then for the kth 

Fourier coefficient ck(gwT ). of gwT . with the rectangle window wT . for the interval 

[0, T [. according to (12.1) and p. 347 with g(ω) = 2πAδ(ω − ω1).: 

.ck(gwT ) =
1

T
 gwT

 
2πk

T

 
=

1

2πT
( g ∗  wT )

 
2πk

T

 
(12.4)

=
A

T
e−j (2πk/T−ω1)T /2  wT

 
2πk

T
− ω1

 

= (−1)kA ejω1T/2 sin(πk − ω1T/2)

πk − ω1T/2
.
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Fig. 12.18 The arrows show 

the absolute weights gk . at 

kω0 . 

These coefficients distort, as per (12.2), the amplitudes and phases of the estimates 

 ck . of signal components at frequencies k/T ., k ≤ N/2., when ω1  = 2πk/T .. When 

using the rectangular window according to (12.2) and (12.4), they contribute as 

alias effects to all DFT coefficients  ck .. Thus, they are “spread” onto the oscillations 

at frequencies k/T . (see the next figure). This phenomenon is referred to in signal 

processing as the spectral leakage effect. Additionally, for all  ck ., there is a constant 

additive component (g(0)− g(T−))/(2N). if the T -periodic extension of gwT . at T 

has a jump discontinuity. 

The spectral leakage effect occurs with modified coefficients ck(gwT ). even 

when using other window functions wT . instead of the rectangular window, and it 

results from the uncertainty principle for the time-duration-bandwidth product of 

the window wT .. 

Figure 12.18 shows some absolute weights gk = |ck(gwT )/A|., through which 

the amplitude A of gwT . is distributed onto the Fourier coefficients of frequencies 

adjacent to ω1  = 2πk/T , k ∈ Z. by the periodicity induced by wT .. 

We briefly consider an example that illustrates the discussed truncation effects 

due to the rectangular window using specific data for a given signal f . 

Example For the 4π .-periodic function f (t) = cos(t/2)., the segment fwT . with the 

rectangular window wT . of length T = π . has the spectrum ck = −
2 + 8kj

π(16k2 − 1)
.. 

The π .-periodic extension with fwT (0) = fwT (π). has the mean value c0 = 2/π . 

on [0, π [. and jump discontinuities of height S1 = 1. at t = kπ . (k ∈ Z.). A 3-

point DFT on [0, π [. yields the DFT coefficients c0 = (3 +
√

3)/6. and  c1 =  c2 =
(3 −

√
3)/12 − j (3 −

√
3)/12.. 

We specifically examine  c0 .. The series

∞ 

m=1

(c3m + c−3m)= −
4

π

∞ 

m=1

1

144m2 − 1
. 

has, according to (11.2)., the limit S2 =  c0 − c0 − S1/6 = −
2

π
+

2 +
√

3

6
.. Using 

known equations for the digamma function Ψ = Γ  /Γ ., S2 . can also be obtained as 

. S2 =
Ψ (11/12) − Ψ (1/12) − 12

6π
= −

2

π
+

cot(π/12)

6
.

In decimal approximation, for  c0 ., the decomposition now yields
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.  c0 = c0 + S1/6 + S2 ≈ 0.636619 + 0.166667 − 0.014611 = 0.788675.

Selection of Time Windows in the Discrete Fourier Transform 

By choosing an appropriate window function wT ., one can achieve a reduction 

of the distortion effects in the spectrum of the discrete Fourier transform and 

thereby reduce the error in estimating the spectrum of fwT . or of f . The frequency 

localization is better, according to the considerations on the uncertainty principle in 

Sect. 12.4, the faster | wT (ω)|. decreases for increasing |ω|.: 

1. One usually chooses a window function wT  = 0. that is as smooth as possible 

with support in [0, T ]. and wT (0) = wT (T ) = 0.. Then the T -periodic extension 

of fwT . for continuous signals f has no jump discontinuities, and the aliasing 

effects described by formula (12.2) are reduced if the Fourier coefficients of this 

extension decrease rapidly (cf. 4.5). One then obtains a better estimate with ckT . 

than with the rectangular window for the value  f (2πk/T )., which is often sought 

in applications. 

2. One chooses the observation duration T to be as long as possible. The smaller T 

is, the larger the bandwidth of wT ., i.e., the worse the frequency localization. 

3. One chooses the number N of samples to be as high as possible. More signal 

frequencies are then resolved exactly (cf. Eq. (12.3)). For fully observed time-

limited signals, “zero padding” improves the approximations for  f .. 
4. The leakage effect is less significant, the faster the side lobes of | wT |. decrease 

compared to the main lobe (cf. the preceding image). Therefore, window 

functions are often chosen where these side lobes of | wT |. decrease rapidly. 

In practice, many different weighting functions wT . are used. The use of special 

window functions and thus the compromise that must always be made due to 

the uncertainty principle depend on the aim of the respective application. Criteria 

besides the decay behavior of  wT . and the bandwidth of the window include, for 

example, its energy concentration in a given frequency band or simple calculation 

and implementation possibilities in software applications. A detailed comparative 

discussion of commonly used window functions can be found, for example, in 

Slepian (1983) or in Harris (1978). 

Example To conclude, we consider as an illustrative example the signal 

. f (t) = A1 cos(2πν1t) + A2 cos(2πν2t)

with A1 = 1., A2 = 0.03., ν1 = 10.25 .Hz, and ν2 = 12 .Hz. Figure 12.19 shows the 

discrete Fourier transform with the rectangular window wT ., T = 2 .s, for N = 128.. 

The signal frequency ν2 . cannot be detected. With the same T and N , the often-used 

Hann window wT .,
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Fig. 12.19 128-point DFT, 

T = 2.s, rectangular window 

Fig. 12.20 128-point DFT, 

T = 2.s, Hann window 

Fig. 12.21 1024-point DFT, 

T = 5.s, Hann window 

. wT (t) = 0.5 − 0.5 cos(2πt/T ), 0 ≤ t ≤ T

is used in the second Fig. 12.20. In the third Fig. 12.21, this window is used again 

with T = 5 .s and N = 1024.. From the result of this DFT in the third image, the 

12 .Hz signal frequency can at least be suspected. Displayed is the single-sided DFT 

magnitude spectrum. 

One notices from the graphs that the height of the “peaks” does not correspond 

to the actual (half) amplitude values of the two oscillations. This is a consequence 

of the aliasing effect and the attenuations due to the added weighting functions. 

Therefore, caution is required, and additional information about the nature of a 

problem is needed to reasonably interpret DFT spectra of unknown signals, which 

are far more complex in practice than this small example and often affected by 

disturbances. 

Next is another, still simple example of a DFT spectrum of a real signal, 

calculated with the rectangular window. Figure 12.22 shows the 8820-point DFT 

of an audio signal of 4 s duration, consisting only of the tones F4, A4, C5, F5 of the 

F major chord, played on the piano and enriched with the tones F4, Eb5, F5, played 

on the alto saxophone. 

The tones have the frequencies in equal temperament: F4=349.23, A4=440, 

C5=523.25, Eb5=622.25, and F5=698.46 Hz. With prior knowledge about the 

signal, one recognizes the played notes (the second octave requires intonation 

adjustment on the alto sax; the author unfortunately intonated about 8 Hz too high 

for F5). Likewise, one sees a whole series of resonating overtones (octaves and fifths 

upward), but also subharmonic frequencies (F3, C4, Eb4) and a broad spectrum of
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Fig. 12.22 8820-point DFT in 4s with piano and saxophone 

admixtures due to the instrument characteristics and DFT aliasing effects. Imagine 

the spectrum of a whole orchestra or a band with drums, guitar, bass, and brass 

section, and consider what a well-trained ear can distinguish while enjoying music. 

12.7 Initial Value Problems for Stable LTI Systems 

In Sect. 9.2 we discussed causal initial value problems for differential equations of 

the form P(D)u = Q(D)f . with polynomials P and Q for t ≥ 0. and distributional 

right-hand sides f ∈ D 
+ .. Such problems occur in time-invariant linear transmission 

systems that have energy storage elements charged at the initial time t = 0.. The  

correspondences of the Fourier transform of rational functions on p. 298 show that 

such problems can also be solved using the Fourier transform if f belongs to the 

space S  
+ ., i.e., f ∈ S  

. and supp(f )⊂[0,∞[., and if further the polynomials Q and 

P do not have common linear factors and all poles of Q/P . have negative real parts. 

Example We will once again treat the RLC oscillating circuit from Example 3 on 

p. 230 as an example. The differential equation 

. 

..
Ua +

2
√
LC

.
Ua +

1

LC
Ua = U1

.
δ and Ua(0−) = U0 ,

.
Ua(0−) = 0

described the oscillating circuit at critical damping (R2 = 4L/C .) with input voltage 

Ue(t) = U1s(t). and given initial values. The solution is the voltage progression 

across the inductance. The homogeneous differential equation is asymptotically 

stable and the right-hand side is tempered. As in Sect. 9.2, we are interested in the 

solution from the initial time t = 0. onward, excluding the past t < 0.. 

The unique solution T ∈ S  
. with supp(T ) ⊂ [0,∞[. is obtained according to the 

theorem on p. 223 from the distributional equation 

.

..
T +

2
√
LC

.
T +

1

LC
T = U1

.
δ +

2U0√
LC

δ + U0

.
δ.
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Since under the given conditions 1/P . has only poles with negative real parts and 

hence 1/P (jω). is a multiplier in S  
., Fourier transform of this equation and solving 

for  T . give 

.  T (ω) =
1

P(jω)

 
(U1 + U0)jω +

2U0√
LC

 
.

The inverse Fourier transform of the partial fractions using the correspondences 

from p. 298, left as an exercise for the reader, then yields the same solution T 

with support in [0,∞[. as on p. 231. Here, as there, s(t). denotes the Heaviside step 

function. 

. T (t) =
 
U0 + U1 +

(U0 − U1)t√
LC

 
e−t/

√
LC s(t).

For the solution method shown, the condition that all poles of Q/P . have negative 

real parts is not sufficient if Q and P have common linear factors with zeros whose 

real part r ≥ 0.. We consider the following example. 

Example The causal time-invariant system on S  
+ ., described by the differential 

equation 

. P(D)u = ..
u + .

u − 2u =
..
f + 2

.
f − 3f = Q(D)f,

is stable with vanishing initial values. It has the impulse response 

. h(t) = δ(t) + e−2t s(t)

and the frequency response  h(ω) =
jω + 3

jω + 2
.. The general solution of the homoge-

neous equation P(D)u = 0. is uH (t) = k1 et +k2 e−2t
. with k1, k2 ∈ R.. The solution 

uH . is not tempered, and for nonvanishing initial values c0, c1 . the corresponding 

causal initial value problem (cf. p. 223) 

. 
..
u + .

u − 2u =
..
f + 2

.
f − 3f + (c0 + c1)δ + c0

.
δ

in S  
+ . cannot generally be solved by Fourier transform. The reason is that with 

vanishing initial values the common linear factors compensate at the zero z = 1. 

of P and Q, while with nonvanishing initial values and proceeding as above, a 

noncausal solution is obtained. 

How initial value problems for certain partial differential equations can also be 

solved using the Fourier transform is shown in the following section.
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12.8 Initial Value Problems for 3D Wave and Heat Equations 

In previous sections, we solved some boundary value problems for the wave and heat 

equations using Fourier series. As an application of the Fourier transform, we now 

obtain solutions of initial value problems for wave and heat equations in unbounded 

space. Because the Fourier transform converts differentiation into a simple algebraic 

multiplication operation, it transforms the respective partial differential equations 

into easily solvable ordinary differential equations. 

The Initial Value Problem for the 3D Homogeneous Wave 

Equation 

The homogeneous wave equation describes, for example, the propagation of small 

disturbances in frictionless, compressible fluids or gases in the absence of external 

forces. In homogeneous unbounded isotropic space, the corresponding initial value 

problem in Cartesian coordinates is given for u : R3 × [0,∞[→ R. by 

. 
∂2u

∂t2
(x, t) = c2Δxu(x, t),

u(x, 0) = f (x),
∂u

∂t
(x, 0+) = g(x), u(x, t) = 0 for t < 0. (12.5) 

Here, x ∈ R3
. and Δx . is the Laplace operator related to the spatial parameters. If 

the equation describes, for instance, sound propagation, then u(x, t). is the pressure 

deviation at time t from the normal atmospheric pressure at location x.. The solution 

u depends on the initial conditions, which we assume to be in S(R3).. 

The Fourier transform of the equations with respect to the spatial coordinates 

gives, by interchanging the Fourier integral with differentiation in t , 

. 
∂2 u
∂t2

(ω, t) =
∂2

∂t2

ˆ

R3

u(x, t) e−jω·x dλ3(x) = c2

ˆ

R3

Δxu(x, t) e−jω·x dλ3(x)

= −c2|ω|2 u(ω, t),  u(ω, 0) =  f (ω),
∂ u
∂t

(ω, 0+) =  g(ω). (12.6) 

For each fixed ω., this is an initial value problem for an ordinary differential equation 

in t . We impose the condition  u(ω, t) = 0. for t < 0.. Then we have with the unit 

step s(t). the unique solution (cf. Theorem 9.5) 

. u(ω, t) =
 
 f (ω) cos(ct |ω|) + g(ω)

sin(ct |ω|)
c|ω|

 
s(t).
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Since cos(ct |ω|) =
d

dt

sin(ct |ω|)
c|ω|

., it is sufficient to determine the inverse Fourier 

transform of
sin(ct |ω|)

c|ω|
.. We already did this on p. 316 and obtain for t > 0.: 

.
1

4πc2t
δ(|x| − ct)

sin(ct |ω|)
c|ω|

. (12.7) 

δ(|x|−ct). is the singular distribution given by the integral over the spherical surface 

|x| = ct .. By the convolution theorem, we obtain u referred to as a wave. Since the 

Fourier transform is one to one, this u is a unique solution of (12.5). 

Theorem 12.7 The initial value problem (12.5) for the wave equation in space has 

for x ∈ R3
. and t > 0. the solution 

. u(x, t) =
∂

∂t

1

4πc2t

ˆ

|y|=ct

f (x − y) do(y) +
1

4πc2t

ˆ

|y|=ct

g(x − y) do(y)

=
∂

∂t

t

4π

ˆ

|n|=1

f (x + ctn) do(n) +
t

4π

ˆ

|n|=1

g(x + ctn) do(n). (12.8) 

For the integral transformation see p. 498. The assumptions on the initial condi-

tions can be relaxed. If f is three times and g is twice continuously differentiable, 

it results in a classical solution u that is twice continuously differentiable. The 

interchange of differentiations and integrals made in (12.6) is allowed. The solution 

formula (12.8) shows that initial disturbances spread through space over time and 

that with initial conditions f and g in S(R3). or those with bounded supports, the 

solution u decays at least as fast as 1/t . for increasing times t . The solution u(x, t). 

at a point x. depends at time t only on the values of the initial conditions on the 

spherical surface around x. with radius ct . We also observe that δ(|x| − ct)/(4πc2t). 

is a fundamental solution for inhomogeneous problems. 

Propagation of Local Disturbances A spatially bounded initial disturbance leads 

to a time-limited effect in wave propagation in space. 

To explain this, we consider an initial disturbance whose support is a bounded set 

U with the boundary surface ∂U .. Then f (x) = g(x) = 0. outside of U . Specifically, 

imagine a sound that is generated in U at time t = 0.. Now, let  x. be a point outside 

of U and d and D be the minimum and maximum distances between x. and the 

points of U , respectively. For t < d/c., the sphere Sct (x). around x. with radius ct lies 

outside of U , f and g are zero there, and it follows that u(x, t) = 0. for t < d/c.. 

For t = d/c., Sct (x). touches the set U , the wave reaches x.: For times t between 

d/c. and D/c., Sct (x). and U intersect, at x. effects u(x, t)  = 0. can occur. For times 

t > D/c., U lies within the sphere Sct (x)., and it follows again that u(x, t) = 0., i.e., 

the disturbance has passed x.. Therefore, at x. an effect u(x, t)  = 0. is noticeable only
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Fig. 12.23 Illustration of 

wave propagation in space 

Fig. 12.24 Illustration of 

wave propagation and 

Huygens’ principle 

in the time interval d/c ≤ t ≤ D/c.. There is a primary and a secondary wavefront. 

At a given time t , the primary wavefront takes the form of a surface that separates 

those points that have not yet been reached by the wave from the points where the 

disturbance is acting or has already acted. The points of this surface have a distance 

ct from the boundary ∂U . of U and thus lie on the envelope of all spheres with 

centers on ∂U . and radii ct (Huygens’ principle). Similarly, the secondary wavefront 

separates those points that are no longer affected by the disturbance from all others. 

The constant c is the finite propagation speed of the wavefronts. As illustrations 

consider Figs. 12.23 and 12.24. 

It is therefore possible to transmit signals as sharply bounded waves in three-

dimensional space, whose support has a spherical or shell-like shape. This is an 

extremely significant fact for communication transmission. 

The second Fig. 12.24 illustrates a radial wave emitted by a sine source 

A sin(ωt)s(t). at the origin. It shows the spatially decreasing amplitudes (for 

example air pressure or electric field strength) in the plane 0 < x = ct < 60, |y| ≤
30, z = 0. for values ≥ 0.. The used data are A = 1, ω = π/2, c = 2. with their 

according physical units. Shown is u(x, y, 0, 20). at t = 20., when the wave has 

not yet reached x > 40.. Huygens’ principle: The wavefront can be seen as the 

envelope of the wavefronts by sources of the same type, but starting at different 

places and times before t=20. with the correspondingly decreased amplitudes (blue, 

green in the figure for two such waves). 

For the solution of the inhomogeneous wave equation  u =
1

c2
∂2
t u − Δxu =

f ., see Exercise A7. There we use the Lorentz gauge so that for an electric scalar 

potential u we have  u =  /ε0 . with the D’Alembert operator  .. The result is 

the so-called retarded potential. The distribution g1(x, t) = δ(|x| − ct)/(4πc2t). 

in (12.7) is a fundamental solution of Eq. (12.5). Thus, it has to be multiplied by
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c2
. to obtain a fundamental solution g for the D’Alembert operator  .. With a twice  

continuously differentiable source f , which is zero for t < 0., the retarded solution 

f ∗ g . of  u = f . is also zero for t < 0., twice continuously differentiable, and 

can be written as integral (see also (9.4), p. 235. For the integrals, see p. 497 and 

Exercise A7) 

. u(x, t) = f ∗
δ(|x| − ct)

4πt
= c2

t
ˆ

−∞

(t − s)2

4π

ˆ

|n|=1

f (x + c(t − s)n, s)

t − s
do (n) ds

=
ˆ

R3

f (y, t −
|x − y|

c
)

4π |x − y|
dλ3(y) = f ∗

δ(t −
|x|
c
)

4π |x|
. (12.9) 

The equations express mathematically precisely the Huygens principle 

(Fig. 12.24). 

The Initial Value Problem for the 2D Homogeneous Wave 

Equation 

The wave equation in the plane describes problems where the initial conditions f 

and g depend only on two spatial coordinates. We consider functions f that are 

three times continuously differentiable and functions g that are twice continuously 

differentiable, which depend on x = (x1, x2, x3). only on x1 . and x2 ., interpret the 

corresponding initial value problem (12.5) in the plane as a spatial problem with the 

symmetry axis x1 = x2 = 0., and use its already known solution (12.8): 

We calculate the surface integrals in (12.8) by setting ϕ = f . or ϕ = g . and 

integrating using spherical coordinates. Then for x = (x1, x2, x3). and functions 

ϕ(x) = ϕ(x1, x2). independent of x3 . we have 

. 

ˆ

|n|=1

ϕ(x+ctn) do(n) =
2π
ˆ

0

ˆ π

0

ϕ(x1+ct sin θ cosφ, x2+ct sin θ sinφ) sin θ dθ dφ.

We integrate over the upper and lower hemisphere surfaces separately, that is, we 

divide the integration range of the inner integral at π/2. into two subintervals. Using 

the substitution θ = arcsin r ., dθ = (1 − r2)−1/2 dr ., it follows  

.

π/2
´

0

ϕ(x1 + ct sin θ cosφ, x2 + ct sin θ sinφ) sin θ dθ
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= 
1́ 

0 

ϕ(x1 + ctr cosφ, x2 + ctr sinφ)
√

1 − r2 
r dr. 

For the second subintegral from π/2. to π ., one obtains the same result. Substituting 

into the surface integral then gives for x = (x1, x2, x3). 

. 

ˆ

|n|=1

ϕ(x + ctn) do(n) = 2

2π
ˆ

0

ˆ 1

0

ϕ(x1 + ctr cosφ, x2 + ctr sinφ)
√

1 − r2
r dr dφ.

This is an integral independent of x3 . over the unit disk in the x1x2 .-plane. So if f 

and g for x = (x1, x2, x3). depend only on the first two coordinates, then the solution 

of the initial value problem (12.5) is also independent of x3 .. Because the integrands 

are independent of the height x3 ., the surface integrals in (12.8) can be expressed as 

two identical integrals over the unit disk in the plane x3 = 0.. Thus, we obtain the 

solution of the initial value problem (12.5) for planar problems and those with the 

symmetry axis x1 = x2 = 0.. 

Theorem 12.8 The initial value problem (12.5) for the wave equation in the plane 

has the solution for x = (x1, x2) ∈ R2
. and t > 0. 

. u(x, t) =
∂

∂t

t

2π

ˆ

|y|≤1

f (x + cty) 
1 − |y|2

dλ2(y) +
t

2π

ˆ

|y|≤1

g(x + cty) 
1 − |y|2

dλ2(y).

(12.10) 

For three-dimensional problems with the symmetry axis x1 = x2 = 0., the solution 

at time t > 0. at a point z = (x1, x2, x3) = (x, x3). with u(z, t) = u(x, t). is also 

given by formula (12.10). 

Propagation of Local Disturbances For the initial value problem of the wave 

equation in the plane, an initial disturbance bounded in space at any point leads 

to a timely unlimited effect. 

The solution u at a point x = (x1, x2). in the plane depends at time t > 0. on 

the values of the initial conditions in the entire disk around x. with radius ct . Local 

disturbances in the plane propagate with the speed c and then continuously affect 

points once reached by the wave. For example, if you place an autumn leaf on a 

still water surface and throw a stone into the water, the outgoing wave will reach 

the leaf and continue to spread. The leaf will continue to sway long after it has been 

passed by the propagation front. This may provide an illustration of the situation, 

even though water waves are only very roughly described by the two-dimensional 

wave equation (12.5). The difference to the previously discussed propagation of 

spatially local disturbances is easily understood when the planar problem is viewed 

as a three-dimensional problem with the symmetry axis x1 = x2 = 0.. An initial 

condition with bounded support in the plane corresponds to a disturbance whose
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support is an infinitely extended cylinder in space. Even at arbitrarily large times, a 

point (x1, x2). in the plane will be reached by disturbances from great heights x3 .. 

The Initial Value Problem for the Homogeneous Heat Equation 

The initial value problem for the homogeneous heat equation in homogeneous 

unbounded isotropic space is given for u : Rp × [0,∞[→ R. by 

.
∂u

∂t
(x, t) = kΔxu(x, t) , u(x, 0) = f (x). (12.11) 

Here, u(x, t). is the absolute temperature at a location x ∈ Rp . at time t ≥ 0.. The  

spatial dimension p is arbitrary. The constant k > 0. is the thermal diffusivity. As 

with the wave equation, we initially assume the initial temperature f ≥ 0. to be a 

smooth, rapidly decreasing function and obtain with the Fourier transform of the 

equations in (12.11) with respect to the spatial coordinates the ordinary differential 

equation 

. 
∂ u
∂t

(ω, t) = −k|ω|2 u(ω, t) ,  u(ω, 0) =  f (ω).

Imposing  u = 0. for t < 0. its unique solution is  u(ω, t) =
 
 f (ω) e−k|ω|2t

 
s(t).. 

With the inverse Fourier transform Kt (x) = (4πkt)−p/2 e−|x|2/(4kt)
. of e−k|ω|2t

. for 

t > 0., the solution of (12.11) follows by convolution of f with Kt .. 

Theorem 12.9 The initial value problem (12.11) for the homogeneous heat equa-

tion has for x ∈ Rp . and t > 0. the solution 

.u(x, t) = (4πkt)−p/2

ˆ

Rp

f (y) e−|x−y|2/(4kt) dλp(y). (12.12) 

Due to the rapid decay of the heat kernel Kt (x)., a smooth solution still results 

for initial conditions f ∈ S  (Rp).. It can be proven (cf. for example John (1981)) 

that for f ≥ 0., the solution u in (12.12) is the unique nonnegative solution of the 

heat problem (12.11). If until time t = 0. the temperature is zero everywhere and 

at a location y. at time t = 0. the temperature f (y). is produced, then the density 

function f (y)Kt (x − y). describes the temperature in x. at time t produced at y.. The  

heat kernel thus shows the equalization of temperature spatially and temporally, the 

convolution integral (12.12), and the superposition of the influences that act in x. at 

time t by the initial temperatures of all spatial points y.. 

Inhomogeneous initial value problems for wave and heat equations in space can 

also be solved using the Fourier method. For this, one has to determine fundamental
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solutions of the equations. For the heat equation, this is posed as Exercise A6, 

for the 3D wave equation as Exercise A7, and for the Schrödinger equation as 

Exercise A8 at the end of the chapter. For the 3D potential equation, we have 

already derived a fundamental solution on p. 234, in the 2D case in Exercise A7 

of Chap. 9. Fundamental solutions to other problems can be found, for example, in 

Triebel (1992), Folland (1995), Hörmander (2003), and Ortner and Wagner (2015). 

Inhomogeneous Boundary Value Problems for the Heat 

Equation 

In applied numerical mathematics, inhomogeneous heat equations with various 

initial and boundary conditions for complex 3D regions can approximately be solved 

with the Finite Element Method as introduced in Sect. 9.5. If the problems are 

time dependent, one can also use it, when solutions are calculated in progressive 

discrete time steps. For theory on the (distributional) solutions for such problems, 

it is referred to the extensive literature about partial differential equations and FEM 

methods, for example, to Dautray and Lions (1992). 

As an example, the temperature distribution in a pump casing is shown, computed 

with Elmer FEM (see https://research.csc.fi/web/elmer). I have chosen this example 

because interested readers can easily reproduce it themselves, as the software and 

the data can be downloaded free of charge from the Elmer homepage. There can be 

found other examples too. Figure 12.25 shows the used mesh. 

Fig. 12.25 3D-FEM model of a pump casing with the used mesh

https://research.csc.fi/web/elmer
https://research.csc.fi/web/elmer
https://research.csc.fi/web/elmer
https://research.csc.fi/web/elmer
https://research.csc.fi/web/elmer
https://research.csc.fi/web/elmer
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Fig. 12.26 Temperature in the pump casing generated during operation 

Heat is being generated internally in the casing during operation and being cooled 

at parts of the upper boundary, providing a steady-state temperature. Thus, no initial 

conditions were needed. Figure 12.26 shows the approximate FEM solution. It is 

not differentiable and can only be understood as a weak solution in an appropriate 

Sobolev space (cf. p. 245). In the image, the surface of the model is smoothed. The 

solver needed 9 s on my old notebook to compute the solution. 

The following input data have been used: 

1. The model has 181214 volume elements and 58761 edge elements. 

2. The material is assumed to be aluminum. 

3. During operation the pump is cooled to 293K on parts of the upper surface. 

4. The inner heat source is assumed to be constant 0.017 W/kg. The temperature 

scale is given in degrees Kelvin, i.e., 293K = 19.85◦
.C = 67.73◦

.F. 

12.9 Exercises 

(A1) Assume that a function f ∈ L2(R). satisfies the conditions of the sampling 

theorem of p. 384 with  f (ω) = 0. for |ω| > ωc .. Furthermore, let α > 1.: 

(a) Show that for |ω| ≤ αωc . the following holds:
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.  f (ω) =
π

αωc

+∞ 

k=−∞
f

 
kπ

αωc

 
e−jkπω/(αωc) .

(b) Let  wα . be a spectral window function whose graph sketched below: 

Show that wα(t) =
cos(ωct) − cos(αωct)

π(α − 1)ωct2
. holds. 

(c) It holds that  f =  wα
 f .. Using this, show the sampling formula 

. f (t) =
π

αωc

+∞ 

k=−∞
f

 
kπ

αωc

 
wα

 
t −

kπ

αωc

 
,

i.e., a sampling formula with oversampling, in which the basis functions 

wα(t). decay like 1/t2
. for |t | → ∞. (cf. Remark 2 on p. 386). 

(A2) Plot the graph of an approximation for | f |. with the help of a computer alge-

bra system,  f . being the windowed Fourier transform of f (t) = sin(40πt2)., 

0 ≤ t ≤ 10.. Use the Hann window from the example on p. 411. 

(A3) What is the effective bandwidth of the Hann window wT . used in Sects. 12.5 

and 12.6? 

. wT (t) =

 
0.5 − 0.5 cos(2πt/T ) for 0 ≤ t ≤ T

0 otherwise.

(A4) What is the formula corresponding to Eq. (12.4) from p. 420 for the window 

function 

. wT (t) =

 
1 − 2|t − T/2|/T for 0 ≤ t ≤ T

0 otherwise
?

With what weights does the spectral leakage effect impact a discrete Fourier 

transform performed with the triangle window? 

(A5) Solve the following causal initial value problem for t ≥ 0. using the Fourier 

transform as in Sect. 12.7: 

.x(3)(t) + 4x  (t) + 6x (t) + 4x(t) = sin(t)s(t) + δ(t)
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with the unit step function s(t). under the following initial conditions: 

. x(0−) = 1, x (0−) = 2 and x  (0−) = 1.

Determine the right-sided limits x(0+)., x (0+)., x  (0+). of the solution. 

(A6)  . (a) Determine the fundamental solution g of the heat equation with 

. g(x, t) = 0 for t < 0

∂

∂t
g(x, t) − kΔxg(x, t) = δ(x) ⊗ δ(t).

(b) Show that the inhomogeneous heat equation 

. 
∂u

∂t
(x, t) = kΔxu(x, t) + F(x, t) , u(x, 0) = 0, F (x, t) = 0 if t < 0

for x ∈ R3
., t > 0., and F such that the convolution integral exists, is 

solved by 

. u(x, t) =
t
ˆ

0

ˆ

R3
Ks(y)F (x − y, t − s) dλ3(y) ds,

Ks(y) = (4πks)−3/2 e−|y|2/(4ks)
. being the kernel of the homogeneous 

equation. Give a sufficient condition for F such that the above convolu-

tion integral exists. 

(c) Solve the corresponding problem for u(x, 0) = f (x) ≥ 0,. f ∈ S(R3).. 

(A7)  . Verify the fundamental solution g with g(x, t) = 0. for t < 0. of the 

inhomogeneous wave equation  u = f . and the integral transformations 

in Eq. (12.9). Specify the solution of  u = f . for a time-varying source f 

in the origin, e.g., f (x, t) = A sin(ωt)s(t) ⊗ δ(x).. Again s(t). denotes the 

unit step function. 

Remark The distribution g is called the retarded fundamental solution. In  

electrodynamics an inhomogeneity F for the wave equation can be a time-

varying electric charge density or current density. The field F ∗ g . is called 

the retarded potential, signifying the fact that the observed field is retarded 

at an observation position x., i.e., delayed in time by Δt = |x − x |/c. relative 

to a source variation at x 
. due to the finite speed c of wave propagation. 

The distribution  g . defined by  g(x, t) = g(x,−t). is called the advanced 

fundamental solution and F ∗  g . the advanced potential accordingly. For a 

discussion of advanced potentials, see the literature on electrodynamics, e.g., 

the Feynman Lectures on Physics, which are available online from Caltech 

websites.
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(A8)  . The Schrödinger equation 

. 
∂ψ

∂t
(x, t) = j

h̄

2m
Δxψ(x, t)

describes in nonrelativistic quantum mechanics the wave function ψ . of a free 

particle of mass m in the absence of external forces. Solve this equation for 

t > 0. with the initial condition ψ(x, 0) = ψ0(x) ∈ S(R3)..



Chapter 13 

The Malgrange-Ehrenpreis Theorem 

Abstract In this chapter an elementary proof for the famous Malgrange-Ehrenpreis 

theorem is given. The proof uses only the product rule for derivatives, the Fourier 

transform of generalized derivatives, the Taylor formula, and Cramer’s rule for 

solving regular linear systems of equations. The theorem states that every linear 

partial differential equation with constant coefficients has a fundamental solution. 

An abstract version and a constructive version of the theorem are proven. 

13.1 Preliminaries 

The aim of this chapter is to prove the famous theorem of Malgrange-Ehrenpreis 

about the existence of fundamental solutions of linear partial differential equations 

with constant coefficients. This theorem is, in the author’s view, a highlight 

of Fourier analysis and distribution theory in general and therefore also of the 

introductory text on this topic presented here to the readers. 

For the reading of this section, we first recall the notation for differential 

operators with multiple variables using multi-indices, which was introduced in 

Sect. 8.6. A polynomial of degree ≤ m. in ξ = (ξ1, . . . , ξn). is noted using multi-

indices k = (k1, . . . , kn) ∈ N
n
0 . with |k| = k1 + k2 + · · · + kn . by 

. P(ξ) = P(ξ1, . . . , ξn) =
 

|k|≤m

akξ
k1

1 ξ
k2

2 · · · ξ kn
n =

 

|k|≤m

akξ
k.

If C[ξ ].denotes the set of all polynomials, then C[∂]. is the set of all linear differential 

operators P(∂) =
 

|k| m

ak∂
k
. with constant coefficients. Here m ∈ N. and the 

coefficients ak ∈ C. for k ∈ N
n
0 . are arbitrarily chosen. For an index k ∈ N

n
0 ., 

ξ k = ξ
k1

1 · · · ξ
kn
n . and ∂k = ∂

k1

1 · · · ∂
kn
n . for ∂ = (∂1, . . . , ∂n)., where ∂i = ∂/∂xi .. 

The distribution δ . is, as before, the Dirac measure at the origin of Rn
.. 
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13.2 The Malgrange-Ehrenpreis Theorem 

In this section, for the sake of clarity, we will omit the previously used vector arrows 

in the notation of variables from R
n
. or C

n
. and simply write x instead of x.. The  

fundamental result of Malgrange-Ehrenpreis now reads as follows: 

Theorem 13.1 (Malgrange-Ehrenpreis Theorem, Abstract Version) For every 

nonconstant polynomial P ∈ C[ξ ]., the partial differential equation P(∂)T = δ . has 

a solution T in D (Rn).. 

This fundamental result was initially proven by Ehrenpreis (1954) and Malgrange 

(1956). Since then, there have been several other proofs, for example, by Rudin 

(1991), König (1994), Ortner and Wagner (1994, 1997), and Wagner (2009). 

The proof presented here was inspired by the work of Wagner (2009) and was 

developed by my colleague H. Leinfelder (2012). This proof essentially follows the 

approach given by Wagner (2009) and is entirely elementary, relying only on the 

product rule, Fourier transform of generalized derivatives, Taylor’s theorem, and 

Cramer’s rule for solving regular linear systems of equations. 

Before we proceed to the proof of Theorem 13.1, let us recall some additional 

notations. The letter n. denotes the dimension of the underlying space Rn
.. As before, 

j . denotes the complex unit with j2 = −1.. The product ξx . on R
n
. is shorthand 

for the expression ξ1x1 + · · · + ξnxn .. We use the symbol . as a placeholder 

for variables in R
n
., so that eζ

. and j . denote the functions (eζ )(x) = eζx
. 

for ζ, x ∈ R
n
. and (j )(ξ) = jξ . for ξ ∈ R

n
.. A linear differential operator 

P(∂) =
 

|k| m

ak∂
k
. has degree m. if its principal part Pm(∂) =

 

|k|=m

ak∂
k
. does not 

vanish. In the Malgrange-Ehrenpreis theorem, we consider only the interesting case 

of nonconstant polynomials P .. Regarding the notation for distributions, we refer to 

Chaps. 8 and 10. For the Fourier transform on S  (Rn)., we use the notation F ., as in  

Chap. 10. 

For P ∈ C[ξ ]. and ζ ∈ R
n
., the following operator identities hold on D (Rn). and 

S  (Rn).: 

. e−ζ P(∂) eζ = P(∂ + ζ ) (13.1) 

.F P(∂)F−1 = P(j ). (13.2) 

To understand the first formula, note that by the product rule for derivatives 

. ∂i(e
ζ T ) = ζi eζ T + eζ ∂iT = eζ (∂i + ζi)T .

By repeated application, ∂
ki

i (eζ T ) = eζ (∂i + ζi)
ki T .; hence 

.∂k(eζ T ) = eζ (∂ + ζ )kT .
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Multiplying by ak . and summing give for P(ξ) =
 

|k| m

akξ
k
. 

. P(∂) eζ T = eζ P(∂ + ζ )T .

Multiplying both sides of this equation by e−ζ
. demonstrates the identity (13.1). 

The second formula (13.2) follows immediately from the linearity of the Fourier 

transform, as stated in relation No. 5 in the table on page 317. 

The proof of the Malgrange-Ehrenpreis theorem relies on two auxiliary lemmata, 

which are also of interest on its own. In the following, we employ three technical 

tools from analysis and linear algebra. These three statements, denoted by (C1)– 

(C3), and their proofs are collected in a short appendix at the end of the section. 

First, it is noted that for polynomials P ., Q ∈ C[ξ ]. with every fundamental 

solution E . of P(∂)., i.e., P(∂)E = δ ., there exists a distributional solution T =

Q(∂)E . for P(∂)T = Q(∂)δ . (cf. p. 135). In a way, a kind of converse to this 

statement is the following lemma. 

Lemma 13.1 Let P and Q be polynomials in C[ξ ]. of degrees m ∈ N. and p ∈ N., 

respectively, and let Qp . denote the principal part of Q. For ω ∈ R
n
. such that 

Qp(ω)  = 0. and for pairwise distinct η0, η1, . . . , ηp ∈ R
n
. on the line Rω ., suppose 

that certain Eη0
, Eη1

, . . . , Eηp . in D (Rn). are solutions of the partial differential 

equation 

.P(∂)E = Q(∂ + η)δ (13.3) 

when substituting η = ηk . for 0 ≤ k ≤ p . into (13.3). 

Choosing λk . such that ηk = λkω ., and ak =

p 

q=1,q  =k

(λk − λq)−1 (0  k  p) ,. 

then E =
1

Qp(ω)

p 

k=0

ak Eηk
. is a fundamental solution of P(∂).. 

Proof We use the second formula from (C1), there with P = Q., η = λω., and we 

obtain the operator formula 

.Q(∂ + η) = Q(∂ + λω) = λpQp(ω)+

p−1 

q=0

λqVq(∂) (13.4) 

with Vq(∂) =
 

|α|=q

ωα Q(α)(∂)/α!.. Under the given assumptions, we now substitute 

ηk = λk ω . for k = 1, . . . , p . into Eq. (13.3). This results, due to the operator 

equation (13.4) with distributions Tq = Vq(∂)δ ., in the identities 

.P(∂)Eηk
= λ

p

k Qp(ω)δ +

p−1 

q=0

λ
q

k Tq . (13.5)
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We multiply Eq. (13.5) by the coefficients ak . provided in Lemma 13.1 above and 

sum over k = 0, . . . , p .. This leads to the equation 

.P(∂)

 
p 

k=0

ak Eηk

 
=

 
p 

k=0

akλ
p
k

 
Qp(ω) δ +

p−1 

q=0

 
p 

k=0

ak λ
q
k

 
Tq . (13.6) 

Due to the choice of coefficients ak ., according to result (C2) from the appendix 

(there with m = p .), we have 

. 

p 

k=0

ak λ
p
k = 1 and

p 

k=0

ak λ
q
k = 0 (0  q  p − 1).

Thus, from (13.6) it follows that 

. P(∂)

 
p 

k=0

ak Eηk

 
= Qp(ω)δ ,

i.e., P(∂)E = δ ., and thus E is a fundamental solution of P(∂)..   

According to Lemma 13.1, a proof of the Malgrange-Ehrenpreis theorem is 

obtainable if the solvability of (13.3) for some nonzero polynomial Q is guaranteed 

for all η ∈ R
n
.. Equivalent to this is the solvability of 

.P(∂)E = Q(∂ − 2η)δ (13.7) 

for all η ∈ R
n
.. To solve (13.7) for any chosen η ∈ R

n
., we use for E 

.E = eζ
F
−1S (13.8) 

with ζ ∈ R
n
. and an unknown S ∈ S  (Rn).. With the relations 

. eζ δ = δ and Fδ = 1,

Eq. (13.7) for the sought distribution S ∈ S  (Rn). reads 

.P(∂) eζ
F
−1S = Q(∂ − 2η) eζ

F
−11 . (13.9) 

Multiplying (13.9) on the left first by e−ζ
. and applying the Fourier transform F ., 

we get 

.F

 
e−ζ P(∂) eζ

 
F
−1S = F

 
e−ζ Q(∂ − 2η) eζ

 
F
−11 . (13.10) 

Applying formulas (13.1) and then (13.2) from the beginning of this section to 

Eq. (13.10) yields the relationship 

.P(j + ζ )S = Q(j + ζ − 2η). (13.11) 

It is now crucial that ζ . and Q ∈ C[ξ ]. can still be arbitrarily chosen. We set ζ = η . 

and Q(ξ) =  P(−ξ).. Here,  P(ξ). denotes the polynomial P(ξ)., where the complex
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conjugation applies only to the coefficients of P . Equation (13.11) is then satisfied 

by the regular distribution 

. S =
 P(−j + η)

P (j + η)
=

P(j + η)

P (j + η)
.

Note that for P  = 0., the zero set N(P (j + η)). is a Lebesgue null set (see (C3)). 

Since |S|  1. almost everywhere, S ∈ S  (Rn).. Inserted into (13.8), this distribution 

S thus yields a solution E of (13.7). 

Thus, we have shown the following result: 

Lemma 13.2 Choosing for P ∈ C[ξ ]. the polynomial Q ∈ C[ξ ]. such that Q(ξ) =
 P(−ξ)., the equation 

.E = Eη = eη
F
−1

 
P(j + η)

P (j + η)

 
(13.12) 

is a distributional solution of P(∂)E = Q(∂ − 2η)δ . for each η ∈ R
n
.. 

Remark Equation (13.7) also has a distributional solution E for Q ∈ C[ξ ]. given 

by Q(ξ) =  P(−ξ)R(ξ). with any R ∈ C[ξ ].. 

Now we obtain the proof of the Malgrange-Ehrenpreis theorem (Theorem 13.1). 

Proof For a nonconstant polynomial P in Lemma 13.2, setting η = − η/2., the  

partial differential equation P(∂)E = Q(∂ + η)δ . is solvable for all η ∈ R
n
., where 

Q(ξ) =  P(−ξ).. Thus, the assumption (13.3) in Lemma 13.1 is satisfied for ω . with 

Pm(ω)  = 0. and appropriately chosen ηk ∈ Rω .. According to Lemma 13.1, P(∂). 

has a fundamental solution.   

With a bit more effort, a constructive, explicit formulation of the Malgrange– 

Ehrenpreis theorem can be derived from Lemmata 13.1 and 13.2. 

Theorem 13.2 (Malgrange-Ehrenpreis Theorem, Constructive Formulation) 

Let P ∈ C[ξ ]. be a nonconstant polynomial of degree m. Let ω ∈ R
n
. such that 

Pm(ω)  = 0., and let λ0, λ1, . . . , λm ∈ R. be pairwise distinct. For 0  k  m., let  

ηk = λkω . and ak =

m 

q=0,q  =k

(λk − λq)−1
.. Then 

. E =
1

Pm(2ω)

m 

k=0

ak eηk F
−1

 
P(j + ηk)

P (j + ηk)

 
∈ D

 (Rn)

is a fundamental solution of P(∂)., i.e., P(∂)E = δ .. 

Proof We set  ω = −2ω.,  ηk = λk ω ., and Q(ξ) =  P(−ξ).. The distributions Eηk
. 

determined from (13.12) in Lemma 13.2 then satisfy the equations P(∂)Eηk
=

Q(∂ + ηk)δ .. According to Lemma 13.1, the distribution E =
1

Qm( ω)

m 

k=0

ak Eηk
.
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is a fundamental solution of P(∂).. Note that Qm( ω) =  Pm(− ω) =  Pm(2ω) =

Pm(2ω)  = 0..   

The significance of the Malgrange-Ehrenpreis theorem lies in the solvability of 

partial differential equations. Here is a typical result. 

Corollary If P ∈ C[ξ ]., E is a fundamental solution of P(∂)., and F is a distribution 

with compact support, then the distribution T = E ∗F . is a solution of P(∂)T = F.. 

Proof P(∂)T  = P(∂)(E ∗ F)  = (P (∂)E) ∗ F = δ ∗ F = F..   

Concluding Remarks 

(1) Theorem 2 illustrates the great variety of possible fundamental solutions in 

partial differential equations. However, even though an explicit formula for a 

fundamental solution E of P(∂). was given in this theorem, it is only suitable 

to a limited extend for the specific computation of E due to the difficulty 

in computing F−1(P (j + ηk)/P (j + ηk)).. Already in the case of any 

nonconstant polynomial P in one variable ξ = t ., it can be guessed that other 

methods lead more easily (though certainly not trivially) to the goal. While in 

this case, the right-hand side of formula (13.8) can still be computed, a causal 

fundamental solution E, without any calculation, can be given using the right-

sided Laplace transform L., widely used by engineers, as E = L−1(1/P ). or also 

with the Fourier transform by E = F−1(1/P (j ))., as in this case 1/P (j ). 

always belongs to S  .. This fundamental solution is not causal if P has zeros 

with nonnegative real parts (see p. 337). 

For 1/P (j ). in S  (Rn)., a fundamental solution for P(∂). is F−1(1/P (j )).. 

Refer to Eqs. (13.11) and (13.8) with Q = 1., ζ = 0. for details. If 1/P (j ). 

is integrable, then F−1(1/P (j )). is the only tempered fundamental solution 

of P(∂).. It then belongs to O 
C(Rn).. For details on this and statements about 

regularity properties of fundamental solutions, refer to Hörmander (2003) and 

other literature on partial differential equations. 

(2) In convolution equations of linear system theory, the question arises as to which 

convolution kernels T have fundamental solutions E, i.e., when T ∗ E = δ . is 

solvable and thus the question of solvability of convolution equations. State-

ments about convolution kernels with compact support are also found in the 

aforementioned work of Wagner (2009) and Hörmander (2003). Fundamental 

solutions for specific differential operators can be found in Ortner and Wagner 

(2015). 

Appendix: Technical Resources 

(C1) Let P ∈ C[ξ ]. be a polynomial of degree m ∈ N. and λ ∈ R. and x, ω ∈ R
n
.. 

Then P(x + λω) = λmPm(ω) +

m−1 

k=0

λk

⎛
⎝ 

|α|=k

P (α)(x)

α!
ωα

⎞
⎠. with Pm . being the 

main part of P , P (α) = ∂αP ∈ C[ξ ]. and α! = α1!α2! · · ·αn!.. Similarly, in terms of
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operators on S  (Rn)., 

. P(∂ + λω) = λmPm(ω)+

m−1 

k=0

λk

⎛
⎝ 

|α|=k

P (α)(∂)

α!
ωα

⎞
⎠ .

Proof The second formula in (C1) follows from the first formula using the linearity 

of the Fourier transform, by replacing x with jx . and applying formula (13.2) in  

the form P(∂) = F−1P(j )F .. To prove the first formula in (C1), we abbreviate 

y = λω.. Using the Taylor series, we obtain 

. P(x + y) =
 

|α| m

(∂αP)(x)

α!
yα =

m 

k=0

⎛
⎝ 

|α|=k

(∂αP)(x)

α!
ωα

⎞
⎠ λk.

Writing P(x) =
 

|α| m

aαxα
., we see that (∂αP)(x) = aαα!. for |α| = m.; hence 

 

|α|=m

(∂αP)(x)

α!
ωα =

 

|α|=m

aα ωα = Pm(ω). with Pm . being the main part of P . 

For y = λω ., we obtain P(x + λω) = λmPm(ω)+

m−1 

k=0

⎛
⎝ 

|α|=k

P (α)(x)

α!
ωα

⎞
⎠ λk.. 

  

(C2) If λ0, λ1, . . . , λm ∈ C. are pairwise distinct, then the system of equations 

. 

m 

k=0

ak λ
q
k = δqm (0  q  m)

for unknowns ak .with 0 ≤ k ≤ m. has the unique solution ak =

m 

q=0,q  =k

(λk −λq)−1.. 

Here, δqm . is the Kronecker delta symbol, i.e., δqm = 0. for q  = k . and δmm = 1.. 

Proof The linear equation system above is associated with a Vandermonde deter-

minant that does not vanish, as λ0, λ1, . . . , λm . are pairwise distinct. Therefore, the 

unknowns a0, a1, . . . , am . can be computed using Cramer’s rule. For example, for 

the interesting case m > 1., the unknown a0 = det A/det B . is calculated as follows: 

With 

.A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 1

0 λ1 . . . λm

...
...

...

0 λm−1
1 . . . λm−1

m

1 λm
1 . . . λm

m

⎞
⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1

λ0 λ1 . . . λm

...
...

...

λm−1
0 λm−1

1 . . . λm−1
m

λm
0 λm

1 . . . λm
m

⎞
⎟⎟⎟⎟⎟⎠

,
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. a0 = (−1)m

⎛
⎝

m 

1≤k<q≤m

(λq − λk)

⎞
⎠
⎛
⎝

m 

0≤k<q≤m

(λq − λk)

⎞
⎠
−1

=

m 

q=1

(λ0 − λq)−1.

Analogous formulas for ak (k = 1, . . . , m). are obtained.   

(C3) For every P ∈ C[ξ ]., P  = 0., the  set of zeros N(P ) = {ξ ∈ R
n|P(ξ) = 0}. is a 

Lebesgue null set. 

Proof We consider only the relevant case n > 1. and first show that for every 

orthogonal matrix C ∈ R
n×n

. with N(P )., also N(P ( C)). is a Lebesgue null set and 

vice versa. Due to | det(C)| = 1., this follows directly from the invariance properties 

of the Lebesgue measure λ. (see the change of variables theorem on p. 497): 

. λ(N(P )) = λ(N(P ( C))) .

Next, we construct an appropriate orthogonal matrix C ∈ R
n×n

. for P ∈ C[ξ ]., such 

that λ(N(P ( C))). can be conveniently computed. With ζ = (ζ1, ζ
 ) ∈ R

n
. and an 

initially arbitrary matrix C ∈ R
n×n

., consisting of the rows c1, c2, . . . , cn ., we have  

. ζ C = ζ1 c1 + ζ2 c2 + · · · + ζn cn = ζ1 c1 + ζ  C .

where the matrix C ∈ R
(n−1)×n

. has the rows c2, . . . , cn .. We now apply (C1) with 

x = ζ  C 
.. λ = ζ1 . and ω = c1 ., obtaining with the main part Pm . of P 

. P(ζC) = ζm
1 Pm(c1)+

m−1 

k=0

ζ k
1

⎛
⎝ 

|α|=k

P (α)(ζ  C )

α!
cα

1

⎞
⎠ .

Setting a = Pm(c1). and Pk(ζ
 ) = Pk,C(ζ  ) =

 

|α|=k

P (α)(ζ  C )/α!., this can be 

written in the form P(ζC) = a ζm
1 +

m−1 

k=0

Pk(ζ
 ) ζ k

1 .. 

We now choose c1 . so that a = Pm(c1)  = 0. and

n 

k=1

c2
1,k = 1. and add c2, . . . , cn . 

in such a way that (c1, c2, . . . , cn). forms an orthonormal basis of R
n
.; thus C 

represents an orthogonal matrix. The fact that N(P ( C)). is a Lebesgue null set 

can now be seen with the indicator function 1N(P ( C)) . of this set: 

. λ(N(P ( C))) =

ˆ

Rn

1N(P ( C))(ζ )dζ =

ˆ

Rn−1

 
ˆ

R

1N(P ( C))(ζ1, ζ
 )dζ1

 
dζ  

=

ˆ

Rn−1

0 dζ  = 0 .

Note here that for every ζ  ∈ R
n−1

., the set {ζ1 ∈ R |P(ζC) = 0}. has at most m 

elements and is therefore a null set.   



Chapter 14 

Outlook on Further Concepts 

Abstract Further developments of the ideas in Fourier analysis are shown in this 

chapter. First, the basic definitions and properties of Hilbert spaces are presented. 

Examples are given with their inner products, e.g., spaces of square integrable 

functions and square summable sequences. As orthonormal bases in such spaces, 

the Haar system, the trigonometric system, the sinc system, Legendre polynomials, 

Hermite and Laguerre functions, and spherical harmonics are considered. As 

application of the spherical harmonics and the Laguerre functions, an outline of 

quantum mechanical results for the nonrelativistic hydrogen atom is given, so that 

the periodic system of elements and the hybridization of a water molecule can be 

explained by eigenfunctions of the according Schrödinger operator. 

A final section treats continuous and discrete wavelet transforms. A pointwise 

reconstruction formula for the continuous wavelet transform is proven, and the 

algorithm of Mallat for multi-resolutions is shown. For explanations the Haar 

wavelet is used. Further examples are image compressions and image denoising with 

Daubechies wavelets. Finally, a spectrogram with an STFT and a wavelet scalogram 

of an audio piece are computed for comparison and graphically shown. A filterbank 

with a series of bandpass filters is used for the scalogram. 

14.1 Hilbert Spaces and Special Complete Orthogonal 

Systems 

A fundamental aspect of the applications of Fourier analysis presented in the pre-

ceding chapters is the representation of functions or distributions as a superposition 

of functions of a given function system. The “building blocks” ej2πkt/T
., k ∈ Z., or  

ejωt
., ω ∈ R., lead to series or integral representations of the form 

. f (t) =
+∞ 

k=−∞
 f (t)|ej2πkt/T  ej2πkt/T or f (t) =

1

2π

+∞
ˆ

−∞

 f (ω)ejωt dω .
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For square-integrable functions f from L2([0, T ]). or L2(R)., approximations 

. fN (t) =
+N 

k=−N
 f (t)|ej2πkt/T  ej2πkt/T or fΩ(t) =

1

2π

+Ω
ˆ

−Ω

 f (ω)ejωt dω

for the represented function f result, which can be understood as orthogonal 

projections onto subspaces with the inner product in L2([0, T ]). or L2(R). (cf. p. 62 

and p. 308). They therefore have the smallest mean square error to f among all 

approximations in these subspaces. In the first case, fN . is the orthogonal projection 

onto the subspace of L2([0, T ]). generated by the trigonometric polynomials up to 

degree N . In the second case, fΩ . is the orthogonal projection onto the subspace of 

L2(R). consisting of functions bandlimited by Ω . (cf. p. 318). Due to the truncation 

of high-frequency components, the approximations fN .or fΩ .can also be understood 

as smoothings of the respective original function f . Technically speaking, they are 

the result of a lowpass filtering of f (cf. 11.2). 

The functions of the trigonometric system appear, for example, as eigenfunctions 

in differential equations (cf. 1.2 and 7.4) and in time-invariant linear systemsL in the 

steady state (cf. 5.2 and 11.2). An eigenfunction of a linear operator L is a function 

e  = 0.with Le = λe.. The factor λ. is the eigenvalue of L for the eigenfunction e. 

Schematically 

For ek(t) = ej2πkt/T
. and a stable, time-invariant linear filter L with rational 

frequency response  h., it holds in the steady state (cf. p. 345) for f ∈ L2([0, T ]).: 

The functions ek(t). from L2([0, T ]). are eigenfunctions of L, and the spectral 
values hk . are the corresponding eigenvalues of the operator L on L2([0, T ]).. The  

right side
+∞ 

k=−∞
hk f |ek ek . is called a spectral representation of L. The coefficients 

hk f |ek . are square summable, and the series converges in L2([0, T ]). to the 
function Lf . 

Remark Consider for rapidly decreasing excitations of the system the operator L 

on S . (cf. 10.5); then the Fourier integral representation
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. Lϕ(t) =
1

2π

+∞
ˆ

−∞

 ϕ(ω) h(ω)ejωt dω

for ϕ ∈ S . can also be interpreted as expansion of Lϕ . in terms of eigenfunctions 

of L. Although the functions eω(t) = e−jωt
. belong neither to S . nor to L2(R)., 

they can be viewed as elements of S  . in the following sense as generalized 
eigenfunctions: For all ϕ ∈ S ., it holds by the convolution theorem that  Lϕ, eω =
 Lϕ(ω) =  h(ω) ϕ, eω .. Based on this equation, if one denotes eω . as a generalized 

eigenfunction of L for the eigenvalue  h(ω)., then the Fourier inversion formula 

above can be read as a spectral representation of L with generalized eigenfunctions. 

Detailed information on generalized eigenfunctions and their applications can be 

found in Gel’fand et al. (1964). 

The spectral representations achieved with Fourier analysis facilitate the under-

standing of the effect of L (cf. p. 328 and p. 345). The representation of L as a 

multiplication operator, which is achieved in this way, is analogous to the principal 

axis transformation of symmetric matrices A known from linear algebra, i.e., to 

the representation of the linear mapping A as a multiplication operator on the 

eigenspaces of A. 

Many technical or physical problems can be mathematically described in linear 

approximation by equations of the form Lf = g ., where L is a linear operator on 

a suitable function space H , to which the right side g and the sought function f 

belong. If H like L2([0, T ]). or L2(R). is a complete vector space with an inner 

product  h1|h2 . for h1, h2 ∈ H ., and the corresponding norm  h =  h|h 1/2 ., h ∈
H ., and if {ek|k ∈ N0}. is any orthonormal system of functions in H , i.e.,  ek|ek = 1. 

and  ek|em = 0. for k  = m., then the following statements result in complete analogy 

to classical Fourier analysis: 

1. Every element g from the closed subspace of H generated by the ek . can be 

expanded in a series with the functions ek ., which converges in H to g: 

. g =
∞ 

k=0
 g|ek ek.

This series is called the Fourier series of the function g with respect to 

the orthonormal system {ek|k ∈ N0}.. This representation of g generalizes 

the familiar decomposition of vectors in finite-dimensional vector spaces into 

their components with respect to an orthonormal basis and the Fourier series 

expansion of functions from L2([0, T ]).. 
2. If a linear operator L on H has the spectral representation 

.Lf =
∞ 

k=0
λk f |ek ek
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for f ∈ H . with eigenvalues λk  = 0., then one can solve the equation Lf = g . 

for a right side g ∈ H . with g =
∞ 
k=0
 g|ek ek . by a comparison of coefficients, 

provided that
∞ 
k=0

    g|ek 
λk

   
2
<∞.. A solution f is given by 

. f =
∞ 

k=0
λ−1k  g|ek ek.

The series converges in H to f if and only if its coefficients are square summable 

(cf. Parseval equation, p. 451). 

Remark In many specific problems of this type, the eigenvalues λ1  λ2  

. . .., ordered by magnitude, form a sequence converging to zero. The problem 

Lf = g . is then a so-called ill-posed inverse problem, because even small data 

errors, i.e., small deviations in the coefficients  g|ek ., are enormously amplified 

by the divisions by λk . as λk → 0.. Instead of the above “naive” series solution, 

approximations that are less sensitive to errors are used. Such approximations 

are obtained through so-called regularization methods (cf. also Exercise 13 of 

Chap. 9). Presentations of regularization methods and solutions of specifically given 

problems from various fields of application—e.g., computed tomography, image 

reconstruction, soil exploration in geology, spectroscopy, and much more—can be 

found in Engl and Groetsch (1987) or Groetsch (1993) and the references therein, 

Even these few remarks show that the methods of Fourier analysis can be 

transferred to problems described by linear operators L with spectral representations 

in suitable function spaces H . The arising eigenfunctions ek . of L do not necessarily 

have to be trigonometric functions, thus also offering no immediate interpretation 

through oscillations and frequencies. The “visual intuitiveness” of the familiar 

frequency concepts from classical Fourier analysis is replaced by the versatility of 

simple representation and computation possibilities using other “building blocks” 

ek ., which replace the trigonometric functions. 

Before we consider examples that demonstrate the usefulness of series expan-

sions in terms of functions ek ., we define the concept of the Hilbert space. It is  

fundamental to the theory of linear problems, to which David Hilbert (1862–1943) 

made groundbreaking contributions. 

Hilbert Spaces 

In the following, we consider vector spaces H over the fields of R. of real or C. of 

complex numbers.
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Definition 

1. An inner product on a space H is a mapping  . |.  : H × H → C., such that for 
all x, y, z ∈ H . and α, β ∈ C. the following conditions are satisfied: 

. a)  αx + βy|z = α x|z + β y|z 
 x|αy + βz = α x|y + β x|z 

b)  x|y =  y|x 

c)  x|x > 0 for x  = 0

2. A Hilbert space H is a vector space with an inner product, which is complete 

with respect to the norm  x =  x|x 1/2 .. 

The completeness of a Hilbert space H means that every Cauchy sequence of 

elements xn . in H converges to an element x ∈ H ., i.e., lim
n→∞

xn . exists in H if 

and only if  xn − xm → 0. for n,m → ∞.. It is immediately apparent that 

the finite-dimensional vector spaces Rp . and Cp . with the usual scalar product are 

examples of Hilbert spaces. Infinite-dimensional examples are function spaces such 

as L2([0, T ]). or L2(R). (cf. 10.7 and 12.5). 

As with the scalar product of vectors in Rp ., for elements x, y ∈ H . the Cauchy-

Schwarz inequality holds 

. | x|y |   x  y .

Elements x, y ∈ H . are called orthogonal if  x|y = 0.. Every closed subspace V of 

a Hilbert space H is again a Hilbert space with the inner product restricted to V . Its  

orthogonal complement V ⊥ . is the set of all x ∈ H . with  x|v = 0. for all v ∈ V .. 

V ⊥ . is again a closed subspace of H . Every x ∈ H . has a unique decomposition 

x = xV + x⊥V .with xV ∈ V . and x⊥V ∈ V ⊥ .. The mapping PV : H → H ., x  → xV ., is  

called the orthogonal projection of H onto V . 

The central importance of Hilbert spaces lies in the connection of analytical and 

geometrical concepts such as angle and orthogonality, enabled by the inner product 

in H . As an example, consider the following theorem (cf., for instance, Weidmann 

(1980)), which is well known in finite-dimensional vector spaces. 

Theorem 14.1 For every element x of a Hilbert space H and for every closed 

subspace V of H , there is a uniquely determined best approximation xV ∈ V . for x, 

i.e.,  x − xV  <  x − y . for all y  = xV . from V . This best approximation for x in 

V is the orthogonal projection PV (x). of x onto V .. 

Applications of the theorem in function spaces can be found in Sects. 9.5 

and 12.5. Without proof of the defined properties, some typical examples of Hilbert 

spaces that occur in applications are given.
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Examples of Some Hilbert Spaces 

1. Square-Integrable Functions. For a domain G in Rp ., the vector space L2(G). of 

all square-integrable functions on G is a Hilbert space with the inner product 

.  f |g =
ˆ

G

f (x)g(x) dλp(x) .

2. Bandlimited Functions. The vector space PWΩ . of all functions f bandlimited 

by Ω > 0. in L2(R)., i.e., all real-valued square-integrable f with supp( f ) ⊂
[−Ω,Ω]., is a closed subspace of L2(R)., thus a Hilbert space. It is denoted 

by PWΩ . after R. Paley (1907–1933) and N. Wiener (1894–1964), who showed 

significant results on bandlimited functions (see, e.g., Rudin (1991) or Young 

(1980)). 

3. Sobolev Spaces. For a domain G in R2 ., an inner product is defined on the space 

D(G). of real-valued test functions on G (cf. 8.6) by  

.  ϕ1|ϕ2 =
ˆ

G

(ϕ1(x, y)ϕ2(x, y)+ gradϕ1(x, y) · gradϕ2(x, y)) dx dy .

Just as the set Q. of rational numbers can be extended to the complete vector 

space R.,D(G). can be extended to a vector space, which is complete with respect 

to the norm associated with the inner product and thus is a Hilbert space. It is 

denoted by H 1
0 (G). and is contained in L2(G).. As abstract as this construction 

may seem, it is important for applications. H 1
0 (G). is the Sobolev space, in which 

in Sect. 9.5 the solution and the approximate solutions with finite elements for 

the Dirichlet problem − kΔu = f . on G, u = 0. on ∂G.were found. Its elements 

are the functions that vanish on the boundary ∂G. of G and together with their 

generalized first derivatives are square-integrable. 

More generally, Sobolev spaces can also be introduced for domains in Rp .. 

They are vector spaces of regular distributions, whose derivatives up to a certain 

order are also regular. As above, derivatives can then be included in the inner 

product (see also Appendix B, p.  502). Sobolev spaces are of fundamental 

importance in the study of partial differential equations and in approximation 

theory. See, for example, Triebel (1986, 1992), Atkinson and Han (2005), and 

the references mentioned in Sect. 9.5. 

4. Square-Summable Sequences. The set l2(N). of all sequences of complex num-

bers zk ., which are square summable, i.e., for which
∞ 
k=1
|zk|2 < ∞. holds, is a 

Hilbert space with the following inner product: 

. (ak)k|(bk)k =
∞ 

k=1
akbk.
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The vector space operations in l2(N). are defined componentwise. This Hilbert 

space was used by W. Heisenberg for the formulation of quantum mechanics 

(cf., for instance, Messiah (2003)). 

Complete Orthonormal Systems in Hilbert Spaces 

Definition An orthonormal system of elements ek ., k ∈ N0 ., of a Hilbert space H is 

called complete if for every x ∈ H . 

. x =
∞ 

k=0
 x|ek ek.

Thus, with respect to a complete orthonormal system, every x ∈ H . can be 

represented by its Fourier series with the Fourier coefficients  x|ek .. The following 
theorems can be proven (cf. Triebel 1992 or Weidmann 1980): 

Theorem 14.2 For an orthonormal system (ek)k∈N0
. in a Hilbert space H , the  

following are equivalent: 

1. The system of ek ., k ∈ N0 ., is complete. 
2. For x ∈ H ., it holds that x = 0. if and only if  x|ek = 0. for all k ∈ N0 .. 
3. For every x ∈ H ., the Parseval equation  x 2 =

∞ 
k=0
| x|ek |2 . holds. 

Theorem 14.3 For an orthonormal system (ek)k∈N0
. in a Hilbert space H and 

coefficients ck ., the series
∞ 
k=0

ckek . converges in H if and only if the coefficients 

ck . are square summable, i.e., if 

. 

∞ 

k=0
|ck|2 <∞.

Theorem 14.4 Let (ek)k∈N0
. be an orthonormal system in a Hilbert space H and 

V the closed subspace of H generated by it. The orthogonal projection xV . of an 

element x ∈ H . onto V . is then given by 

. xV =
∞ 

k=0
 x|ek ek.

Without proofs, we give some examples of how the expansion according to 

complete orthonormal systems in Hilbert spaces can be applied. Instead of the 

countable index set N0 . as above, other countable sets can also be chosen as index 

sets of the orthonormal system.
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Examples of Specific Complete Orthonormal Systems in Hilbert 

Spaces 

1. The Haar system. The step function ψ(t) = s(t) − 2s(t − 1/2) + s(t − 1). (s(t) 

the unit step function) is the Haar wavelet, which we will use in the next section. 

The functions ψn,k(t) = 2n/2ψ(2nt−k).with n, k ∈ Z. build a classical complete 

orthonormal system in L2(R)..The Haar system has applications, for example, in 

the numerical solution of linear integral equations. 

2. Trigonometric Functions. In the Hilbert space L2([0, T ])., the functions 

. 1,
√
2 cos(2πkt/T ) and

√
2 sin(2πkt/T ) for k ∈ N

with the inner product defined on p. 12 form a complete orthonormal system. 

For the Hilbert space of complex-valued L2
. functions on [0, T ]., the functions 

ej2πkt/T
.with k ∈ Z. form such a system. 

3. Chebyshev Polynomials. The Chebyshev polynomials Tn ., for n ∈ N0 . given by 

. Tn(x) = cos(n arccos x),

form a complete orthogonal system in the real Hilbert space L2
w([−1, 1]). with 

the weight function w(x) = 1/
√
1− x2 . and the inner product introduced in 

Sect. 6 on p. 108. There, applications in interpolation, approximation, numerical 

integration, and the design of low-pass filters were shown. 

4. Hardy Functions. In the Hilbert space PWΩ . of L2
. functions bandlimited by Ω ., 

equipped with the inner product of L2(R)., the functions 

. ek(t) =
 

Ω

π

sin(Ωt − kπ)

Ωt − kπ

form a complete orthonormal system (k ∈ Z.), named after G. H. Hardy (1877– 

1947). The series expansion f =
+∞ 

k=−∞
 f |ek ek . yields the Shannon sampling 

theorem (cf. 12.1) for functions f from PWΩ .. 

5. Hermite Functions. The Hermite functions hn ., n  0., on  R. are given by (see 

also p. 296) 

. hn(x) = (−1)n(2nn!
√
π)−1/2ex

2/2 dn

dxn e
−x2.

They form a complete orthonormal system in L2(R).. In quantum mechanics, 

a one-dimensional harmonic oscillator with a quadratic potential x2κ/2. is 

described by the Hamilton operator H. with the reduced Planck constant h̄ =
h/(2π). 

.Hf (x) = −
h̄2

2m
f   (x)+

κ

2
x2f (x)
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in L2(R).. It has the functions hn(αx)., α = (κm)1/4/h̄1/2 ., n  0., as  

eigenfunctions. The corresponding eigenvalues are the discrete energy levels 

En = h̄
√
κ/m(n+1/2)., which the harmonic oscillator can have in the stationary 

state. The study of the harmonic oscillator was a starting point for quantum 

mechanics for the pioneers including E. Schrödinger and is closely linked to 

Fourier analysis (see p. 407). Still today the harmonic oscillator is a relevant 

model with profound applicability across physics. Countless systems exhibit 

nearly harmonic behavior making the model relevant, from the study of atoms 

and subatomic particles to quantum computing. 

6. Legendre Polynomials and Spherical Harmonics. For k  0., the  k-th Legendre 

polynomial Pk . on [−1, 1]. is defined as the function 

. Pk(t) =
1

2kk!
dk

dtk
(t2 − 1)k.

The Legendre polynomials form a complete orthogonal system in the real vector 

space L2([−1, 1]). with the inner product  f |g =
+1
´

−1
f (t)g(t) dt .. They allow 

polynomial approximations with the smallest mean square error for functions in 

this Hilbert space. Their norm in L2([−1, 1]). is  Pk =
√
2/(2k + 1).. 

With the Legendre polynomials, the spherical harmonics Yl,m ., l ∈ N0 .,m ∈ Z., 
|m|  l ., are defined. For spherical coordinates θ ∈ [0, π ]., φ ∈ [0, 2π [., they are  

. Yl,m(θ, φ) =

 
2l + 1

4π

(l − |m|)!
(l + |m|)!

Pl,|m|(cos θ)e
jmφ

with Pl,m(t) = (−1)m(1−t2)m/2 dm

dtm
Pl(t). for 0  m  l .. The spherical harmon-

ics Yl,m ., l ∈ N0 ., |m|  l ., on the unit sphere S of R3 . form a complete orthonormal 

system in L2(S).. They find applications in solving potential problems with given 

boundary values on a spherical surface and in series expansions of potentials 

generated by spatially limited charge distributions. These series are known as 

multipole expansions in physics. 

7. Laguerre Functions. The n-th Laguerre polynomial is 

. Ln(x) =
n 

k=0

 
n

k

 
(−1)k

k!
xk.

We find L0(x) = 1., L1(x) = 1− x ., L2(x) = (2− 4x + x2)/2 . . . . 

The functions fn(x) = e−x/2Ln(x)., x  0., build a complete orthonormal 

system in the Hilbert space L2([0,∞[).. The associated Laguerre polynomials 

Lm
n . for m ∈ N0 . are
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. Lm
n (x) = (−1)m

dm

dxm
Ln+m(x) =

n 

i=0

 
n+m

n− i

 
(−x)i

i!
.

For example, L1
1(x) = 2− x ., L1

2(x) = (6− 6x + x2)/2 . . . . 

The Laguerre functions Rn,l . in L2([0,∞[). are then defined for n  l + 1. by 

. Rn,l(x) = e−x/2xlL2l+1
n−l−1(x).

They play an important role in quantum mechanics. Quantum physics describes 

atoms and particles on a microscopic scale, and quantum effects permeate our 

everyday lives. Quantum effects range from light to atomic clocks in GPS 

satellites, computers and phones with transistors, semi-conductors, etc. Molec-

ular structures in chemistry can be investigated experimentally using quantum 

mechanical models. The experimental methods for that are, for example, X-

Ray Crystallography, Electron Diffraction, NMR Spectroscopy, et.al. Known 

molecule structures, their geometric shape, or orbital configurations (see below) 

form the cornerstone of modern synthetic chemistry with its thousands of 

compounds and products. Therefore, some fundamental facts are outlined below 

with the nonrelativistic Schrödinger equation and its Hamilton operator for 

the hydrogen atom. The Hamilton operators in quantum mechanics are closely 

connected with the Fourier transform (cf. Sect. 12.4). 

Laguerre Functions and Spherical Harmonics in Quantum Mechanics 

Spherical harmonics and Laguerre functions are fundamental in quantum mechan-

ics. The wave functions for atoms, i.e., the eigenfunctions of the corresponding 

Hamilton operators, determine—with corresponding eigenvalues and dimensions 

of the eigenspaces—the probability densities for the localization of electrons by a 

measurement, e.g., in the shell model in chemistry. These densities are also called 

Orbitals and can be approximately illustrated by density plots for regions, where 

electrons are most likely in. The term “ Orbital” is also used to indicate such a 

region. The Hamilton operator H. for the neutral hydrogen atom (or atoms similar 

to it, e.g., He + ., Li  ++ .) without outer forces and without spin is the basic model. 

Atomic hydrogen constitutes about 75 %. of the baryonic mass of the universe. 

The nonrelativistic, time-independent Schrödinger equation in this model is 

given by 

. Hψ =
 
−

h̄2

2M
Δ−

Ze2

4π 0r

 
ψ = Eψ,

where h̄ = h/(2π). is the reduced Planck constant, M the reduced mass of the atom, 

Ze the nuclear charge, and Ze2/(4π 0r). the according potential (cf. p. 233). The 

atomic nucleus is assumed to be at rest. The operator Δ. is the Laplace differential 

operator, and the ψ . are functions with spherical variables (r, θ, φ).. The solutions ψ .
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of the equation are eigenfunctions of H.with according eigenvalues E. We retain the 

term wave function, even if the eigenfunctions in the example are time-independent. 

The eigenvalues of ψ . are the possible energies of the atom in state ψ .. Without going 

into details—see, for example, Dirac (1958), Messiah (2003), or Triebel (1992) for  

that—some summarized facts are as follows: 

The equation can be solved in spherical coordinates by separation of the vari-

ables, and one obtains for the bounded state of the atom the system of eigenfunctions 

. ψn,l,m(r, θ, φ) = Cn,l,mRn,l(2Zr/(na0))Yl,m(θ, φ).

Therein, n is the principal quantum number, which describes the shell of an electron, 

the quantum numbers l = 0, . . . , n − 1. denote subshells with the orbital angular 

momentum L = h̄2l(l + 1).. The magnetic quantum number m, |m|  l ., describes a 

specific orbital within a subshell and yields the projection of the orbital angular 

momentum along a specified axis, if an external magnetic field is applied. The 

constant a0 . is the Bohr radius. All quantum numbers are integers. The constants 

Cn,l,m . have to be chosen so that the functions |ψn,l,m|2 . are probability densities. 
The eigenvalue for an eigenfunction with principal quantum number n is 

. En = −
Me4Z2

8 20h
2n2
= −Ry

Z2

n2
(n ∈ N).

Ry = Me4/(8 20h
2). is the Rydberg energy, and En . is the energy level of the shell 

n. The according eigenspace has dimension n2 . and is spanned by the orthogonal 

functions ψn,l,m . for l = 0, . . . , n − 1. and − l  m  +l .. The obtained 
normalized eigenfunctions are products of Laguerre functions for the radial part 

Rn,l . and spherical harmonics Yl,m . for the angular part. They are explicitly given by 

. ψn,l,m(r, θ, φ) =
  

2Z

a0n

 3
(n− l − 1)!
2n(n+ l)!

 1/2

Rn,l

 
2Zr

a0n

 
Yl,m(θ, φ).

We observe that the support of a functionψn,l,m . is unbounded. Thus, if the atom is in 

such a state, then the probability for the location of an electron in the associated shell 

for any region in space is positive as a consequence of the probabilistic interpretation 

of quantum mechanics. We also notice that any other function in the n2 .-dimensional 

eigenspace of ψn,l,m . is also an eigenfunction with the same eigenvalue En .. The  

factor a
−3/2
0 . with the unit length−3/2 . of Rn,l . is necessary for a dimensionless 

probability density when we integrate |ψn,l,m|2 . over space. 
In chemistry and spectroscopy, the probability densities with quantum number 

l = 0. are denoted as s-orbitals, for l = 1. as p-orbitals, for l = 2. as d-orbitals, and 

l = 3.as f-orbitals. The notation 2s2 ., for example, then denotes the s-orbital with two 

electrons for the quantum numbers n = 2. and l = 0.. The orbital 2pz . has quantum 

numbers n = 2., l = 1., m = 0., and 2px, 2py . are those for n = 2, l = 1, m = ±1..
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We describe the wave functions for the orbitals 1s, 2s, and the three 2p orbitals, and 

see below a density plot of the probability distribution of the 2pz . orbital. For n = 1. 

we have E1 = −RyZ
2
. and the wave function with ρ = Zr/a0 . 

. 1s : ψ1,0,0(r, θ, φ) =
1
√
π

 
Z

a0

 3/2

e−ρ .

For n = 2. we have E2 = −RyZ
2/4. and n2 = 4. wave functions, again with ρ =

Zr/a0 .. In the angular parts of ψ2,1,−1 . and ψ2,1,1 ., the two real orthogonal functions √
2 sin(φ). and

√
2 cos(φ). are chosen instead of the two complex valued functions 

e±jφ . on [0, 2π ].. 

. 

2s : ψ2,0,0(r, θ, φ) =
1

4
√
2π

 
Z

a0

 3/2

(2− ρ)e−ρ/2

2pz : ψ2,1,0(r, θ, φ) =
1

4
√
2π

 
Z

a0

 3/2

ρe−ρ/2 cos(θ)

2py : ψ2,1,−1(r, θ, φ) =
1

4
√
2π

 
Z

a0

 3/2

ρe−ρ/2 sin(θ) sin(φ)

2px : ψ2,1,1(r, θ, φ) =
1

4
√
2π

 
Z

a0

 3/2

ρe−ρ/2 sin(θ) cos(φ).

For hydrogen with Z = 1. the energies are approximately E1 = −13.6. eV, and for 
excited states n = 2. and n = 3. we have E2 = −3.4. eV, E3 = −1.51. eV, i.e., 
the energy levels of the orbitals increase with n. Illustrations for eigenvalues and 

orbitals are shown in Figs. 14.1, 14.2 and 14.3. 

Hydrogen Spectrum 

When the H-atom absorbs energy, such that the electron changes its position with 

principle quantum number n to an orbital with a quantum number k > n., i.e., with 

greater energy, it emits electromagnetic waves of the frequencies νn,k . given in the 

next formula. As in Fig. 14.1, we can observe the wavelengths of the visible Balmer 

series in the hydrogen spectrum (J. J. Balmer, 1885). 

. νn,k =
1

h
(Ek − En) = R

 
1

n2
−

1

k2

 
with 1  n < k.

R is the Rydberg frequency R = Ry/h = 3.2898419602500(36) · 1015 . Hz. The 
measured wavelengths of the Balmer series in vacuum λ = c/ν ., c the light speed, 

with n = 2. nm are λ1 = 656.4628. (red, k = 3.), λ2 = 486.2711. (turquoise, k = 4.), 

λ3 = 434.1687. (indigo, k = 5.), λ4 = 410.2882. (violet, k = 6.), λ5 = 397.1187. 

(violet, k = 7.) . . . . Minor differences in high-precision measurements compared 

with the above formula are due to the simplifications in the mathematical model. 

In a constant magnetic field, the spectrum splits and is therefore more diverse with 

correspondingly more energy levels.
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Fig. 14.1 Visible spectrum 

of the Balmer series 

Fig. 14.2 Density plot of the 

2pz . orbital in the half-space 

y  0. 

Fig. 14.3 Isosurfaces of 

tetrahedrally sp3
. hybridized 

H 2 .O orbitals  

For the water molecule H 2 .O in Fig.  14.3, please see the end of the section. The 

angles between the orbitals are slightly different from those in a regular tetrahedron. 

Atoms with Multiple Electrons and the Periodic Table of 

Elements 

Atoms with multiple electrons have potentials too complicated for an analytic 

solution of the corresponding eigenvalue problem. Thus, the hydrogen model and 

its orbitals, as described above, are also used as approximations for atoms of the 

elements in chemistry with additional rules of W. Pauli (1900–1958) for electrons 

with spin and the rules of E. Madelung (1881–1972) and F. Hund (1896–1997) for 

electron configurations. The spin of electrons was introduced in 1925 by W. Pauli in 

agreement with results as in the Stern-Gerlach experiment in 1922. Pauli considered 

the spin as an abstract particle property without a concrete physical interpretation. 

The spin is denoted as a fourth quantum number ms ., which has for electrons the two 

possible values ±1/2.. It is common to denote it also by two different arrows for the 

two cases, thus by an ↑. or a ↓.. Further modifications and theoretical extensions 

came with Dirac’s work on relativistic quantum theory (cf. Dirac 1958). We leave 

all this aside for a good reason (it would require much more advanced mathematics) 

and briefly see how the periodic table in chemistry can be described to a large extent 

using the nonrelativistic model so far with additional occupation rules for orbitals 

with electrons according to W. Pauli, E. Madelung, and F. Hund.
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The rules for electron configurations in orbitals say that positions of electrons in 

the ground state are in the orbitals of the lowest possible energy. The Pauli principle 

says that two electrons each in an atom must have different sets of the four quantum 

numbers (n, l,m,ms).. Thus, each suborbital, described by its quantum numbers, 

can have maximally two electrons with opposite spin. The rules of E. Madelung 

and F. Hund in chemistry now say that orbitals are filled with electrons in the so-

called n + l . order (n, l the quantum numbers as above). This means that orbitals 

with a lower n + l . value are filled before those with a higher n + l .. If two  

orbitals have the same n + l ., then that with lower n is occupied. Thus, we have 

the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s . . . . in the following illustration along the 

diagonals. Furthermore, orbitals in that order with equal energy are occupied first 

with single electrons of the same spin before electrons with opposite spin can join 

them.1 

With these rules one can find the electron configurations of the atoms in the 

periodic table, with some exceptions due to electron interactions, shielding, and 

relativistic effects, which are neglected in this model. 

Let us give examples for a few elements with their respective four quantum 

numbers: Helium [He] has the configuration (1, 0, 0,↑). and (1, 0, 0,↓)., i.e., 1s2 .. 
Lithium [Li] with three electrons has the configuration [He] plus 2s1 ., i.e., [He] 

plus (2, 0, 0,↑).. Oxygen with eight electrons has the configuration 1s2, 2s2,. and 

2p4
., which means 2p2

z , 2p
1
x, 2p

1
y .. Exceptions, for example, are Copper [Cu], Silver 

[Ag], Gold [Au], and some others. 

Chemical reactions like ionization and bonds take place between outer, partially 

unoccupied orbitals of the atoms involved. Therefore, elements (for low quantum 

numbers n) with the same number of electrons in their outer shell are chemically 

similar and form a group in a column of the periodic table. Each row in the table 

ends with an atom having a fully occupied outer shell. In this group with number 18 

in the table are the noble gases from He to Og, which are inert from He to Ar. From 

Kr to Og the elements are able to form compounds under certain conditions. 

The H 2 .O Water Molecule 

There exist two main theories of structure and bonding in molecules, the first 

being Valence Bond Theory, which began in 1927 with the work of W. Heitler

1 It is worth watching the videos on chemistry in the MIT OpenCourseWare project. 
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and F. London, and the second the Molecule Orbital Theory (MOT), for which 

R. S. Mulliken was awarded the 1966 Nobel Prize in Chemistry. Both theories are 

used widely today with molecular modeling computer programs, though for usually 

different purposes. References, as an incentive to learn more on molecules and 

their chemical reactions, could be Huheey et al. (1993) for structures in inorganic 

chemistry, Shaik and Hiberty (2010) for Valence Bond Theory, and Fleming (2009) 

for Molecular Orbital Theory. 

The last point of this section is a short explanation of the above image right of 

a hybridized oxygen atom in valence bond with two hydrogen atoms to our life 

spending water molecule H 2 .O. 

The concept of hybridized atoms was developed about 1932 by L. Pauling (1901– 

1994) to describe observed molecule formations like CH 4 . or H 2 .O in terms of 

quantum mechanics. The key lies in the fact that wave functions, i.e., eigenfunctions 

of H., are replaced in the same eigenspace by suitable linear combinations of them, 

and thus the corresponding energy is retained. For the water molecule shown above, 

this means that the four wave functions 2s2 .: ψs = ψ2,0,0,↑↓ ., 2p2
z .: ψpz = ψ2,1,0,↑↓ ., 

2p1
x .: ψpx = ψ2,1,1,↑ ., 2p1

y .: ψpy = ψ2,1,−1,↑ . of oxygen are replaced by four linear 
combinations of them in the same eigenspace for quantum number n = 2., which 

in turn represent an orthonormal basis of the eigenspace. According to Valence 

Bond Theory, the H 2 .O molecule consists of the three 1s orbitals of oxygen and 

hydrogen, and linear combinations of eigenfunctions in four so-called sp3
. hybrid 

orbitals, built of the 2s and 2p orbitals of oxygen. A hybridization of H 2 .O is  

confirmed experimentally using various methods. A new eigenspace basis with four 

sp3
. orthonormal hybrid orbitals is given, for example, by the following mixing: 

. 

ψ1 =
1

2

 
ψs + ψpx + ψpy + ψpz

 
, ψ2 =

1

2

 
ψs − ψpx − ψpy + ψpz

 
,

ψ3 =
1

2

 
ψs + ψpx − ψpy − ψpz

 
, ψ4 =

1

2

 
ψs − ψpx + ψpy − ψpz

 
.

This mathematical hybridization results in orbitals having the shape of a regular 

tetrahedron as shown in the right image above. However, the experimentally 

confirmed angles between the orbitals are slightly different from those of a regular 

tetrahedron, usually explained by electron repulsions in the molecule between the 

bonding and the nonbonding orbitals (104.5 ◦ . between the two bonding orbitals 
instead of 109.47 ◦ .). This is one of the reasons that other mixings of the s and p 

orbitals than above have been studied to predict the shape and angles of the H 2 .O and 

other molecules. In Molecule Orbital Theory electrons are not assigned to individual 

orbitals in chemical bonds but can be delocalized and moving under the influence of 

the atomic nuclei in the whole molecule. Without going further into details beyond 

the scope of this text and outside of the author’s experience, it is referred to the 

abovementioned books on chemistry covering the present state of the theories. 

As a fact, especially organic molecules with bonds of C, H , and O (C for 

Carbon) have many hybridized atoms, and knowing them allows chemists—with
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a whole host of other methods—to predict their geometric shape and to plan new 

molecules. 

Final Remarks 

(i) The presented theory is not relativistically invariant. With Dirac’s theory 

one obtains a split hydrogen spectrum, which depends on Sommerfeld’s fine 

structure constant α .. Physicists then speak of the fine structure of the H-

spectrum. For that, readers are referred to the literature on relativistic quantum 

mechanics and quantum field theory. 

(ii) All linear combinations in an eigenspace are of course also possible states of 

the atom with the same energy levels. The true states of atoms or molecules 

and their orbitals must therefore be determined and confirmed by experiments 

in physics. 

(iii) All assertions in quantum mechanics must be interpreted in a probabilistic 

sense, and we remember that existing orbitals have unbounded support. When 

an orbital of our mathematical model is not occupied by an electron, then of 

course the probability to measure it is zero and thus that orbital simply does 

not exist in physical reality. The outlined model does not make any predictions 

about the shape of molecules. Many additional studies are therefore necessary, 

for example, on the influence of electron interactions, the influence of nuclei, 

the influence of external fields, and relativistic effects, to name but a few. And 

there are still scientific discussions about the scope and limitations of quantum 

physics. All this is left to interested readers for further work. 

To summarize, this section has given us an idea of the scope of the Hilbert 

space concept and its applications in very different areas. Orthonormal systems of 

special functions enable solutions of approximation problems, classical differential 

and integral equations of mathematical physics, signal processing, and a first 

understanding of quantum mechanics. 

14.2 Wavelets 

A more recent development in applied mathematics is wavelet theory. Wavelet 

theory is again formulated in the framework of Hilbert spaces and closely linked 

to Fourier analysis. A wavelet is a special function that, under suitable conditions, 

allows to construct a complete orthonormal system in a Hilbert space H like L2(R).. 

Elements f of H can then be expanded into series with this orthonormal system as 

described in the previous section. Wavelets and associated series expansions have 

been used since A. Haar (1885–1933) in mathematics, physics, and engineering 

for various applications, with a unified theory emerging since the late 1970s. An 

overview of the historical development of the theory is given by Meyer (1993). 

Detailed presentations can be found, for example, in Daubechies (1992), Chui 

(1992), Grafakos (2008), Grafakos (2010), Holschneider (1999), Mallat (2009), 

Meyer (1995), or Blatter (2003).
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Wavelets have become particularly well known due to their success in signal 

compression. These successes are especially based on fast recursive algorithms for 

computing wavelet decompositions. The objectives of this section are to present 

some fundamental concepts of wavelet theory in the vector space L2(R). and 

to develop the algorithms for fast wavelet transform. Finally, we will show an 

example of image data compression with wavelets and image reconstruction from 

the compressed data, an example of image denoising, and a comparison of a 

spectrogram with an STFT to a corresponding wavelet scalogram of a short piece 

of music. For this purpose, we initially refer to time-frequency analysis treated in 

Sect. 12.5. 

Time-Frequency Analysis with the Windowed Fourier Transform 

The classical Fourier transform uses the periodic functions ejωt
., ω ∈ R., for signal 

analysis. All these functions are derived by scaling from the function ej t .. The scale 

parameter is the angular frequency ω .. The spectral function  f . of a signal f shows 

summarily the components of the oscillations ejωt
. in the signal but does not provide 

any information about the time-frequency pattern of the analyzed signal f (cf. 

p. 409). A method for time-frequency analysis is the windowed Fourier transform. 

For a chosen time window w  = 0., the corresponding windowed Fourier transform 

. Gwf = f̃ with f̃ (ω, t) =  f (s)|w(s − t)ejωs =
+∞
ˆ

−∞

f (s)w(s − t)e−jωs ds

is a continuously invertible mapping from L2(R). to L2(R2). (cf. p. 413). In the 

inversion formula ( w . is the L2
.-norm of w) 

. f (t) =
1

2π w 2

+∞
ˆ

−∞

+∞
ˆ

−∞

f̃ (ω, s)w(t − s)ejωt dω ds

from p. 413, the signal f is represented as a superposition of the functions wω,s(t) =
w(t − s)ejωt

.. The “building blocks” wω,s(t). of the windowed Fourier transform are 

again derived from scalings ejωt
.of the “mother function”w(t)., so that the functions 

wω,s . belong to L2(R).. By translating the window with the parameter s, the entire 

time axis is covered. 

Under suitable conditions on the window function w and the sampling points 

(kω0, nt0). in the time-frequency domain (k, n ∈ Z.), complete systems of functions 

wkω0,nt0 . can be found in L2(R)., which allow for discrete reconstruction formulas, 

i.e., series representations for signals f ∈ L2(R).with the “building blocks”wkω0,nt0 . 

(cf. p. 415). However, the drawbacks of the windowed Fourier transform are shown
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in the statements on p. 416. One disadvantage is also the always equal duration 

and bandwidth of all functions wω,s . (cf. p. 410). The uncertainties in the time 

and frequency resolution determined by the window w are always the same for 

all functions wω,s . across the entire time-frequency domain. However, since the 

frequency is proportional to the number of oscillations per unit of time, a precise 

analysis of short-term high-frequency signal components requires a sharper time 

resolution, i.e., a shorter duration of the window than for signal components with 

large wavelengths, which require a wide time window (cf. also 12.8). Therefore, the 

windowed Fourier transform is poorly suited for studying signals that contain both 

very high and very low frequencies. 

Time-Scale Analysis with the Wavelet Transform 

In wavelet theory, instead of using amplitude-modulated oscillationswω,s . to analyze 

signals, one uses scalings and translations of a single, with an admissibility 

condition freely selectable “window function” ψ .. The function ψ . is called a 

wavelet. 

Definition A function ψ ∈ L2(R). that satisfies the admissibility condition2 

. 0 < Cψ =
+∞
ˆ

−∞

| ψ(ω)|2

|ω|
dω <∞

is called a wavelet. The wavelet transformWψf . of a function f ∈ L2(R). is defined 

with R∗ = R \ {0}., (a, b) ∈ R∗ × R., and ψa,b(t) = |a|−1/2ψ
 
t − b

a

 
. by 

. Wψf (a, b) =  f (t)|ψa,b(t) =
+∞
ˆ

−∞

f (t)|a|−1/2ψ
 
t − b

a

 
dt .

Some Fundamental Properties of the Wavelet Transform 

1. With the admissibility condition for a wavelet ψ ., it can be shown that the wavelet 

transform Wψ . has a continuous inverse mapping. Integrable wavelets ψ . fulfill 

 ψ(0) =
+∞́

−∞
ψ(t) dt = 0., because the admissibility condition implies that the

2 The value of the constant Cψ . depends on the used convention for the Fourier transform. 
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integrand | ψ(ω)|2/ω. must not have a singularity at ω = 0.. This can only be 

true, if  ψ(0) = 0.. With that condition we also recognize that the functions 

ψa,b . act as bandpass filters. If ψ  = 0. has a bounded support, then the graph 

of ψ . looks like a “small wave” with values above and below the real axis 

due to this condition, explaining the term “wavelet.” It can be shown that the 

set of functions ψa,b . is dense in L2(R).. From  ψa,b =  ψ . it follows that 
lim

(a,b)→(a0,b0)
 ψa,b −ψa0,b0 = 0..Thereby, with the Cauchy-Schwarz inequality 

one obtains that Wψf . is continuous as a function in (a, b). (Exercise). 

2. If a wavelet ψ .has a time durationDt (ψ).with the time center t∗ . (see p. 410) and a 
bandwidth Dω(ψ).with the frequency center ω∗  = 0., then the “analysis building 

blocks” ψa,b . have the time duration Dt (ψa,b) = aDt (ψ). with the time center 

b + at∗ . and the bandwidth Dω(ψa,b) = a−1Dω(ψ). with the frequency center 

a−1ω∗ .. Thus, the scale parameter a changes the time-frequency localization. The 

time duration and bandwidth of ψa,b . are measures of the uncertainty in time and 

frequency resolution when analyzing signals with the family ψa,b . (see 12.5). 

To illustrate, if one imagines a wavelet ψ . as a time window that vanishes 

outside a bounded interval, then the parameter b shifts the wavelet so that 

Wψf (a, b) =  f |ψa,b . contains local information about f around the time 

point b + at∗ .. The parameter a controls the width of the window. Short-term 

high-frequency components of f , for example, with the angular frequency ω0 ., 

are localized with high temporal resolution by small parameters a = ω∗/ω0 ., 

since the time duration aDt (ψa,b). of the window ψa,b . becomes small with a. 

Low-frequency signal components can be correspondingly localized with large 

parameter values a, wide time windows, and high-frequency resolution. This 

“zoom property,” i.e., adjusting the window width in different frequency ranges, 

is a decisive advantage of the wavelet transform over the windowed Fourier 

transform when analyzing the time-frequency pattern of signals. 

3. From the Plancherel equation follows the “frequency representation” for the 

wavelet transform of a signal f in L2(R). 

. Wψf (a, b) =
|a|1/2

2π
  f (ω)| ψ(aω)e−jωb =

|a|1/2

2π

+∞
ˆ

−∞

 f (ω) ψ(aω)ejωb dω .

If  ψ . is concentrated around ω∗  = 0., then  ψ(aω). is concentrated around 

ω∗/a .. For  a fixed  a, the wavelet transform Wψf (a, b). as a function of b is 

primarily determined by the frequencies of f around ω∗/a .. Associating different 

frequencies with details of different sizes, the significance of the scale parameter 

a becomes clear: For a fixed a, the wavelet transform Wψf (a, b). contains 

information about details of “size” ω∗/a . that the signal f contains in a time 

neighborhood of b + at∗ .. Since the detail resolution is determined by the scale 

parameter a, the signal analysis with the wavelet transform is called time-scale 

analysis. The wavelet transformWψf . corresponds for fixed a to a filtering of f 

with the frequency response |a|1/2(2π)−1 ψ(aω). (see 11.2). The larger a is, the



464 14 Outlook on Further Concepts

more f is smoothed; the smaller a becomes, the more details of f become visible 

through the “optics” of this filter. Thus, in applications with software for signal 

processing, continuous wavelet transforms are realized by filter banks, i.e., arrays 

of bandpass filters based on wavelet frequency responses as described above, and 

a signal is processed with the filters of the array. The smaller a > 0. is, the greater 

the bandwidth of these filters. By software, the transform is accomplished with 

signal samples and discrete bandpass filters. 

The Haar Wavelet 

The Haar wavelet is the function 

. ψ(t) =

⎧
⎨
⎩
1 for 0  t < 1/2

−1 for 1/2  t < 1

0 otherwise.

The function system ψn,k ., named after A. Haar (1885–1933), n and k from Z., 

. ψn,k(t) = 2n/2ψ(2nt − k),

is a classical complete orthonormal system in the real vector space L2(R)., generated 

by scalings and translations of ψ .. The proof of this statement can be found, for 

example, in Daubechies (1992) or can be provided by the readers themselves. The 

Fourier transform of ψ . is 

.  ψ(ω) =
sin(ω/4)2

ω/4
e−j (ω−π)/2.

The constant Cψ . (see p. 462) is Cψ = 2 ln(2).. Figures 14.4, 14.5, and 14.6 show 

the Haar wavelet ψ ., the function ψ2,12(t) = 2ψ(4(t − 3))., the function f 

. f (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t for 0  t < 1

2− t for 1  t < 2

1 for 3  t < 4

0 otherwise,

and the wavelet transform of f for 0 < a < 2. and 0 < b < 4. (right). The 

wavelet transform has larger magnitudes here due to the coarse structure of f 

for higher values of a and vanishes for a → 0., as  f does not exhibit “short-

term fine structures.” For a = 2. we observe a smoothed version of f . More  

precise interpretations of wavelet transforms, for example, concerning relationships 

between local properties of functions f and growth properties of their wavelet
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Fig. 14.4 Haar wavelets 

Fig. 14.5 A function f 

Fig. 14.6 Wavelet transform 

of f 

transforms, can be found in the aforementioned additional literature. Readers are 

encouraged to experience and interpret wavelet transforms of own examples with 

mathematics software. 

Pointwise Inversion Formula for the Wavelet Transform 

In a similar way to the windowed Fourier transform, an inversion formula can be 

proven for the wavelet transform. In the following, we denote R∗ = R \ {0}. and 
R2− = R∗×R.. The vector spaceW = L2(R2−, |a|−2 da db)). is a Hilbert space with 
the inner product 

.  u|v W =
ˆ

R
2
−

u(a, b)v(a, b)|a|−2 da db .

Theorem 14.5 For f and g in L2(R). and an admissible wavelet ψ ., it holds the 

orthogonality relation 

. Wψf |Wψg W = Cψ  f |g .
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Here, Cψ . is the constant in the admissibility condition for ψ .. In particular, 

C
−1/2
ψ Wψ . is a norm-preserving linear mapping from L2(R). to W , which has a 

norm-preserving inverse mapping. 

Proof With F(ω) =  f (ω) ψ(aω)., G(ω) =  g(ω) ψ(aω)., a  = 0., and the “frequency 

representation” of a wavelet transformed signal (see p. 463), we have with the 

Plancherel equation and the Fourier transform with a scaled variable 

. 
2π |a|
a2

+∞
ˆ

−∞

Wψf (a, b)Wψg(a, b) db =
1

2π

ˆ

R

 G(b) F(b) db =
ˆ

R

G(ω)F(ω) dω .

Again with the Plancherel equation and interchanging the order of integrations by 

the Fubini-Tonelli theorem (cf. Appendix B), we obtain (with substitution aω = y .) 

.  Wψf |Wψg W =
ˆ

R∗

⎧
⎨
⎩

ˆ

R

Wψf (a, b)Wψg(a, b) db

⎫
⎬
⎭ |a|

−2 da

=
1

2π

ˆ

R

⎧
⎨
⎩
 f (ω) g(ω)

ˆ

R∗

| ψ(aω)|2

|a|
da

⎫
⎬
⎭dω = Cψ

1

2π

ˆ

R

 f (ω) g(ω) dω = Cψ  f |g .

  

Here, Cψ . is the constant in the admissibility condition for ψ .. In particular, 

C
−1/2
ψ Wψ . is a norm-preserving linear mapping from L2(R). to W , which 

has a norm-preserving inverse mapping. Because C
−1/2
ψ  Wψf  W =  f  ., 

C
−1/2
ψ |Wψf |2 . can be interpreted as the energy density of the signal f in the 

(a, b). plane.  f  . is the norm of f in L2(R).. 

Now, the functions hα(t) =
1

2
√
πα

e−t
2/(4α)

. build an approximate identity in 

L1(R). (cf. Exercise A14 in Chap. 9) and f ∗ hα(t) → f (t). for continuous f ∈
L1(R). and α → 0+.. Thus, with hα,t (s) = hα(s − t). for integrable continuous 

wavelets ψ . and integrable continuous signals f , 

. C−1ψ  Wψf |Wψhα,t  W =  f |hα,t  −→
α→0+

f (t),

and on the other hand, Wψhα,t (a, b) → |a|−1/2ψ
 
t − b

a

 
. holds for α → 0+.. In  

summary, we have proven the following theorem about the inversion of the wavelet 

transform. Other inversion theorems can be found in Daubechies (1992). 

Theorem 14.6 (Pointwise Inversion Formula) For an admissible wavelet ψ ., the  

wavelet transformWψ . is a continuous, continuously invertible mapping fromL2(R). 

to
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. W = L2(R2−, a−2 da db) with  Wψf  W = C
1/2
ψ  f  .

For continuous signals f ∈ L1(R)∩L2(R). and continuous ψ ∈ L1(R)∩L2(R)., it  

holds at every t 

. f (t) = C−1ψ

+∞
ˆ

−∞

+∞
ˆ

−∞

Wψf (a, b)|a|−1/2ψ
 
t − b

a

 
da db

a2
.

Analogous to the inversion formulas of the classical Fourier transform and the 

windowed Fourier transform, here f is represented with the wavelet transform as a 

superposition of the “building blocks” ψa,b . with the “amplitudes”  f |ψa,b =
Wψf (a, b).. Mathematical applications of the continuous wavelet transform 

include, for example, the study of local and global regularity properties of functions 

(see, e.g., Holschneider 1999). Over the years, many different wavelet families 

have been developed with different properties (disappearing moments, compact 

support, smoothness properties, etc.) for various purposes. Practical applications of 

the continuous wavelet transform range from music software (e.g., pitch-shifting 

and time-stretching) to real-time signal analysis in the military sector. 

Discrete Wavelet Transform and Multiscale Analysis 

In numerical applications, valuesWψf (a, b). of a wavelet transformed signal f can 

usually only be calculated for parameter values (a, b). from a countable, discrete 

set S. The question then arises under what conditions on the wavelet ψ . and on 

the set S of sample points a stable reconstruction of the signal f from the values 

Wψf (a, b) =  f |ψa,b ., (a, b) ∈ S ., of its wavelet transform is possible. 

Stability means that small perturbations in the coefficients  f |ψa,b . also result 
in only small deviations from f in the reconstruction. This is exactly the case when 

the mapping f  → ( f |ψa,b )(a,b)∈S . from L2(R). to l2(S). (see p. 450) is invertible 

and continuous in both directions, i.e., if there are constants A > 0. and B > 0. such 

that for all f ∈ L2(R). the following inequality holds: 

. A  f  2  
 

(a,b)∈S

   f |ψa,b 
  2  B  f  2.

Families (ψa,b)(a,b)∈S ., which span L2(R). and fulfill these inequalities are so-called 

frames and build not necessarily an orthogonal system. They can be overcomplete 

but offer many applications, for example, in irregular sampling. If interested, readers 

can find theory and applications of frames in Strohmer (2000) or O. Christensen 

(2000). If the family ψa,b . with (a, b). in S is a complete orthonormal system 

in L2(R)., stability is always present due to the Plancherel equation. Here, we
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restrict our considerations in the following to such orthonormal systems and leave 

aside more general systems like Riesz bases or frames. Series expansions based 

on complete orthonormal systems thus allow for stable discrete reconstruction 

formulas. 

A first example of a discrete reconstruction results with the Haar wavelet ψ . (see 

p. 464). The functions 

. ψn,k(t) = 2n/2ψ(2nt − k) (n, k ∈ Z)

form a complete orthonormal system in L2(R).. Every signal f ∈ L2(R). therefore 

has the discrete wavelet decomposition 

.f =
+∞ 

n=−∞

+∞ 

k=−∞
 f |ψn,k ψn,k. (14.1) 

Series representations of the same form are obtained with other wavelets ψ ., if  

suitably scaled translations ψn,k . of ψ . with n, k ∈ Z. again form a complete 

orthonormal system in L2(R).. 

For the direct application of the series expansion, the integrals  f |ψn,k . would 
have to be calculated. However, in the years 1986–1989, S. Mallat and Y. Meyer 

developed a new method that allows for discrete wavelet expansions to be carried 

out completely recursively. This method, ideal for calculations, is the multiscale 

analysis. The algorithms of the fast wavelet transform that arise from the multiscale 

analysis, and their applications in signal processing, for example, in data com-

pression, have made wavelet analysis a significant mathematical tool in technical 

disciplines within a short period of time. 

We now describe the multiscale analysis, also known as multiresolution analysis, 

with the Haar wavelet and then present results that show that the exemplified 

algorithms also apply to other suitably constructed wavelets. 

Multiscale Analysis with the Haar Wavelet 

Understanding multiscale analysis and the resulting fast wavelet algorithms requires 

some preliminary considerations about the structure of the vector spaces generated 

by the wavelets and about the structure of the wavelet itself. For now, all considera-

tions refer to the Haar wavelet. 

The Vector Spaces Generated by the Haar Wavelet 

The properties of the subspaces in L2(R). generated by the wavelets ψn,k . are crucial 

for discrete wavelet analysis. For each fixed n ∈ Z., the functions ψn,k ., k ∈ Z., of
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the Haar system form a complete orthonormal system of a closed subspace Wn . of 

L2(R).. Any two subspaces Wn . andWm . are orthogonal to each other for n  = m., and 

all vector spaces Wn ., n ∈ Z., together span L2(R). (cf. (14.1)). It is said that L2(R). 

is the direct sum of the Wn .: 

. L2(R) =
+∞ 

n=−∞
Wn,

i.e., every f ∈ L2(R). has exactly one representation f =
+∞ 

n=−∞
fn . with fn ∈ Wn .. 

According to (14.1) it holds that fn =
+∞ 

k=−∞
 f |ψn,k ψn,k .. For each n ∈ Z., we now  

form the vector spaces 

. Vn =
n−1 

l=−∞
Wl = · · · ⊕Wn−3 ⊕Wn−2 ⊕Wn−1.

The elements vn ∈ Vn . then have the form 

. vn =
n−1 

l=−∞

+∞ 

k=−∞
 vn|ψl,k ψl,k.

From the shape of the wavelet ψ ., it follows that the elements of Vn . are limits of 

simple functions which are constant on the intervals [2−nk, 2−n(k + 1)[., k ∈ Z.. In  

other words, their “smallest details” have the width 2−n .. 

In the following, let ϕ = 1[0,1[ . denote the characteristic function of the unit 
interval and ϕn,k , n. and k in Z., their normalized scaled shifts 

. ϕn,k(t) = 2n/2ϕ(2nt − k).

Because each step function ψl,k ∈ Vn . can be read as the sum of its individual steps, 

vn . can also be represented by the following series: 

.vn =
+∞ 

k=−∞
 vn|ϕn,k ϕn,k. (14.2) 

In other words, the functions ϕn,k ., k ∈ Z., form a complete orthonormal system in 

Vn .. The orthogonality condition  ϕn,k|ϕn,k  = 0. for k  = k . is satisfied because the 
supports of ϕn,k . and ϕn,k . are disjoint. 

Any signal f ∈ L2(R). can now, due to L2(R) =
+∞ 

n=−∞
Wn . and Vn =

n−1 
l=−∞

Wl ., 

be decomposed with any arbitrary M ∈ Z. into its orthogonal projection PMf . onto
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VM . and a uniquely determined functionQMf . in the orthogonal complement of VM . 

in L2(R).: 

. f = PMf +QMf,

f =
+∞ 

k=−∞
 f |ϕM,k ϕM,k +

+∞ 

l=M

+∞ 

k=−∞
 f |ψl,k ψl,k. (14.3) 

The first series in this expansion represents the projection PMf . (cf. p. 451) and 

is a coarse approximation of f by a step function with minimum step width 2−M .. 

The series
+∞ 

k=−∞
 f |ψl,k ψl,k . are functions in Wl . for l = M,M + 1, . . . . and add 

finer details to PMf ., each with a step width 2−l−1 .. The projection PMf . shows the 

averaged course of f over the intervals [2−Mk, 2−M (k + 1)[., k ∈ Z.. For  M →
−∞., these intervals become wider and the projections PMf . become less detailed. 

Conversely, for M →+∞., increasingly finer details of f are retained in PMf .. 

One recognizes the excellent time localization of the wavelet representa-

tion (14.3), because both the supports of the functions ϕM,k . for sufficiently large 

M and the supports of the Haar wavelets ψl,k ., l  M . and k ∈ Z., are only small 

intervals. If f vanishes on an interval I , then the coefficients of those functions 

ϕM,k . and ψl,k . that have their supports in I are zero. In practice, this means that 

short-term disturbances of a signal f affect only a few coefficients in (14.3), while 

such disturbances typically alter the entire spectrum in classical Fourier analysis 

(cf. 4.5 and 10.4). We summarize: 

The vector spaces Vn . have the following properties: 

(E1) Vn ⊂ Vn+1 . for all n ∈ Z., {0}  . . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·  L2(R).. 

(E2) The union of all Vn . is dense in L2(R)., i.e., every f ∈ L2(R). can be 

approximated arbitrarily well by its orthogonal projections Pnf . onto Vn ., 

n ∈ Z., in the norm of L2(R).: 

. lim
n→∞

 f − Pnf  = 0.

(E3) The intersection of all Vn . is the null space:
+∞ 

n=−∞
Vn = {0}.. 

(E4) For all n ∈ Z., it holds that Vn+1 = Vn ⊕Wn .. 

(E5) For all n ∈ Z., it holds f (t) ∈ Vn . if and only if f (2t) ∈ Vn+1 .. 
(E6) For each n ∈ Z., the functions 

. ϕn,k(t) = 2n/2ϕ(2nt − k) (k ∈ Z)

form a complete orthonormal system of Vn .. 

In contrast to the pairwise orthogonal spaces Wn ., the spaces Vn . are nested as 

described in (E1). (E2) is a result of integration theory (cf. Appendix B). (E3) means
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that with decreasing n ∈ Z., the energy of the signal projections Pnf .onto Vn .decays: 

lim
n→−∞

 Pnf  = 0. for f ∈ L2(R).. 

Multiscale Analysis over the Scale of Vector Spaces Vn . 

We now consider a signal f , which for a suitable M ∈ Z. is a function in one of the 
spaces VM .. The function f has the coefficients f

(M)
k .: 

. f =
+∞ 

k=−∞
f

(M)
k ϕM,k.

From a practical perspective, let f be a sufficiently good approximation for an 

observed signal S, whose mean values mk = 2M/2f
(M)
k . over the intervals 

[2−M k, 2−M (k + 1)[. for k ∈ Z. are known. Any signal S ∈ L2(R). can be 

approximated arbitrarily well by such a simple function with a sufficiently large 

M (cf. (E2) above). Signal processing then extends to the coefficients f
(M)
k . of the 

approximation function f . 

The minimum step width of f is therefore 2−M .. According to (E4) in the 

preceding considerations, f can be uniquely decomposed into 

. f = vM−1 + wM−1

with vM−1 ∈ VM−1 . and wM−1 ∈ WM−1 .. The step function vM−1 . has the minimum 

step width 2−M+1 . and thus generally a coarser, less detailed course than f . The  

finer variations of f that are lost in the orthogonal projection of f onto vM−1 . are 
captured as “difference information” in wM−1 = f − vM−1 .. The minimum step 

width of wM−1 .matches that of f . Compare this with the subsequent example. 

By further decomposing vM−1 . in the form vM−1 = vM−2 +wM−2 .with vM−2 ∈
VM−2 . and wM−2 ∈ WM−2 ., that is, 

. f = vM−2 + wM−2 + wM−1,

one obtains information about the course of f from the function vM−2 ., which 
varies even less compared to vM−1 ., and from the functions wM−1 . and wM−2 ., 
which complementarily contain the finer details of f and vM−1 .. This procedure 
can be continued and, as we will see, using property (E5) results in an effective 

algorithm for representing the signal f through information about its coarse 

structure using a projection vM−N ∈ VM−N . and its fine structure using the functions 

wM−1, . . . , wM−N , N > 0.: 

.f = vM−N + wM−1 + wM−2 + · · · + wM−N . (14.4)



472 14 Outlook on Further Concepts

Fig. 14.7 Example of the decomposition of v0 . into v−1 . and w−1 . 

The right side decomposes f into components of varying levels of detail. The levels 

of detail of vM−N ., wM−1, . . . , wM−N . are determined by the different values of the 

scale parameter 2−p . in the wavelets ψp,k . with p = M − N, . . . ,M − 1., k ∈ Z.. 
Therefore, the decomposition is called a multiscale analysis of the signal f . The  

fundamental task in the numerical processing of the decomposed signal is then the 

effective calculation of the coefficients in the series expansions of the functions 

vM−N ., wM−1, . . . , wM−N .. Opportunities for data compression in signal processing 

arise when many of these coefficients are so small that they can be replaced by zero 

without noticeable quality loss in the reconstruction. 

Example The function v0 ∈ V0 . in Fig. 14.7 shows details of step width 1, and 

the function v−1 . shows only coarser details of step width 2. Both functions can be 
described using the step functions ϕ0,k . and ϕ−1,k . by 

. v0 =
5 

k=0
 v0|ϕ0,k ϕ0,k and v−1 =

2 

k=0
 v0|ϕ−1,k ϕ−1,k.

v−1 . is an averaged version of v0 . over the intervals [0, 2[., [2, 4[., and [4, 6[.. The  

function w−1 . contains the complementary information about details of v0 .with step 

width 1 and is represented by the Haar wavelet through 

. w−1 =
2 

k=0
 v0|ψ−1,k ψ−1,k.

The information about v0 . is contained in the six coefficients  v0|ϕ0,k ., k = 0, . . . 5., 

or alternatively in the combined six coefficients of v−1 . and w−1 ..
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Scaling Function and Scaling Equation of Multiscale Analysis 

The key of multiscale analysis and resulting fast algorithms lies in the observation 

that not only the spaces Wn ., n ∈ Z., can be generated by a single function ψ ., 

namely with the resulting basis functions ψn,k ., but also the scale of the spaces Vn . is 

generated by a single function ϕ .. Furthermore in our example with the Haar wavelet, 

the wavelet ψ . is determined by this function ϕ .. The function ϕ . is the characteristic 

function ϕ = 1[0,1[ . of the unit interval. Its scaled translations ϕn,k ., k ∈ Z., span 
the vector spaces Vn . according to (E6). ϕ . is called the scaling function or father 

function for the wavelet ψ .. The  wavelet  ψ . is called the mother wavelet of the Haar 

multiscale analysis. 

Since both ϕ . and the wavelet ψ .belong to V1 . and V1 . is generated by the functions 

ϕ1,k(t) = 21/2ϕ(2t − k)., the following equations hold: 

.ϕ(t) =
√
2

+∞ 

k=−∞
hkϕ(2t − k) (14.5) 

and for the wavelet ψ . 

.ψ(t) =
√
2

+∞ 

k=−∞
gkϕ(2t − k) (14.6) 

with suitable coefficients hk . and gk ., k ∈ Z.. 
Equation (14.5) is called the scaling equation of multiscale analysis for the 

scaling function ϕ .. According to Eq. (14.6), the mother wavelet ψ . is determined 

by the function ϕ .. In our example with the Haar wavelet, h0 = h1 = 2−1/2, hk = 0. 

otherwise. With the coefficients gk ., the relationship is 

.gk = (−1)kh1−k for k ∈ Z. (14.7) 

With a view to other examples, we note in (14.5) and (14.6) series instead of finite 

sums and complex conjugates h1−k . in (14.7), because later on complex-valued 

functions and wavelets will also be generally allowed. Equations (14.5)–(14.7) are  

basic for fast algorithms with which the coefficients in multiscale decompositions of 

signals f can be calculated. They are also the starting point for multiscale analyses 

with other scaling functions ϕ . and wavelets ψ ., which can be constructed from ϕ . 

according to (14.6) and (14.7) (Theorem of S. Mallat, p. 476). With the results of 

Sect. 11.6 on discrete filters, we can see that the coefficients of φ . define a lowpass 

filter and those of ψ . a highpass filter. 

With Eqs. (14.5)–(14.7), we now obtain the algorithms of fast wavelet transform 

to compute the coefficients in the wavelet decomposition (14.4) of our step function 

f ∈ VM . and also to reconstruct f from these coefficients.
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Fast Wavelet Transform with the Haar Wavelet 

Given are the coefficients f
(M)
k . of a signal f =

+∞ 
k=−∞

f
(M)
k ϕM,k . from VM .. To  

compute the coefficients in the wavelet decomposition (14.4) of p.  471 

. f = vM−N + wM−1 + wM−2 + · · · + wM−N ,

we denote the coefficients of a projection PM−lf = vM−l ., 1  l  N ., with 

f
(M−l)
k ., those of the functions wM−l . with d

(M−l)
k .. The coefficients hk . and gk . are 

given by (14.5)–(14.7). 

The desired coefficients f
(M−N)
k . and d

(M−l)
k . can now be computed completely 

recursively without integrations. The algorithms of the fast wavelet transform 

according to Mallat (1989) are as follows: 

Mallat’s Decomposition Algorithm 

For l = 1, . . . , N . and k ∈ Z.we have 

.f
(M−l)
k =

+∞ 

m=−∞
f (M−l+1)
m hm−2k , (14.8) 

.d
(M−l)
k =

+∞ 

m=−∞
f (M−l+1)
m gm−2k (14.9) 

Analogously, one obtains an algorithm for the reconstruction of the coefficients 

f
(M)
k . of f from the coefficients f

(M−N)
k . and d

(M−1)
k ., d

(M−2)
k , . . . , d

(M−N)
k .. 

Mallat’s Reconstruction Algorithm 

For l = N,N − 1, . . . , 1., and k ∈ Z., we have 

.f
(M−l+1)
k =

+∞ 

m=−∞

 
f (M−l)
m hk−2m + d(M−l)

m gk−2m
 
. (14.10)
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. 

Sketch of the Proof: The proof of the algorithms (14.8) and (14.9) is done by 

induction. We show only the base case for (14.8). All other steps of the proof 

for (14.8) and (14.9) can be done analogously. 

For l = 1. and k ∈ Z., due to hk =
√
2
+∞́

−∞
ϕ(t)ϕ(2t − k) dt . 

. f
(M−1)
k =  f |ϕM−1,k =

 +∞ 

m=−∞
f (M)
m ϕM,m|ϕM−1,k

  

=
+∞ 

m=−∞
f (M)
m

+∞
ˆ

−∞

2M/2ϕ(2M t −m)2(M−1)/2ϕ(2M−1t − k) dt

=
+∞ 

m=−∞
f (M)
m

+∞
ˆ

−∞

√
2ϕ(2x − (m− 2k))ϕ(x) dx

=
+∞ 

m=−∞
f (M)
m hm−2k.

To prove (14.10), we consider the case l = N . and 

. vM−N+1 =
+∞ 

k=−∞
f

(M−N+1)
k ϕM−N+1,k.

From the scaling equations corresponding to (14.5) and (14.6) for ϕ(2M−N t − m). 

and ψ(2M−N t −m)., it follows with a short calculation 

. vM−N+1 = vM−N + wM−N

=
+∞ 

m=−∞
2(M−N)/2

 
f (M−N)
m ϕ(2M−N t −m)+d(M−N)

m ψ(2M−N t −m)
 

=
+∞ 

k=−∞

+∞ 

m=−∞

 
f (M−N)
m hk−2m + d(M−N)

m gk−2m
 
ϕM−N+1,k.

Comparison of coefficients gives (14.10) for l = N ., and a similar induction gives 

the reconstruction algorithm.
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Multiscale Analysis with Other Wavelets 

The wavelet analysis with the Haar wavelet has the disadvantage that the Haar 

functions are discontinuous. Therefore, every finite partial sum of the develop-

ments (14.1) or (14.3) is discontinuous, no matter how smooth the approximated 

observed signal may be. Another disadvantage is the poor frequency localization of 

the Haar wavelet. Its Fourier transform decays only as 1/|ω|. for |ω| → ∞.. The  

breakthrough of wavelet theory in applications occurred when it was shown that 

multiscale analysis is also possible with other suitably constructed wavelets. We 

summarize some important results. In the following, L2(R). is the vector space of 

complex-valued, square-integrable functions on R.. 

Definition A function ϕ . is a scaling function of a multiscale analysis if it generates 

a sequence (Vn)n∈Z . of closed subspaces in L2(R). with properties (E1) to (E6) 

from page 470. The sequence of subspaces Vn . is called the multiscale analysis 

corresponding to ϕ .. 

If Wn . denotes the orthogonal complement of Vn . in Vn+1 ., then the following key 
theorem of Mallat (1989) holds. The proof can also be found in Daubechies (1992).3 

Theorem 14.7 (Mallat’s Theorem) For every multiscale analysis (Vn)n∈Z . with 

scaling function 

. ϕ(t) =
√
2

+∞ 

k=−∞
hkϕ(2t − k),

there exists a wavelet ψ . such that ψ(t) =
√
2
+∞ 

k=−∞
gkϕ(2t − k). with gk =

(−1)kh1−k .. For each n ∈ Z., the functions ϕn,k(t) = 2n/2ϕ(2nt − k)., k ∈ Z., form  

a complete orthonormal system in Vn ., and the functions ψn,k(t) = 2n/2ψ(2nt − k)., 

k ∈ Z., form a complete orthonormal system in Wn .. For each n ∈ Z., the  set   
ϕn,k, ψm,k | k ∈ Z,m  n

 
. is a complete orthonormal system in L2(R).. 

With the same proofs as outlined in the explained example, the algorithms (14.8) 

to (14.10) of the fast wavelet transform also generally follow for any multiscale 

analysis with scaling function ϕ . from Eqs. (14.5) to (14.7). 

If the coefficient sequence hk ., k ∈ Z., of the scaling function ϕ . has finite length, 

then (14.8) to (14.10) are  non-recursive filters, i.e., FIR filters (Finite Impulse 

Response Filters, see p. 372). Otherwise, (14.8) to (14.10) are IIR filters (Infinite 

Impulse Response Filters). In electrical engineering, the algorithms are also referred 

to as “Subband Filtering Schemes” (see Daubechies (1992)). The difficulties of 

multiscale analysis lie in the concrete construction of ϕ ., ψ ., and the filter sequence 

hk ., k ∈ Z.. In addition to the previously cited literature, we refer to the overview 
article “How To Make Wavelets” by Strichartz (1993).

3 Observe: The indexing of the spaces Vn . and Wn . is reversed there. 
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Daubechies Wavelets 

There are several well-known continuous scaling functions that lead to a multiscale 

analysis. In 1988, I. Daubechies succeeded in constructing a family of multiscale 

analyses with continuous scaling functions and wavelets ψm ., m > 0., that have 

compact support and coefficient sequences (hk)k∈Z . of finite length. The support 

properties allow for good time-frequency localization. The remarkable result, shown 

in Daubechies (1992), is the following theorem: 

Theorem 14.8 (Theorem of I. Daubechies) For every positive integer k there exist 

functions ψ ∈ Ck(R).with compact support so that for n, k . in Z. the functions 

. ψn,k(t) = 2n/2ψ(2nt − k)

constitute a complete orthonormal system in L2(R).. 

The approximation, regularity, and localization properties of the corresponding 

wavelet decompositions depend on the increasing filter length with m of the 

respective Daubechies wavelets ψm .. The wavelets ψm . cannot be given explicitly 

but are defined algorithmically. The corresponding coefficients hk . can be tabulated. 

Such tables can be found in Daubechies (1992). Figure 14.8 shows the Daubechies 

wavelet with filter length 4, in Daubechies (1992), p. 197, with the notation 2Ψ .. 

For signals of length n (i.e., in (14.8) n = max{k|f (M)
k  =0} −min{k|f (M)

k  =0}.), 
the fast wavelet transform with finite filter length and a decomposition depthN  n. 

has a computational cost that grows linearly with the signal length and is therefore 

more efficient than the cost for the fast Fourier transform (see p. 119). 

There are further developments of the multiscale analysis, where instead of 

a wavelet basis {ψn,k|n, k ∈ Z}. in L2(R). two so-called biorthogonal bases 

{ψn,k|n, k ∈ Z}. and { ψn,k|n, k ∈ Z}. are used. The example at the end of the section, 

which is intended to demonstrate the power of wavelets in data compression, was 

processed with such biorthogonal wavelet bases. A detailed presentation of the 

theory of “biorthogonal decompositions” can be found in Cohen et al. (1992). 

Signal Compression 

One of the most well-known application areas for discrete wavelet transformation is 

signal compression. A signal f ∈ L2(R). is represented by finitely many coefficients 

of an approximation vM . in the space VM . of a multiscale analysis. If f is smooth 

and vM = vM−N + wM−1 + · · · + wM−N . is the wavelet decomposition of 

Fig. 14.8 Daubechies 

wavelet 2Ψ .
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its approximation vM . (N > 0.), then the coefficients of the wavelet expansions 

wM−n . decrease for increasing n. The coefficients of vM−N ., wM−1, . . . , wM−N . are 

quantized, i.e., their value range is divided into intervals, and all coefficients that lie 

in the same interval are rounded to the same value. Sufficiently small values, often 

all coefficients from a certain “detail level” wM−N+l ., 0  l  N−1., can then often 

be replaced by zero without significant loss of detail in the reconstruction of vM .. 

The data compression results from such quantizations and an effective encoding of 

the quantized data. The JPEG2000 standard for image data compression mentioned 

at the end of Chap. 5 and the file format DjVu use such wavelet methods. 

Image Data Processing and Two-Dimensional Multiscale Analysis 

In image data processing, a multiscale analysis of signals f ∈ L2(R2)., which 

depend on two spatial variables, is needed. Complete orthonormal systems in 

L2(R2). can be constructed with the help of tensor wavelets. We summarize the 

essential results. More details can be found in Daubechies (1992) or Meyer (1995). 

1. From a multiscale analysis (Vn)n∈Z . with scaling function ϕ . and mother wavelet 

ψ ., the tensor products 

. Ψ (h)(x, y) = ϕ(x)ψ(y), Ψ (v)(x, y) = ψ(x)ϕ(y), Ψ (d)(x, y) = ψ(x)ψ(y)

create a complete orthonormal system Ψ
(q)

n,k1,k2
. of L2(R2).. The functions Ψ

(q)

n,k1,k2
. 

are defined for n, k1, k2 ∈ Z, q ∈ {h, v, d}. by 

. Ψ
(q)
n,k1,k2

(x, y) = 2nΨ (q)(2nx − k1, 2
ny − k2).

2. For each n ∈ Z., the linear combinations of the tensor products (see p. 191) 

f ⊗ g(x, y) = f (x)g(y)., f and g from Vn ., generate the closed subspace Vn =
Vn ⊗Vn . of L2(R2).. The sequence (Vn)n∈Z . is a multiscale analysis for L2(R2).: 

The properties (E1)–(E4) from p. 470 apply analogously, ifWn . is, as there, the 

orthogonal complement of Vn . in Vn+1 .. As in (E5), a function f (x, y) ∈ Vn . is in 

Vn . if and only if f (2x, 2y) ∈ Vn+1 .. Analogous to (E6), the tensor products 

. Φn,k1,k2(x, y) = 2nϕ(2nx − k1)ϕ(2
ny − k2)

form a complete orthonormal system of Vn . for (k1, k2) ∈ Z2 .. 
3. Accordingly, Wn . is generated by the orthonormal system of the functionsΨ

(q)
n,k1,k2

. 

(with (k1, k2) ∈ Z2 ., q ∈ {h, v, d}.), and L2(R2). is the direct sum of the spaces 

Wn ., n ∈ Z.. Due to the construction of the spaces Vn . from tensor products, for 

all n ∈ Z. it holds that 

. Wn = (Vn ⊗Wn)⊕ (Wn ⊗Vn)⊕ (Wn ⊗Wn).

The basis functions Ψ
(q)

n,k1,k2
. with q = h. generate the component Vn ⊗Wn ., those 

with q = v . generate Wn ⊗Vn ., and those with the index q = d . finally generate
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the subspace Wn ⊗Wn . (h stands for “horizontal,” v for “vertical,” and d for 

“diagonal”). 

4. Mallat’s algorithms can be extended to the multidimensional case. 

In practice, image data (gray values of pixels) are stored in a matrix C(0)
.. The  

coefficients c
(0)
k1,k2

. of C(0)
. correspond to the coefficients  f (0)|Φ0,k1,k2 . of a signal 

f (0) =
 
k1,k2

 f (0)|Φ0,k1,k2 Φ0,k1,k2 . from the space V0 . of a multiscale analysis of 

L2(R2).. In the first step of a multiscale decomposition 

. f (0) = f (−1) + w(−1,h) + w(−1,v) + w(−1,d)

with f (−1) ∈ V−1 ., w(−1,h) ∈ V−1 ⊗W−1 ., w(−1,v) ∈ W−1 ⊗V−1 ., w(−1,d) ∈
W−1 ⊗W−1 .; f (−1)

. is then a coarser version of f (0)
., while the additional finer details 

of f (0)
. are captured in horizontal direction (x-direction) in w(−1,h)

., in vertical 

direction in w(−1,v)
., and those in diagonal direction in w(−1,d)

.. If the initial matrix 

C(0)
. is a 2N × 2N .matrix, then the corresponding coefficient matrices 

. C(−1) =
 
 f (0)|Φ−1,k 1,k 2 

 
, D(−1,h) =

 
 f (0)|Ψ (h)

−1,k 1,k
 
2

 
 
,

similarly D(−1,v)
. and D(−1,d)

., have the size 2N−1 × 2N−1 .. As in the one-
dimensional case, the multiscale analysis can be continued with a decomposition 

of f (−1)
.. 

Schematically illustrated for a one-level decomposition of an image of 

J. B. Fourier (see p. 8) in Fig. 14.9 with the Haar wavelet, one obtains: 

In practice, the coefficients of the functions f (−m)
., w(−m,q)

., m  1., q ∈
{h, v, d}., often decrease rapidly with increasing index m. Suitable quantization and 

coding techniques then lead to excellent results in image data compression. In the 

example above, the darker the pixels are, the smaller the corresponding coefficients, 

where black corresponds to zero. 

Figures 14.10, 14.11, and 14.12 present an example of data compression. 

The image data matrix of the first image has a size of 2048 × 2048. (about 

4.2.MB). The second image shows the result of data compression using the previous 

JPEG method. The original data was compressed to approximately 14.5KB. The 

third image shows the reconstruction from wavelet-compressed data. The data 

was analyzed with the Cohen-Daubechies-Feauveau 7/9 tap filter, quantized, and 

compressed so that the data after quantization and coding also occupied about 

14.5KB. The coding algorithms used are from Tian and Wells (1996). Analogous 

wavelet algorithms are used in the JPEG2000 standard. 

Example for Denoising 

In Figs. 14.13 and 14.14 you see the two images from page 101 that were used there 

for a test with a watermark in the frequency domain. Gaussian white noise was 

added to the left JPEG compressed image so that we obtained the right image.
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Fig. 14.9 Wavelet compressed J. B. Fourier 

Fig. 14.10 Claudia size 

4.2MB 

For this denoising example in Fig. 14.15, Matlab’s wavelet toolbox with the 

biorthogonal spline wavelet bior4.4 was used. The applied method FDR (False 

Discovery Rate) works with a threshold rule based on controlling the expected ratio
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Fig. 14.11 JPEG 

compressed size 14.5KB 

Fig. 14.12 Wavelet 

compressed 14.5KB 

Fig. 14.13 Clara original 

Fig. 14.14 Noisy Clara 

of false positive detections to all positive detections. We find that noise reduction is 

difficult as soon as broadband noise has entered the signal. This applies particularly 

to noisy audio examples, since our ears are much more sensitive than our eyes.
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Fig. 14.15 Clara, with 

wavelet denoised 

Further Areas of Application 

There are many other areas of application for wavelet analysis. ECG analysis, 

pattern recognition and edge detection, and applications in the regularization of 

ill-posed inverse problems, for example, in computed tomography, finite element 

methods using wavelet approaches, and applications in the study of wave propa-

gation, such as radar or sonar waves, are just a few examples. Depending on the 

respective scientific field, countless approaches have been developed with wavelets 

that were previously treated with conventional Fourier analysis. References can be 

found in the literature cited in this section and a whole range of references for 

specific purposes by searching the internet. 

At the End 

For convenience, there are two appendices. Appendix A contains the residue 

theorem referred to in Chap. 11 with relation to the z-transform, estimates for 

the location of zeros of polynomials, and the recipe to obtain the partial fraction 

decomposition of rational functions. Appendix B covers some basics of integration 

theory and of convolutions. Appendix C contains solutions to the exercises. 

Finally, I return once again to the example of musical notation given on p. 410 

and below as an ingenious time-frequency description. The two bars last 11 

seconds. In Fig. 14.16, you see a spectrogram from a windowed Fourier transform, 

analogously computed with Mathematica as the figure on p. 412. It shows quite well 

the line of notes in the piece from B flat (932Hz) to D flat (554Hz) and the overtones 

in its presentation. Alias effects are also typical from sampling. Better estimates of 

the pitches can be seen with an FFT, which shows that the artist tunes a few Hz 

higher, which is common in German orchestras.
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The first two bars of the wonderful flute piece “Syrinx”, Claude Debussy (1862–1918) 

Fig. 14.16 Spectrogram made with an STFT 

Fig. 14.17 Wavelet 

scalogram made with a filter 

bank 

For comparison, at last a corresponding wavelet scalogram from the audio 

recording with the brilliant flutist E. Pahud.4 The line of notes is very clear. One 

observes the excellent intonation of the artist, when the play changes shortly from 

mezzoforte to forte (green to blue) and from mezzoforte to pianissimo at the end 

(green to yellow). 

Instead of alias effects as in the spectrogram, in Fig. 14.17 we see small 

rectangles determined by the wavelet’s time-frequency localizations due to the 

uncertainty relation. 

The scalogram was computed with an implemented routine for a continuous 

wavelet transform in Matlab’s wavelet toolbox using the bump wavelet ψbump .. Its  

Fourier transform is ( exp. the exponential function)

4 Easy to find at YouTube by a search for “Pahud Syrinx”. 
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Fig. 14.18 The filter bank used for the above scalogram 

.  ψbump(ω) = exp

⎛
⎜⎜⎜⎝−

1

1−
 
ω − ω∗

σ

 2

⎞
⎟⎟⎟⎠,

if |ω − ω∗| < σ ., and ψbump(ω) = 0. otherwise. Therein, ω∗ . is the central angular 
frequency around which the wavelet is centered (cf. p. 463), and σ . is the width 

parameter that determines the support and therefore the bandwidth of the wavelet in 

the frequency domain (see also the Sobolev function, used on p. 157). The function 

ψbump(t). belongs to S(R) ⊂ L1(R). and is complex-valued. The compact support 

of ψbump . allows for good frequency localization. The shown frequency is then 

ω∗/(2πa)., a the scaling parameter. 

To compute the scalogram, Matlab uses a filterbank with that wavelet, here an 

array of 57 bandpass filters, normalized corresponding to the sampling rate and 

duration of the music piece and maximum magnitude 2 (see p. 463, no. 3, p. 464, 

and p. 342). Figure 14.18 illustrates this filterbank with the bump wavelet. 

To summarize, we can end up understanding why wavelet analysis has found 

its way into many different fields of application, from medicine, biology, physics, 

chemistry, and engineering to finance and the military. By searching the Internet, 

you can quickly find many examples for signal analysis with wavelets, particularly 

in frequency bands that lie outside our perception range. 

I hope you could experience how the ideas of Fourier analysis from the first 

classical problems have developed to modern computational methods and a myriad 

of applications in our everyday life. I thank you for your attention, if you have read 

my text up to this point, and hope you have enjoyed reading it and are ready to 

deepen your knowledge with further reading.



Appendix A 

The Residue Theorem and the 
Fundamental Theorem of Algebra 

The Residue Theorem 

A function f , which is analytic in a region G \ {z0}. of the complex plane, has for z, 
0 < |z− z0| < r ., the Laurent series expansion 

. f (z) =
∞ 

k=1

c−k
(z− z0)k

+
∞ 

k=0
ck(z− z0)

k.

It then follows from the Cauchy integral formula that the coefficients ck . for k ∈ Z. 
are given by 

. ck =
1

2πj

‰

C

f (z)

(z− z0)k+1
dz,

where C is a closed, piecewise continuously differentiable curve in G \ {z0}., which 
is oriented counterclockwise around z0 .. 

Definition The part H(f, z0) =
  ∞

k=1
c−k

(z−z0)k
. in the Laurent series of f in the 

annulus 0 < |z− z0| < r . is called the principal part of f at the expansion point z0 .. 
The coefficient c−1 . of 1

z−z0 . in the Laurent series of f is called the residue of f at 
z0 ., denoted by 

. Res(f, z0) = c−1 =
1

2πj

‰

C

f (z)dz,

with a closed curve C as described above. 

A generalization of this relationship between the contour integral of f and the 
residue at a singularity of f is the residue theorem. 
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Theorem Let a function f be analytic in a region G ⊂ C. except for isolated 
singularities. Let C be a closed, piecewise continuously differentiable, and posi-

tively oriented curve, which encircles finitely many singularities z1, z2, . . . , zn .once, 

without passing through any singularity itself. Then the following holds: 

. 

‰

C

f (z)dz = 2πj
n 

k=1
Res(f, zk).

The residue theorem has many applications in the computation of real integrals, 
in integrals that count zeros and poles, and also in the stability analysis of 
feedback systems. We referred to this theorem in Chap. 11 when computing z-
transformations. 

Example for Computing Residues The residue at an m-fold pole z0 . of a function 

f is Res(f, z0) = 1
(m−1)! limz→z0

dm−1

dzm−1 (z − z0)
mf (z),. because from the Laurent 

series of f in an annulus 0 < |z− z0| < r . arises 

. (z− z0)
mf (z) = c−m + · · · + c−1(z− z0)

m−1 + c0(z− z0)
m + . . . .

In this Taylor series, the coefficient c−1 . appears as the factor of (z − z0)
m−1

. and is 
thus uniquely determined by the given formula. 

Specifically, for f (z) = z
(z−1)2(z+1) .with the double pole at z = 1., the residue is 

Res(f, 1) = limz→1

 
z

z+1

  
= 1

4 .. 

Analytic Functions and the Fundamental Theorem of Algebra 

The fundamental theorem of algebra plays a crucial role wherever polynomials are 
used. It states that every nonconstant polynomial has at least one complex root. 
There are many different proofs of this theorem, varying in approach and with 
different prerequisites for the reader regarding the underlying areas of mathematics. 
A recommendable book on this topic is the source B. Fine, G. Rosenberger (1997). 
First, some theorems from complex analysis about analytic functions f : G → C., 
i.e., complex differentiable functions on a simply connected region G in C., will be 
summarized, whose proofs can be quickly found in the already cited literature. 

Properties of Analytic Functions 

Assume that G is a simply connected region in C., C is a piecewise smooth, simple 
closed curve in G with positive orientation, and f : G→ C. is analytic. 

1. The Cauchy integral theorem holds:
 

C
f (z)dz = 0.. 

2. The Cauchy integral formulas hold: f (n)(z) = n!
2πj

 

C
f (ζ )

(ζ−z)n+1 dζ .
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for all z from the interior of the region enclosed by C and n ∈ N0 .. 
3. For a ∈ G., the Taylor series expansion f (z) =

  ∞
n=0

f (n)(a)
n! (z− a)n . holds. 

Using the Cauchy integral formula for f  ., Liouville’s theorem and thus a common 
proof of the fundamental theorem of algebra quickly follow. 

Theorem If f is analytic and bounded on C., then f is constant. 

Proof Let |f |  M .. For z ∈ C. and any simply traversed circle C around z with 
radius r and positive orientation, it follows from the Cauchy integral formula 

. |f  (z)| =
    

1

2πj

‰

C

f (ζ )

(ζ − z)2
dζ

     
1

2π

2π
ˆ

0

|f (z+ r ej t )|
r

dt  
M

r
.

With r →∞., it follows  that f  (z) = 0. for all z ∈ C. and therewith the assertion.   
Theorem Every nonconstant polynomial P has at least one root in C.. 

Proof Let P(z)  = 0. for all z ∈ C.. Then f = 1/P . is analytic in C. and 
lim|z|→∞ |f (z)| = 0.. Thus, f is bounded and constant according to Liouville’s 
theorem. A nonconstant polynomial must therefore have a root.   

By polynomial division and factorization into linear factors, it follows easily that 
a polynomial of degree n  1. has exactly n roots in C., which need not be distinct. 

On Bounds for Roots of Polynomials 

Estimates for the location of roots are often of interest. For a polynomial P(z) =
zn +Q(z) = zn +

  n−1
k=0 akz

k
. of degree n  1., r = 1 + |an−1| + . . . + |a0|., and 

|z|  r ., it follows from the triangle inequality with |Q(z)|  |z|n−1(|z| − 1). that 
|P(z)|  |z|n−1  1.. This inequality shows that all roots of P lie within the open 
disk around zero with radius r . Further estimates for root bounds can be found in 
M. Dehmer (2006) or J. Stoer, R. Bulirsch (1992). Two estimates from these sources 
are: 

1. All roots of a polynomial P(z) =
  n

k=0 akz
k
. of degree n  1. with |an|  |ak|. 

for k = 0, . . . , n− 1. lie in the closed disk around zero with radius r = 2.. 
2. Let P(z) =

  n
k=0 akz

k
. be a polynomial with a0an  = 0., n  1.. Further, let 

. α = max
1 k n

    
an−k
an

    
1/k

and β = max
1 k n

    
an−k
an

    .

Then for each root s of P , the following estimate holds: 

.|s| < min{2α, 1+ β}.
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Finally, Gerschgorin’s theorem about the location of the roots of the characteristic 
polynomial of a square matrix, i.e., about the location of the eigenvalues, should be 
mentioned here. Gerschgorin’s theorem can be found, for example, in the book of 
J. Stoer, R. Bulirsch (1992) on Numerical Analysis. The theorem states as follows: 

Theorem The union of all disks 

. Ki =

⎧
⎨
⎩z ∈ C : |z− ai,i |  

n 

k=1,k  =i
|ai,k|

⎫
⎬
⎭

contains all eigenvalues of an (n× n).matrix A = (ai,k)1 i,k n .. 

Partial Fraction Decomposition of Rational Functions 

Theorem Let Q/P . be a proper rational function, i.e., degQ < degP ., and let 

P(z) = c(z − z1)
n1 · · · (z − zk)

nk . be a factorization of P with its zeros z1, . . . , zk . 

and their respective multiplicities n1, . . . , nk .. Then the function Q/P . has a partial 

fraction decomposition, i.e., a sum representation of the form 

. 
Q(z)

P (z)
= a11

z− z1
+ a12

(z− z1)2
+ . . .+ a1n1

(z− z1)n1
+

+ a21

z− z2
+ a22

(z− z2)2
+ . . .+ a2n2

(z− z2)n2
+

...

+ ak1

z− zk
+ ak2

(z− zk)2
+ . . .+ aknk

(z− zk)nk

with coefficients apq ∈ C., 1  p  k ., 1  q  np .. The representation is unique up 

to permutation of the zeros of P . 

Proof One can prove the theorem by induction on the degree of P . If degP = 1., 
then degQ = 0., and the statement is already correct. 

Now assume the assertion holds for all proper rational functions for which the 
degree of the denominator is at most n − 1., and let degP = n., n > 1.. Then 
P(z) = (z − z1)

n1P1(z). with P1(z1)  = 0., P1(z) = c(z − z2)
n2 · · · (z − zk)

nk .. For  
A = Q(z1)/P1(z1)., we obtain 

. 
Q(z)

P (z)
− A

(z− z1)n1
= Q(z)− AP1(z)

(z− z1)n1P1(z)
.

If Q = AP1 ., the assertion follows with Q(z)/P (z) = A/(z − z1)
n1 . and apq = 0. 

for (p, q)  = (1, n1)..
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For Q  = AP1 ., the numerator on the right side is a polynomial with the zero z1 . 
and therefore of the form (z− z1)Q1(z).with a polynomial Q1  = 0.. Thus, we have  

. 
Q(z)

P (z)
= A

(z− z1)n1
+ Q1(z)

(z− z1)n1−1P1(z)

and degQ1 < n − 1 = deg ((z − z1)
n1−1P1(z)).. Using the induction hypothesis, 

the assertion about the sum representation of Q/P . follows. 
To prove the uniqueness of the decomposition, assume that Q/P . has another 

representation with coefficients bpq . instead of apq ∈ C.. Multiplying both represen-
tations by (z − z1)

n1 . and taking the limit as z→ z1 . yield b1n1 = a1n1 .. Subtracting 
a1n1/(z − z1)

n1 = b1n1/(z − z1)
n1 . from Q(z)/P (z). and multiplying the difference 

by (z − z1)
n1−1 ., we obtain a1(n1−1) = b1(n1−1) .. Continuing this procedure in an 

analogous manner yields the equality of all coefficients apq = bpq ..   

Calculation of a Partial Fraction Decomposition 

There are various ways to calculate the partial fraction decomposition for a given 
rational function. These include the substitution method or the comparison of coeffi-
cients between both sides of the above summation representation. It involves solving 
a linear system of equations for the sought coefficients apq .. Another approach that 
leads to a closed formula for the desired coefficients is the computation using the 
Taylor formula known from the basic analysis. This is explained step by step below 
and demonstrated at hand of a simple example. 

1. Using polynomial division, decompose a given rational function r into r = g+f . 

with a polynomial g and its proper rational part f = Q/P .. Then calculate the 
zeros z1, . . . , zk . of P and their multiplicities n1, . . . , nk .. 

2. For a zero zp ., the coefficients apq ., 1  q  np ., in the partial fraction 
decomposition of f are the coefficients of the principal part H(f, zp). of the 
Laurent series of f at the expansion point zp .. They are obtained from the Taylor 
expansion of the function f1(z) = (z − zp)

npf (z)., which is analytic in a 
neighborhood of zp ., i.e., 
f1(z) = αp0 + αp1(z − zp) + . . . + αp(np−1)(z − zp)

np−1 + . . .. with αpm =
Dmf1(zp)/m!. (Dmf1 . is the derivative of order m of f1 ., m ∈ N0 .). From this, we 
get 

. H(f, zp) =
αp0

(z− zp)
np
+ αp1

(z− zp)
np−1 + . . .+

αp(np−1)
(z− zp)

.

3. Coefficient Formula. From 2., we obtain the coefficients apq . of the partial 
fraction decomposition of f in the form of the preceding theorem for 1 p k ., 
1  q  np .:
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. apq = αp(np−q) =
1

(np − q)! lim
z→zp

Dnp−q
 
(z− zp)

np
Q(z)

P (z)

 
.

Example For Q(z)
P (z)
= 1

(z−z1)(z−z2)2
.with z1 = 0., z2 = j ., the coefficients apq . of the 

partial fraction decomposition are obtained from the formula, namely a11 = 1
j2
=

−1., a21 = − 1
j2
= 1., and a22 = 1

j
= −j .. Therefore, Q(z)

P (z)
= − 1

z
+ 1

z−j −
j

(z−j)2 .. 

In Chap. 10, p.  298, and in Chap. 11, we referred to partial fraction decompositions 
to determine the inverse Fourier transforms of rational functions. If the denominator 
polynomial of a rational function f = Q/P . has a degreeP > 4., then its zeros zp . 

are calculated approximately, for example, using the Bairstow method. The resulting 
partial fraction decomposition is then an approximation for Q/P .. 

Finally, it should be noted that the considerations for obtaining the principal parts 
H(f, zp). of f at the expansion points zp . (1  p  k .) provide another proof of 
the partial fraction decomposition, if one takes into account that F(z) = f (z) −
H(f, z1) − . . . − H(f, zk). can be extended to an analytic function over the entire 
C. that vanishes at infinity. F is thus bounded and by Liouville’s theorem constantly 
zero, i.e., f (z) = H(f, z1)+ . . .+H(f, zk)..



Appendix B 

Tools from Integration Theory 

When working with physical quantities, various measures assigned to these quanti-
ties are of fundamental importance. Consider quantities like continuous or point-like 
distributions of masses or charges, electrical voltages or currents, and measures 
like average speeds, moments of inertia of masses, effective values of alternating 
voltages, etc. The mathematical tool for such concepts linked with mean value 
formations is provided by measure and integration theory. Therefore, we provide 
in the following some basics from Lebesgue’s integration theory. We will limit 
ourselves to a compilation of the required concepts and most important theorems. 
Interested readers can find compact introductions to integration theory in the 
textbooks by J. Weidmann (1980) or R. Wheeden, A. Zygmund (1977). 

Measures, Null Sets, and Integrals 

An interval of Rn . is the Cartesian product of n intervals from R.. If all of these are 
bounded, then their product is bounded. The Lebesgue measure λn(J ).of an interval 
J = I1 × I2 × · · · × In . in Rn . is λn(J ) =

 n
k=1 |Ik|., where |Ik| = bk − ak . is the 

“length” of an interval Ik = [ak, bk]., and it does not matter whether the Ik . are open, 
half-open, or closed. Single-point intervals [a, a]. and the empty set have a “length” 
of zero. For example, an interval in R3 . is a cuboid, and its Lebesgue measure, if all 
coordinate axes carry length units, is its volume. Generally, the unit of measure is 
determined by the respective units of the coordinates. 

Let J . be the set of all bounded intervals in Rn .; then the function λn : J → R+0 . 

obviously has the following properties: 

1. λn
. is monotone, i.e., λn(J1)  λn(J2). for intervals J1, J2 ∈ J .with J1 ⊂ J2 .. 

2. λn
. is additive, i.e., λn(J1 ∪ J2) = λn(J1) + λn(J2). for intervals J1, J2, J1 ∪ J2 . 

in J .with J1 ∩ J2 = ∅.. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Brigola, Fourier Analysis and Distributions, Texts in Applied Mathematics 79,
https://doi.org/10.1007/978-3-031-81311-5

491

https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5
https://doi.org/10.1007/978-3-031-81311-5


492 B Tools from Integration Theory

3. λn
. is regular, i.e., for each interval J1 ∈ J . and each ε > 0., there is an open 

interval J2 ∈ J . such that J1 ⊂ J2 . and λn(J1)  λn(J2) < λn(J1)+ ε .. 

Besides the Lebesgue measure, there are many other interval functions m :J→R+0 . 

that are monotone, additive, and regular. Every such function m is called a measure. 

Examples 

1. For a set M ⊂ Rn . without accumulation points, assign a real number g(x)  0. 
to each point x ∈ M .. The interval function m on J ., m(J ) =

  
x∈M∩J g(x)., is  

a measure. If we consider g(x). as the mass of the point x ∈ M ., while all points 
in Rn \M . are of mass zero, then m(J ). measures the total mass contained in J 

that is discretely distributed. This m is called a discrete measure or a discrete 
distribution. 

2. If m1 . is a measure in Rp . and m2 . is a measure in Rq ., then the product m1 ⊗
m2(J1 × J2) = m1(J1)m2(J2). with bounded intervals J1 . in Rp . and J2 . in Rq . is 
a measure on Rp+q .. The measure m1 ⊗ m2 . is called the product measure of m1 . 

and m2 .. It is immediately evident that the Lebesgue measure λp+q
. in Rp+q . is 

the product measure of λp
. and λq

.. 
3. If F : R → R. is any monotonically increasing, right-continuous function, then 

by 

. m(J ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(b)− F(a) for J =
 
a, b
 

F(b)− F(a−) for J =
 
a, b
 

F(b−)− F(a) for J =
 
a, b
 

F(b−)− F(a−) for J =
 
a, b
 

(a  b)

a measure on R. is defined. F is called the distribution function corresponding 
to m. For instance, F(x) = x . is the distribution function corresponding to the 
Lebesgue measure λ. in R.. 

For a measure m in Rn ., a set  N is an m-null set, if for every ε > 0., there exists a 
sequence of intervals Ji ⊂ Rn ., i ∈ N., such thatN ⊂

 ∞
i=1 Ji . and

  ∞
i=1 m(Ji) < ε .. 

Every subset of an m-null set is an m-null set, countable unions and intersections of 
m-null sets are again m-null sets. For example, finite sets are λn

.-null sets, the set Q. 
of rational numbers in R., and thus also Qn . in Rn . are null sets for the Lebesgue 
measure in R. or in Rn .. To prove this, one uses the countability of the rational 
numbers q1, q2, . . . . and takes the i-th number as the center of an interval of length 
3−i · ε/2.. Then λ(Q) < ε .. A degenerate interval [a, b] × [c, c]. is a λ2 .-null set; 
in other words, a line segment has Lebesgue measure zero in R2 .. Hyperplanes in 
Rn ., i.e., sets of points x = (x1, . . . , xn). in Rn . that satisfy an equation of the form 
a0 + a1x1 + · · · + anxn = 0., a0, . . . , an ∈ R., are  λn

.-null sets. Also, the sphere of a 
ball in R3 . is a λ3 .-null set. For the discrete measure m in Example 1 above, Rn \M . 

is a null set.



B Tools from Integration Theory 493

Two functions f and g on Rn . are m-almost everywhere equal, if their values 
differ at most on an m-null set. It is also said that f (x) = g(x). for m-almost all x.. 
A sequence of functions fk . converges m-almost everywhere to a function f if there 
exists an m-null set N such that limk→∞ fk(x) = f (x). for all x ∈ Rn \N .. 

A function f : Rn → C. is a step function if there are finitely many, pairwise 
disjoint, bounded intervals J1, . . . , Jl . in Rn . such that f is constant on Jk ., 1  k  l ., 
and zero outside the Jk .. For a step function f with intervals of constancy J1, . . . , Jl ., 
f (Jk) = ck ., f = 0.outside the Jk ., 1  k  l ., the  integral with measure m is defined 
by 

. 

ˆ

f dm =
l 

k=1
ckm(Jk).

For step functions, the integral with the Lebesgue measure is then equal to the 

Riemann integral and has the same known properties. 
A function f : Rn → C. is called m-measurable, if there exists a sequence of 

step functions that converge m-almost everywhere to f . All continuous functions 
and all functions with finitely or countably many discontinuities are measurable 
with respect to all measures m that we have given in the examples on p. 492. 
Sums and products of m-measurable functions f and compositions g ◦ f . with 
continuous functions g are m-measurable. Also, limits f of m-almost everywhere 
convergent sequences of m-measurable functions are again m-measurable. These 
examples show that with measures as in our examples and with functions that 
occur in technical fields of application, measurability is not a serious problem. The 
measurability of the functions considered in the following is a requirement to be 
able to justify integrals with respect to a diverse class of measures mathematically 
soundly. The following fundamental theorem of B. Levi (1875-1961) holds: 

Theorem of Monotone Convergence If (fk)k∈N . is a sequence of real-valued 

step functions on Rn ., such that for each k ∈ N., fk(x)  fk+1(x). holds m-almost 
everywhere, and all integrals

´

fkdm. are bounded by a common, suitable limit 

K ∈ R., then there exists an m-measurable function f : Rn → R., such that m-
almost everywhere limk→∞ fk(x) = f (x). holds. 

With the monotonicity of the sequence (fk)k∈N . and the uniform boundedness of 
the integrals, it can be shown that the sequence (fk)k∈N . diverges at most on an m-
null set. Furthermore, from the assumptions of the theorem, it follows immediately 
that the limit limk→∞

´

fkdm. exists. The m-integral of the function f in the 
previous theorem is then defined by 

. 

ˆ

f dm = lim
k→∞

ˆ

fkdm.

Thus, the integral with respect to a measure m is introduced for all real-valued 
functions f for which there exists, as in the above theorem, a nondecreasing 
sequence of step functions converging to f m-almost everywhere, with a bounded 
sequence of integrals. It can be shown that the integral of f , as defined above, is 
independent of the choice of the approximating sequence of step functions. Denote
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by T . the set of all such functions f , then all functions g in the vector space 
generated by T . are of the form g = f1 − f2 . with f1, f2 . in T ., and their integral 
is defined by 

. 

ˆ

gdm =
ˆ

f1dm−
ˆ

f2dm.

The integral of g is again independent of the choice of functions f1 . and f2 . in T . 

used to represent g. 
The m-integrable functions in general are those functions f : Rn→ C. for which 

both the real part  (f ). and the imaginary part  (f ). lie in the real vector space 
generated by the set T ., in other words, those f : Rn → C., for which with the 
imaginary unit j it holds 

. f =  (f )+ j (f ) = (f1 − f2)+ j (f3 − f4) with f1, f2, f3, f4 in T .

The m-integral of f is then defined in an obvious way by 

. 

ˆ

f dm =
ˆ

 (f )dm+ j

ˆ

 (f )dm.

Thus, the concept of the integral has been extended to complex-valued functions. 
The m-integrable functions form a vector space over C.. If one identifies two 
functions, which differ only on a null set, the space L1(Rn,m). of respective 
equivalence classes is obtained. It is common to call the equivalence class of a 
function f again as function f in L1(Rn,m)., keeping in mind that it is only 
determined up to a null set, i.e., m-almost everywhere. For the Lebesgue measure 
m = λn

., instead of L1(Rn, λn)., the notation L1(Rn). is used. 
A subset E of Rn . is called an m-measurable set if the indicator function 1E . is an 

m-measurable function. An m-measurable bounded set E has the measure m(E) =
´

1Edm.. Every  m-null set is m-measurable. All bounded intervals are m-measurable 
sets. Complements, unions, and intersections of countably many m-measurable sets 
are again m-measurable. For discrete measures m, every subset E of Rn . is even 
m-measurable. For our examples of measures m and for sets like Rn ., intervals, 
planes, spheres, and their complements, countable unions, and intersections, m-
measurability is therefore always guaranteed. The integral of f ∈ L1(Rn,m). over 
an m-measurable subset E is 

. 

ˆ

E

f dm =
ˆ

f · 1Edm.

If f is only defined on a subset E of Rn ., then f is set to zero outside of E and 
the integral of f is defined as the integral of f · 1E ., if this exists. For instance, for 
the discrete measure m from Example 1 and an arbitrary subset E of Rn ., a function 
f : Rn → C. is m-integrable over E with

´

E

f dm =
  

x∈E∩M f (x)g(x). if and 

only if the series on the right-hand side converges absolutely. For integrals with the 
Lebesgue measure, the following notations are common:
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. 

ˆ

f dλn =
ˆ

f (x)dλn(x) =
ˆ

f (x)dx =
ˆ ˆ

. . .

ˆ

    
n−times

f (x1, . . . , xn)d(x1, . . . , xn).

Similarly, for other measures
´

f dm =
´

f (x)dm(x)., if one wants to highlight the 
integration variable for clarity. For measures m with distribution function F , one 
also writes

´

f dF . instead of
´

f dm.. Important for practical computations is the 
following fact: 
All (properly) Riemann-integrable functions are also Lebesgue-integrable. The 

rules learned for handling Riemann integrals and methods for their calculation 

apply unchanged to these functions for Lebesgue integrals. Riemann and Lebesgue 

integrals agree for such functions. 

A first advantage of the Lebesgue integral over the Riemann integral is shown by 
the following well-known extreme example: The Dirichlet function 

. f (x) =
 
0 for x ∈ [0, 1] \Q
1 for x ∈ [0, 1] ∩Q

is, as is well known, not Riemann integrable. However, it is Lebesgue integrable 
with 

. 

ˆ

[0,1]

f dλ =
ˆ 1

0
f (x) dx =

ˆ

f (x)1[0,1](x) dx = 0,

because f differs from the zero function only on the λ. null set [0, 1] ∩Q.. 
Including null sets already in the definition of integrable functions and their inte-

grals in the sense that the behavior of the functions on null sets becomes completely 
irrelevant, so that they ultimately only need to be defined almost everywhere, has 
thus expanded the class of integrable functions. This also enables, for example, an 
integral calculation for functions with infinitely many discontinuities, which cannot 
be achieved with the Riemann integral. 

We summarize some fundamental theorems from integration theory. Here, m is 
an arbitrary measure. Proofs of these theorems can be found in the literature cited at 
the beginning of the chapter. 

Fundamental Theorems of Integration Theory 

1.(a) An m-measurable function f is m-integrable if and only if the function |f |. is 
also m-integrable. 

(b) For m-integrable functions f and g and complex numbers α . and β ., we have 

.

ˆ

(αf + βg)dm = α

ˆ

f dm+ β

ˆ

gdm.
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(c) For m-integrable, real-valued functions f and g with f  g . m-almost 
everywhere, we have 

. 

ˆ

f dm  
ˆ

gdm.

In particular,
  ´ f dm

   
´

|f |dm.. 

(d) For an m-measurable function f , we have f = 0. m-almost everywhere if and 
only if f is m-integrable and

´

|f |dm = 0.. 
2. An improperly Riemann-integrable function f is Lebesgue-integrable if |f |. is 

also improperly Riemann-integrable. Its Lebesgue integral is then equal to the 

improper Riemann integral. 

3. Lebesgue Dominated Convergence Theorem. For a sequence of m-integrable 
functions fk . and a function f , suppose limk→∞ fk(x) = f (x). m-almost 
everywhere. Furthermore, assume that there exists an m-integrable function g 

such that |fk|  g . for every k ∈ N.. Then f is also m-integrable, and taking the 
limit may be interchanged with the integration: 

. 

ˆ

f dm = lim
k→∞

ˆ

fkdm.

4. Interchanging the Order of Integration. The possibility to reduce multiple 
integrals to the calculation of iterated integrals with only one variable each and 
the interchangeability of the order of integration is ensured by the following 
theorem of G. Fubini (1879-1943) and L. Tonelli (1885-1946). Here, the vector 
space Rn . is regarded as the Cartesian product Rn = Rp × Rq ., p + q = n.. A  
point z. in Rn . is written in the form z = (x, y). with x ∈ Rp . and y ∈ Rq .. On  Rn ., 
the product m1 ⊗m2 . of two measures m1 . on Rp . and m2 . on Rq . is given. 

Fubini-Tonelli Theorem 

(a) Assume that an m1⊗m2 .-measurable function f : Rn→ C. has the following 
properties: 

(i) For m1 .-almost all x ∈ Rp ., fx(y) = f (x, y). is m2 .-integrable on Rq .. 

(ii) Define F(x) =
ˆ

Rq

|f (x, y)|dm2(y)., if fx ∈ L1(Rq ,m2)., 

F(x) = 0. otherwise. Let the function F be m1 .-integrable on Rp .. 

Then f is integrable on Rn = Rp × Rq .with the product measure m1 ⊗m2 .. 
(b) If f is integrable on Rn . with the product measure m1 ⊗ m2 ., then for m1 .-

almost all x ∈ Rp ., the function fx . is m2 .-integrable on Rq .. Similarly, for 
m2 .-almost all y ∈ Rq ., the function fy(x) = f (x, y). is m1 .-integrable on Rp .. 
It holds:
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. 

ˆ

Rn

f (x, y)dm1(x)⊗m2(y) =
ˆ

Rp

 
ˆ

Rq

f (x, y)dm2(y)

 
dm1(x)

=
ˆ

Rq

 
ˆ

Rp

f (x, y)dm1(x)

 
dm2(y).

5. Transformation Theorem for Lebesgue Integrals. Let U and V be non-empty, 

open subsets of Rn .. Assume A : U → V . is a continuously differentiable, 

bijective mapping with continuously differentiable inverse A−1 : V → U . and 

f : V → C. is λn
.-measurable. The function f is λn

.-integrable over the set 
V if and only if (f ◦ A)| det ∂A|. is λn

.-integrable over U . Here, det ∂A. is the 

determinant of the Jacobian matrix
 

∂Ak

∂xi

 
1 k n
1 i n

., where Ak : U → R. are the 

components of A = (A1, . . . , An).. Then we have 

. 

ˆ

A(U)=V

f (x)dλn(x) =
ˆ

U

(f ◦ A)(x)| det ∂A(x)|dλn(x).

For the case n = 1., this is the well-known substitution formula for integrals. 

Examples 

1. For intervals J in R., let m(J ) =
 
α for x0 ∈J
0 for x0  ∈J

. be the measure for the point 

mass α > 0. at x0 ∈ R. and λ. the Lebesgue measure on R.. For a given function 
f : R2 → C., let fx0(y) = f (x, y). be Lebesgue-integrable. Then according to 
the Fubini-Tonelli Theorem, f is (m⊗ λ).-integrable with 

. 

ˆ

f (x, y)dm(x)⊗ λ(y) =
ˆ ˆ

f (x, y)dm(x)dλ(y) = α

ˆ

f (x0, y)dy.

Thus, the integral with this product measure is the Lebesgue integral of f along 
the line x = x0 . in R2 ., multiplied by the weight α . of x0 .. 

2. Integration in Spherical Coordinates: The coordinate transformation A from 
spherical coordinates to Cartesian coordinates 

. A : U = {(r, θ, φ) | r > 0, 0 < θ < π, 0 < φ < 2π} → R3

.A(r, θ, φ) = (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ)
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is injective and continuously differentiable with det ∂A = r2 sin(θ) > 0. for 
θ ∈
 
0, π
 
.. The  set R3 \A(U) = {(x, y, z) ∈ R3 | y = 0}. is a λ3 .-null set. Using 

the transformation theorem and the Fubini-Tonelli theorem, it follows for f in 
L1(R3). 

. 

ˆ

R3

f dλ3 =
ˆ

A(U)

f dλ3 =
∞̂

0

ˆ 2π

0

ˆ π

0
f (A(r, θ, φ))r2 sin(θ)dθdφdr.

Integration over a Spherical Surface 

The surface integral on a spherical surface in R3 ., familiar from Riemannian integral 
calculus, can be extended to the Lebesgue integral as follows: 

For a subset E of the spherical surface SR . around the origin with radius R, set  
E∗ = {rx | 0 < r < R, x ∈ E}.. If the spherical sector E∗ . is λ3 .-measurable, the 
surface measure of E is defined by 

. o(E) = 3

R
λ3(E∗).

Thus, a measure is defined on all subsets E of SR . for which E∗ . is λ3 .-measurable. 
These sets E are the o-measurable sets on the sphere SR .. It follows  that  

. 

ˆ

1Edo =
3

R

ˆ

1E∗dλ
3.

Using spherical coordinates for a set E of the form 

. E = {A(R, θ, φ) | 0 < θ1  θ  θ2 < π, 0 < φ1  φ  φ2 < 2π},

A(r, θ, φ). as above, 

. 

ˆ

1Edo =
3

R

ˆ φ2

φ1

θ2
ˆ

θ1

ˆ R

0
r2 sin(θ)drdθdφ =

φ2
ˆ

φ1

ˆ θ2

θ1

R2 sin(θ)dθdφ.

By repeating the process of introducing integrable functions through approximation 
by step functions on o-measurable sets, one obtains the vector space L1(SR, o). of 

o-integrable functions f on the sphere SR ., and integration in spherical coordinates 
shows 

.

ˆ

f do =
ˆ 2π

0

ˆ π

0
f (R sin θ cosφ,R sin θ sinφ,R cos θ)R2 sin(θ)dθdφ.
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The surface element do. in spherical coordinates is R2 sin(θ)dθdφ .. All bounded o-
measurable functions on the sphere SR ., in particular all continuous functions on 
SR ., are  o-integrable. Any Lebesgue-measurable function f : R3 → C. has an o-
measurable restriction to SR ., which is o-integrable if and only if the iterated integral 
of its absolute value with respect to dθ . and dφ . on the right side of the last equation 
exists. 

The theorems of integration theory given in the last section also hold if one of 

the measures involved is the surface measure o. The special significance of the 
Lebesgue surface measure o compared to other measures on the sphere lies in its 
characterization by the validity of the divergence theorem of Gauss. We formulate 
this theorem for the sphere KR . in R3 . with radius R. It also holds for more general 
domains and their boundary measures. For this, compare the literature already 
mentioned at the beginning of the Appendix. 

Divergence Theorem of Gauss and Green’s Formulas If F : KR → R3 . is a 
vector field that is continuous on the closed sphere KR ., continuously differentiable 
inside the sphere, and o-integrable on the sphere SR ., and if F. has a λ3 .-integrable 
divergence divF = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
., F = (F1, F2, F3)., then with the unit outer 

normal n. of the sphere, it holds that 

. 

ˆ

KR

divFdλ3 =
ˆ

SR

F · ndo.

F ·n. denotes the pointwise scalar product on the sphere between F. and n. in R3 .. The  
unit outer normal on the sphere SR . is given in spherical coordinates by 

. n(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

Set F = g gradϕ . with twice continuously differentiable scalar fields g and ϕ . 

in R3 ., and note div (g gradϕ) = gΔϕ + grad g · gradϕ ., Δ. the Laplace operator, 
so from Gauss’s theorem we obtain the first Green’s formula (here again for the 
sphere KR .): 

. 

ˆ

KR

(gΔϕ + grad g · gradϕ)dλ3 =
ˆ

SR

g gradϕ · ndo.

Interchanging the roles of g and ϕ . and subtracting the two resulting equations yield 
the second Green’s formula: 

. 

ˆ

KR

(gΔϕ − ϕΔg)dλ3 =
ˆ

SR

(g gradϕ − ϕ grad g) · ndo.

These theorems from vector analysis play a crucial role in solving potential 
problems in space (cf. Sect. 9.4).



500 B Tools from Integration Theory

Measures with Densities 

If m is a measure in Rn . and f is an m-measurable, real-valued function such that 
f  0. m-almost everywhere, then on the m-measurable sets E by 

.  (E) =
ˆ

E

f dm

a measure is defined. The function f is called the density of  . with respect to m. 
One writes briefly  = f ·m. or d = f dm.. 

Example If m = λ3 . is the Lebesgue measure in R3 . and a λ3 .-integrable function 
f  0. describes a spatial, continuous mass density, then for Lebesgue-measurable 
sets E ⊂ R3 . the integral

´

E

d =
´

E
f dλ3 =

´

E
f (x)dx. is the total mass contained 

in E. Analog models with continuous electric charge distributions according to 
a Lebesgue-integrable charge density f = f+ − f− ., which becomes negative 
for negative charges, provide after decomposition of f into positive part f+ . and 
negative part f− . the total charge

´

E
f dλ3 =

´

E
f+dλ3 −

´

E
f−dλ3 . of E, where 

oppositely charged parts of equal magnitude compensate to zero. The measure m+ . 

with the density f+ . is called the positive part and the measure m− .with the density 
f− . the negative part of the measure m. Since the measure m can also take negative 
values, it is called a signed measure. 

Lp
.-Spaces and Convolutions 

For 1  p < ∞. and a domain Ω ⊂ Rn ., Lp(Ω). denotes the vector space of all 
Lebesgue-measurable complex-valued functions f on Ω .with 

.  f  p =

⎛
⎝
ˆ

Ω

|f |pdλn

⎞
⎠

1/p

<∞.

The functions f ∈ Lp(Ω). are called p-integrable with the p-norm  f  p .. 
Functions that differ only on a Lebesgue null set are identified. The elements of 
Lp(Ω). are therefore, strictly speaking, the equivalence classes of all such identified 
functions. 
For the case p = ∞.,L∞(Ω). is the vector space of all essentially bounded functions. 
A Lebesgue-measurable function f on Ω . is essentially bounded if 

.  f  ∞ = inf
 
α ∈ R | λn({x ∈ Ω : |f (x)|  α}) = 0

 
< ∞.

The number  f  ∞ . is called the essential supremum of f , because then |f (x)|  
 f  ∞ . λn

.-almost everywhere. With the same identification as above,  f  ∞ . is a
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norm, which is referred to as the supremum norm. The Lp
. spaces are complete 

normed spaces for all p with 1  p  ∞.. 

Theorem The step functions are dense in Lp(Ω). for all p, 1  p < ∞., and for 

p = ∞., if  Ω . has finite measure. 

The following inequalities hold: 

Hölder Inequality For 1  p  ∞. and 1
p
+ 1

q
= 1. (with the convention 1

∞ = 0.), 

let f ∈ Lp(Ω). and g ∈ Lq(Ω).. Then fg ∈ L1(Ω)., and the following holds: 

.  fg 1   f  p g q .

Minkowski Inequality For 1  p  ∞., f, g ∈ Lp(Ω)., the following holds: 

.  f + g p   f  p +  g p.

For bounded Ω ., λn(Ω) < ∞., and 1  p  q  ∞., we have Lq(Ω) ⊂ Lp(Ω).. 

For unbounded Ω ., in general neither Lq(Ω) ⊂ Lp(Ω). nor the reverse inclusion 
holds. 

Convolutions For convolutions f ∗ g . of functions f ∈ Lp(Rn). and g ∈ Lq(Rn)., 

. f ∗ g(x) =
ˆ

Rn

f (y)g(x− y)dλn(y),

the following theorem holds (see, e.g., R. Wheeden, A. Zygmund 1977). 

We agree on the following convention: 

. 
1

p
= 0 for p = ∞ and r = ∞ for

1

r
= 1

p
+ 1

q
− 1 = 0.

Theorem Let 1  p, q  ∞., 1
p
+ 1

q
 1., and 1

r
= 1

p
+ 1

q
− 1.. For f ∈ Lp(Rn). 

and g ∈ Lq(Rn)., the convolution f ∗g . belongs to Lr(Rn)., and the Young inequality 

holds 

.  f ∗ g r   f  p  g q .

For 1
p
+ 1

q
− 1 = 0., f ∗ g . is continuous and bounded. 

Convolutions in Sequence Spaces 

For 1  p <∞., lp(Z). is the vector space of all sequences x = (xn)n∈Z . of complex 
numbers for which
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.  x p =
  +∞ 

n=−∞
|xn|p
 1/p

<∞.

The space l∞(Z). is the vector space of all bounded sequences x = (xn)n∈Z .. It is  
endowed with the norm  x ∞ = sup{|xn| : n ∈ Z}.. All spaces lp(Z)., each endowed 
with the norm  . p . for 1  p  ∞., are complete normed spaces. The Hölder and 
Minkowski inequalities hold analogously, and the following inclusions are satisfied: 

. l1(Z) ⊂ l2(Z) ⊂ . . . ⊂ l∞(Z).

Theorem Let 1  p, q  ∞., 1
p
+ 1

q
 1., and 1

r
= 1

p
+ 1

q
− 1.. For  x = (xn)n∈Z ∈

lp(Z). and y = (yn)n∈Z ∈ lq(Z)., the discrete convolution 

. (x ∗ y) = (fn)n∈Z, fn =
+∞ 

k=−∞
xn−kyk,

exists. This convolution x ∗ y . belongs to lr(Z)., and Young’s inequality holds 

.  x ∗ y r   x p y q .

The Sobolev Space H 1
0
(Ω). and the Poincaré-Friedrichs 

Inequality 

In Sect. 9.5, the Sobolev space V = H 1
0 (Ω)., Ω ⊂ R2 ., a bounded Lipschitz domain, 

was referenced in formulating the Dirichlet boundary value problem for a loaded 
membrane. Both terms are defined below. Proofs of the following statements can be 
found, for example, in H. Triebel (1992) or K. Atkinson,  W.  Han (2005). 

Definition A bounded domain Ω ⊂ Rn . (n  2.) is called a Lipschitz domain or a 
domain with Lipschitz boundary ∂Ω ., if ∂Ω . can be covered by finitely many open 
sets U1, . . . , Um . such that ∂Ω ∩ Uk . for k = 1, . . . , m. is the graph of a Lipschitz 
continuous function, and for each k, the domain Ω ∩ Uk . lies on one side of this 
graph. 

Many domains that occur in application problems have a Lipschitz boundary, 
such as convex polygons, star-shaped non-convex polygons, and many more. For 
such domains, the solution of a Dirichlet boundary value problem presented in 
Sect. 9 in the vector space V = H 1

0 (Ω). used there and defined below is possible. 
Typical examples of domains that do not have a Lipschitz boundary are circular 

disks or spheres with a crack.
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Definition For a domain Ω ⊂ Rn ., H 1(Ω). is the space of all real-valued functions 
f ∈ L2(Ω). whose generalized first-order derivatives also belong to L2(Ω)., 
equipped with the norm 

.  v H 1 =

⎛
⎝ 

|k| 1

 ∂kv 22

⎞
⎠

1/2

and the inner product  u, v H 1 =
 

|k| 1

 ∂ku, ∂kv L2 .

Here, k is a multi-index from Nn0 .. 

The completeness ofH 1(Ω). follows from that of L2(Ω).: If (un)n∈N . is a Cauchy 
sequence in H 1(Ω)., then for each k, |k|  1., the sequence (∂kun)n∈N . is a Cauchy 
sequence in L2(Ω). and thus has a limit. The Cauchy-Schwarz inequality yields 
that these limits converge to the generalized derivatives of the same function. Thus, 
H 1(Ω). with this norm is a Hilbert space. For Lipschitz domains Ω ., the following 
theorem about the so-called trace mapping τ . holds: 

Theorem For a Lipschitz domain Ω ., there exists a continuous linear operator 

. τ : H 1(Ω)→ L2(∂Ω),

such that for all v ∈ C(Ω ∪ ∂Ω) ∩H 1(Ω). and x ∈ ∂Ω . holds: (τv)(x) = v(x).. 

The existence of a trace allows talking about boundary values of an H 1
. function 

and thus defining the space of H 1
. functions that vanish on the boundary of Ω .. A  

function that belongs to H 1
. in the interior of a Lipschitz domain has a trace that 

belongs to L2
. on the boundary. We simply write v|∂Ω = τv.. 

Definition For a Lipschitz domain Ω ⊂ Rn ., the space H 1
0 (Ω)., equipped with the 

norm of H 1(Ω)., is defined by H 1
0 (Ω) = {v ∈ H 1(Ω) : τv = v|∂Ω = 0 }.. 

It can be shown that H 1
0 (Ω). is the completion of the space D(Ω). of test functions 

on Ω .with the norm of H 1(Ω).. Thus, H 1
0 (Ω). is also a Hilbert space. 

Finally, it was crucial in solving the variational problem in Sect. 9.5 that the 
bilinear form a(u, v). used there is positive definite on H 1

0 (Ω).. This is ensured by 
the Poincaré-Friedrichs inequality. 

Poincaré-Friedrichs Inequality. Let Ω . be a Lipschitz domain. Then there exists 

a constant c, dependent only on Ω ., such that for all v ∈ H 1
0 (Ω). the Poincaré-

Friedrichs inequality 

.  v L2  c |v|H 1

holds. Here, |v|H 1 =
   

|k|=1  ∂kv 22
 1/2

.. In particular,  . H 1 . and the norm |.|H 1 . 

are equivalent on H 1
0 (Ω)., because for all u ∈ H 1

0 (Ω). we have |u|H 1   u H 1  

(c2 + 1)1/2|u|H 1 ..
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The norm |v|H 1 . agrees up to a factor with the energy norm a(v, v)1/2 . for 
elements v ∈ H 1

0 (Ω). used in Sect. 9.5. 

Proof We use thatH 1
0 (Ω). is the completion ofD(Ω). inH 1(Ω).. LetQ = [−d, d]n . 

be a closed cube such that Ω ⊂ Q., and choose at first an arbitrary u ∈ D(Ω).. We  
can extend u by zero to Q. Now, define  x ∈ Rn−1 . by x = (x1, x). for x ∈ Ω ., and 
set   x = (−d, x) ∈ Q.. Since u(  x) = 0., we obtain by the fundamental theorem of 
calculus and the Cauchy-Schwarz inequality 

. u(x) = u(  x)+
x1
ˆ

−d

∂u

∂y
(y, x)dy =

ˆ x1

−d
1 · ∂u

∂y
(y, x)dy

≤

⎛
⎝

x1
ˆ

−d

1dy)

⎞
⎠

1/2  
ˆ x1

−d

 
∂u

∂y
(y, x)

 2
dy

 1/2
 
√
2d

⎛
⎝

d
ˆ

−d

 
∂u

∂y
(y, x)

 2
dy

⎞
⎠

1/2

.

Integrating yields 

.  u 2
L2 =

ˆ

Ω

u(x)2dx  2d
ˆ

Ω

ˆ d

−d

 
∂u

∂y
(y, x)

 2
dydx

= 2d
ˆ

Q

ˆ d

−d

 
∂u

∂y
(y, x)

 2
dydx = 2d

ˆ

[−d,d]n−1

ˆ d

−d

ˆ d

−d

 
∂u

∂y
(y, x)

 2
dydx1d x

= (2d)2
ˆ

[−d,d]n−1

ˆ d

−d

 
∂u

∂y
(y, x)

 2
dyd x = (2d)2 ∂u

∂x1
 2
L2  (2d)2|u|2

H 1 .

Thus, the theorem is proven for u ∈ D(Ω).. For u ∈ H 1
0 ., choose (un)n∈N . in D(Ω). 

converging to u in the H 1
.-norm. For ε > 0. and  uk − u H 1  ε ., we have  

.  u L2 ≤  uk L2 +  u− uk L2  2d|uk|H 1 + ε

≤ 2d|u|H 1 + 2d|uk − u|H 1 + ε  2d|u|H 1 + (2d + 1)ε.

Therefore, the Poincaré-Friedrichs inequality is proven, since ε .was arbitrary. 
By definition,  u 2

H 1 =  u 2L2 +
  
|k|=1  ∂ku 2

L2 =  u 2L2 + |u|2H 1 . for all u ∈
H 1

0 (Ω)., which shows the asserted equivalence.   
Readers interested in the proofs not included in the Appendix are once again 
recommended the textbooks on functional analysis and partial differential equations 
mentioned on p. 244 and elsewhere.



Appendix C 

Solutions to the Exercises 

Exercises of Chap. 3 

(A1) For parts (a) and (b), the Fourier series Sf . of f has the expansion 

. Sf (x) = A

 
3
4 +
 
− 2

π2
cos(x)− 1

π
sin(x)

 

    
0.377 sin(x−2.575)

+
 
− 1

2π
sin(2x)

 

    
0.159 sin(2x+3.142)

+
 
− 2

9π2
cos(3x)− 1

3π
sin(3x)

 

    
0.108 sin(3x−2.932)

+
 
− 1

4π
sin(4x)

 

    
0.08 sin(4x+3.142)

+ 0.064 sin(5x − 3.015)+ . . .

 
.

The Fourier series converges to A2 . at x = 0.. 
(A2) The Fourier series Su(t). of u(t). is given by 

. Su(t) = û

 
1

π
+ 1

2
sin(ω0t)−

2

π

 

n=2,4,6,...

1

(n2 − 1)
cos(nω0t)

 
.

(A3) (a) The Fourier coefficients are ck = (ak − jbk)/2.with 

. ak = 2
T

0́

−T/2

  sin
 
ω
2 t
   cos(kωt) dt = − 2

π(4k2−1) ,

bk = 2
T

0́

−T/2
− sin

 
ωt
2

 
sin(kωt) dt = 4(−1)kk

π(4k2−1) .
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(b) At T/2., it holds for n ∈ N.: Sf

 
T
2

 
= 2

π

 
1
2 +

n  
k=1

(−1)k+1
4k2−1 + Rn

 
.. 

Leibniz criterion:
   2Rn

π

   < 2
π(4(n+1)2−1) < 0.5 · 10−3 . for n  17.. 

(A4) For ε > 0., h > 0., and N  1
ε sin( h2 )

− 1
2 ., it holds according to the estimate on 

page 25 in Sect. 3.1:
   S(t)−

  N
k=1

sin(kt)
k

    1
(N+ 1

2 ) sin(
h
2 )
 ε.. 

(A5) (a)  (f ). is even, and  (f ). is odd. Therefore, the k-th Fourier coefficient ck . 

is ck = 1
π

π́

0
cos(x sin(t) − kt)dt = Jk(x).. Here, Jk . is the Bessel function of 

order k. 
(b) It holds J−k = (−1)kJk.. Thus, 

. cos(x sin(t)) = J0(x)+ 2
∞ 

k=1
J2k(x) cos(2kt),

sin(x sin(t)) = 2
∞ 

k=1
J2k+1(x) sin(2(k + 1)t).

(A6) The function f is the real part and g the imaginary part of F
 
ej t
 
. 

. F
 
ej t
 
= a

a − ej t
= a

(a − cos(t))+ j sin(t)

a2 − 2a cos(t)+ 1
.

(A7) (a) an = 2
π

π́

0
eat cos(nt)dt = 2

π
· a
a2+n2 [(−1)

neaπ − 1] .. 

(b) bn = 2
π

π́

0
eat sin(nt)dt = 2

π
· n
a2+n2 [1− (−1)neaπ ] .. 

Exercises of Chap. 4 

(A1) The Fourier series of f for t  = kπ . is the derivative of 

. F(t) = | sin t | = − 2

π

∞ 

k=−∞

ej2kt

4k2 − 1
= 2

π
− 4

π

∞ 

k=1

cos(2kt)

(2k − 1)(2k + 1)
.

F is continuous, and f is piecewise continuously differentiable. Hence, f 

has the Fourier series 

.Sf (t) =
4

π

∞ 

k=1

2k

(2k − 1)(2k + 1)
sin(2kt).
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(A2) (a) h(t) = 
4 
π

 
sin(t) 
1 + 

sin(3t)  

3 + . . .
 
=
  +∞ 

k=−∞ 

k  =0 

j 
πk

 
(−1)k − 1

 
ejkt  .. 

(b) g(t) = −3h
 
α(t − 

1 
2 )
 
.with α = π/2.. 

Result: g(t) = (−3)
+∞  
k=−∞
k  =0

j
πk

 
(−1)k − 1

 
e−jkπ/4 · ejktπ/2

↑
Amplitude

factor

↑
Phase
shifts

↑
Frequency
change

. 

(A3) (a) f (t)  = 
2 
π 
− 

4 
π

 
cos(2t)  

3 + 
cos(4t)  

3·5

 
.. 

(b) (2|ck|)k∈Z = (. . . , 0, 4 
15π 

, 4 
3π 

, 4 
π 
, 4 
3π 

, 4 
15π 

, 0, . . .).. 
(c) The amplitude-modulated function cos(6t)f (t) = cos(3ω0t)f (t).has the 

amplitude spectrum 2|dk| = |ck−3 + ck+3|.. 
(d) g(t) = −2

 
cos(2t)  

15π 
+ 

cos(4t)  

3π 
− 

cos(6t)  

π 
+ 

cos(8t)  

3π 
+ 

cos(10t)  

15π

 
.. 

(e) More generally, for f (t) = a0
2 +

∞  
k=1

ak cos(kω0t)., it holds 

. cos(Nω0t)f (t) = aN

2
+
∞ 

k=1

a|k−N | + ak+N
2

cos(kω0t).

(A4) For x  = kπ ., k ∈ Z., we have  

. f (x) = 4

π

 
sin(x)+ sin(3x)

3
+ sin(5x)

5
+ . . .

 
.

According to p. 47, with c0 = 0. and F0 =
1

2π

2π
ˆ

0

t
ˆ

0

f (x) dx dt = π

2
., we  

obtain 

. 

t
ˆ

0

f (x) dx = π

2
− 4

π

 
cos(x)+ cos(3x)

32
+ cos(5x)

52
+ . . .

 
.

(A5) Substitute in
  +N

m=−N
  N

n=−N cmdnej (m+n)t .with k = m+n. (compare also 
with the well-known Cauchy product in power series, whose coefficients also 
arise from a discrete convolution). 

(A6) Look for examples in formula collections as L. Råde, B. Westergren (2004). 
(A7) The Fourier series of the square wave is F(t) = 4

π

  ∞
k=1

sin((2k−1)t)
2k−1 .. 

Term-wise differentiation leads to the series 4
π

  ∞
k=1 cos((2k − 1)t).. 

For t = (2m+ 1)π/2., m ∈ Z., and all k ∈ N., we have
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Fig. C.1 Illustration with 
regard to Gibbs phenomenon 

cos((2k − 1)(2m + 1)π/2) = 0.. At these points, the series has a limit of 
zero. Otherwise, the series diverges: 
The assumption cos((2k−1)t0)→ 0. for some t0  = (2m+1)π/2., as k→∞., 
leads to cos(2kt0) cos(t0) = 1

2 [cos((2k + 1)t0)+ cos((2k − 1)t0)] → 0.. 
Thus, cos(2kt0)→ 0. as k →∞.; similarly, one would have sin(2kt0)→ 0. 
or sin(t0) = 0.. This results in the contradiction t0 = mπ . for a suitable m ∈
Z., and thus | cos((2k−1)t0)| = 1. for k ∈ N., or cos2(2kt0)+sin2(2kt0)→ 0. 
as k→∞.. 

(A8) Verify the series expansions by integrations. 
(A9) Example 1, p. 41:

  ∞
n=1

1
4n2−1 =

1
2 .. 

Example 1, p. 52:
  ∞

n=1(−1)n+1 1
n2
= π2

12 .. 

With the Fourier series for f (t) = t (π − |t |)., t ∈ (−π, π)., 

. 

∞ 

n=1
(−1)n+1 1

(2n− 1)3
= π3

32
.

(A10) The proof of the statement—a conjecture by L. Fej é.r—dates back to 
E. Landau (1933). Let SN (t) =

  N
k=1

sin(kt)
k

.. It holds that S1(t) > 0. in 
(0, π).. Assuming now that SN−1(t) > 0. in (0, π).as an induction hypothesis. 
From the assumption SN (t) ≤ 0. for some t ∈ (0, π)., it follows that there 
exists a t0 . in (0, π). such that SN (t0) ≤ 0. and SN . has a local minimum at t0 ., 
and hence S N (t0) = 0.. 

. S N (t) = sin((N + 1/2)t)− sin(t/2)

2 sin(t/2)
for t  = 2πn, n ∈ Z,

thus with 0 < t0/2 < π/2., sin((N + 1/2)t0) = sin(t0/2) > 0,. 
and with phase shift by π/2. also | cos((N + 1/2)t0)| = cos(t0/2) > 0.. 
With sin(Nt0) = sin((N + 1/2)t0) cos(t0/2)− cos((N + 1/2)t0) sin(t0/2)., 
thus sin(Nt0) ≥ 0., and from this the contradiction SN−1(t0) ≤ SN (t0) ≤ 0.. 
The functions SN . are odd; hence SN (t) < 0. in (−π, 0). for all N ∈ N.. 
Therefore, the sawtooth can be approximated within a tolerance ε > 0. in 
area B of the form in Fig. C.1. 

(A11) (a) This follows with z = ej t . by calculating the imaginary part of
  n

k=1 z
k.. 

(b) Term-wise integration as on p. 47 gives
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. 

t
ˆ

0

f (x)dx = a0

2
t +

∞ 

k=1

bk

k
+
∞ 

k=1

−bk cos(kt)+ ak sin(kt)

k
<∞.

Note: The integrability of f on [0, 2π ]. would be sufficient, according to 
a more general version of Dirichlet’s theorem, for the representation of 
the integral function by its Fourier series. It is noteworthy that, unlike 
the sine coefficients of a classical Fourier series,

  ∞
k=1 ak/k < ∞. does 

not necessarily hold for cosine coefficients. Example: The Fourier series   ∞
k=2 cos(kt)/ln(k). (A. Zygmund (2003), therein V.1). 

(c) With an = sn−sn−1 ., s0 = 0., and
  n

k=1 sk−1bk =
  n

k=1 skbk+1−snbn+1.. 
(d) With rn =

  n
k=1 akbk . and (c), for n > m., it follows  that  |rn − rm|  

2Mbm+1 ., and from this, using the Cauchy convergence criterion, the 
statement follows. In particular, if we replace the numbers ak ., bk . with 
functions ak(t)., bk(t). on a closed interval I , such that in I the partial 
sums

  n
k=1 ak(t). remain uniformly bounded and the bk(t). converge 

monotonically and uniformly to zero from above, then
  ∞

k=1 ak(t)bk(t). 
converges uniformly on I . 

(e) The first part from (a) and (d) with ak(t) = sin(kt)., bk(t) = 1/ln(k).. 

On the other hand,
  ∞

k=2
1

kln(k) . is divergent:
1

kln(k) >
k+1
´

k

dx
xln(x) . for k ≥ 2. 

and limb→∞ ln(ln(x))
  b
2 = ∞.. Hence, from (b) it follows: The series 

does not represent an integrable function on [0, 2π ].. For more details on 
when trigonometric series are Fourier series in the classical sense and 
why Fourier series since Riemann have also prompted thinking about the 
concept of integration, see A. Zygmund (2003) or the book by C. S. Rees, 
S. M. Shah, C. V. Stanojević (1981). In Sect. 9.1, it is shown that a 
distinction between convergent trigonometric series on the one hand and 
Fourier series on the other hand is no longer necessary when we simply 
interpret all convergent trigonometric series as periodic distributions. 

Exercises of Chap. 5 

(A1) (a) D = 1., (b) D ≈ 0.435.. 
(A2) (f ∗ g)2π (t) =

  
k  =0 j

k+1 a 

π2k3

 
(−1)k − 1

 2 
ejkt . is continuously differen-

tiable. 
(A3) The T -periodic transfer functions gT . and Ua . are given with ω0 = 2π/T . 

.gT (t) =
+∞ 

k=−∞

R

R − k2ω2
0RLC + jkω0L

ejkω0t ,
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. Ua(t) = −
2

π

+∞ 

k=−∞

U0R

(4k2 − 1)(R − k2ω2
0RCL+ jkω0L)

ej2kω0t .

(A4) For n = deg P ≥ 3., it follows from the triangle inequality |P(z)| ≥ |z|n−1 . 
for |z| >

  n
k=0 |ak| > 1. (an = 1.); hence |P(jk)|−1 ≤ |k|−2 . for sufficiently 

large |k|.. For n=2., sufficiently large |k|.: |P(jk)|−1≤|k2 − a0|−1≤|k|−3/2 .. 
(A5) Calculate the Fourier coefficients of the function e−a0t .considered on ]0, 2π [.. 

Deduce from this the statements of the exercise and the one-sided limits 
given on p. 65 π(coth(a0π)± 1). as t → 0. and t → 2π .. 

(A6) u(r, φ) = 
U0 
2 + 

4U0 
π2

  ∞ 

k=1
 
r 
R

 k cos((2k−1)φ) 
(2k−1)2 .. 

(A7) With the coefficients an . and bn . from page 73 and the addition theorems 

. cos
 cnπ

l
t
 
sin
 nπ

l
x
 
= 1

2

 
sin
 nπ

l
(x + ct)

 
+ sin

 nπ
l

(x − ct)
  

,

. cos
 nπ

l
(x − ct)

 
− cos

 nπ
l

(x + ct)
 
= 2 sin

 nπ
l

x
 
sin
 cnπ

l
t
 
,

and an = An sin(ϕn)., bn = An cos(ϕn)., and the given representations follow. 
(A8) The approach u(x, t) = v(x)w(t). yields, with λn = nπ

√
k/l ., 

the Fourier sine coefficients bn . of f , and superposition, u(x, t) =  ∞
n=1 bne

−λ2nt sin
 
nπ
l
x
 
.. 

(A9) With the approach v(x, t) =
  ∞

k=1 vk(t) sin(kπx/l)., through coefficient 
comparison, one obtains the equation v  k (t) + ω2

kvk(t) = Fk(t)., ωk =

ckπ/l .. From this follows the solution vk(t) = 1
ωk

t́

0
Fk(τ ) sin(ωk(t − τ))dτ . 

(variation of constants or later with fundamental solution, p. 217). Calculate 
the solution explicitly with a computer algebra system for f = g = 0., 
F(x, t) = A sin(ωt).with A > 0., ω > 0.. 

(A10) u(x, t) =
  ∞ 

n=1 e
−κt (an cos(λnt)+ bn sin(λnt)) sin

 
nπx 

l

 
., 

. λ2n =
n2π2c2

l2
− κ2.

Here, an = fn . are the Fourier coefficients of the initial displacement f , 
bn = (gn + κfn)/λn . with the Fourier coefficients gn . of g. The oscillation 
decays exponentially with time. For the inhomogeneous problem, see, for 
example, G. P. Tolstov (1976). 

(A11) With the k-th Bessel function Jk . of the first kind, one obtains 

.bk =
2

kπ

π̂

0

cos(kϕ − kε sin(ϕ))dϕ = 2

k
Jk(kε).
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Exercises of Chap. 6 

(A1) For n > N ., yn =
  N

k=0 ak cos((n− k)ωT ) =  
 
|  h(ω)|ej (nωT+arg(  h(ω)))

 
.. 

(A2) P interpolates at the nodes tk . (k = 0, . . . , 2m − 1.), Wm(tn − tk) = 2m. 

for n = k ., Wm(tn − tk) = 0. for n  = k ., and thus it determines the uniquely 
defined trigonometric interpolation polynomial P2 . for f in the space Vm . (see 
page 99). 

(A3) With N = 15. and   c0 = (f (0) − f (π−))/(2N). and with the Fourier 
coefficients ck . of f ,  c1 =

  +∞
m=−∞ c1+mN + (f (0) − f (π−))/(2N).. The  

corresponding trigonometric interpolation polynomial interpolates the value 
1 at zero and therefore cannot be odd. A DFT after modifying f with the 
value f (0) = 0. results in an odd interpolation function for the then-odd 2π .-
periodic extendable function, which, however, unlike in Sect. 6 assumed, is 
not continuous in [0, π [.. 

(A4) P2(t) − f (t)  =
  
|k| N/2

  (  ck − ck)ejkt  −
  
|k| N/2

  ckejkt  .. The statement 
then follows with the triangle inequality from   ck − ck =

  
l∈Z,l  =0 ck+l N .. 

Error estimations according to other criteria can be found, for example, in 
W. L. Briggs, Van Emden Henson (1995) and other textbooks on numerical 
mathematics. 

(A5) At least 320 sampling values are needed in 2 s, thus a sampling frequency 
 160.Hz. 

(A6) (a)  c24  = 0. and  c104  = 0.. (b) 28Hz alias:  c28  = 0.,  c100  = 0.. 
(A7) The DFT values can be generated by any linear combination of oscillations 

with frequencies 45, 211, 301, 467, or 557Hz. To avoid such ambiguities, 
anti-alias filters are used in practice. 

(A8) With m = 2000., N = 400., T = 0.2 · 10−3 .s, subsampling through a DFT 
of the time duration T with N sampling values detects the oscillation f with 
the DFT coefficients  c30 = −j/2. and  c370 = j/2. (cf. p. 90). 

(A9) Set z = 2c̃1/A.with the obtained DFT coefficient c̃1 . for the pilot carrier. The 
spectrum (ck)−4 k 4 .of f withN = 8. is obtained from the DFT coefficients 
c̃k .by c0 = c̃0 ., ck = c̃kz

−k
., and c−N/2+k = c̃N/2+kzN/2−k

. for 1  k < N/2., 
and cN/2 = c−N/2 = c̃N/2/(z

N/2 + z−N/2).. 
(A10) Apply the IDFT to the convolution of the DFT coefficients of the xn . 

and yn ., and compute analogously as on p. 96. Note potentially different 
normalizations by other authors and in software. 

(A11) Use a computer algebra system to solve. You will find that the Clenshaw-
Curtis quadrature is generally better than the trapezoidal rule. 

(A12) Create a program to solve the exercise. 
(A13)  Tn , Tm w . results in zero for n  = m., π/2. for m = n  1., and π . for 

m = n = 0.. It holds Tk(x) =  (zk). for z = ejϕ ., ϕ = arccos(x).. From  
the periodicity of the complex exponential function, it follows that at the 
points xn = cos(nπ/m)., 0  n  m., all Chebyshev polynomials Tn ., T2m−n ., 
T2m+n ., T4m−n ., T4m+n ., T6m−n . . .. have the same values. The function f thus 
has zeros at the points xn ..
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(A14) With L : [−1, 1] → [−3, 7]., L(t) = 5t + 2., g has the same interpolation 
polynomial P as in Excercise 22 with 13 Chebyshev abscissas xn . as nodes. 
The rescaled polynomial P ◦ L−1 . interpolates f at the nodes L(xn).. 

(A15) (a) Both sides coincide for real variables and are entire functions on R.. 
Therefore, there is a uniquely determined analytical continuation on C.. 
This is then given by (a) (identity theorem for power series). 

(b) It always holds w(z) = z±
√
z2 − 1., due to

√
z2 − 1 = ±z

 
1− 1/z2 ., 

thus w(z) = z ± z
 
1− 1/z2.. For |z| > 1., 1 − 1/z2 . lies in the circle 

around one with radius r = 1., with the principal value of the root. 
Thus, − π/4 < arg(

 
1− 1/z2) < π/4., hence  (

 
1− 1/z2) > 0.. 

Therefore, for w as indicated for the case |z| > 1., it holds 

. |w(z)| = |z| |1+
 
1− 1/z2| > |z| > 1.

For |z|  1., z /∈ [−1, 1].,
√
z2 − 1 = ±j

√
1− z2.. In the upper half-plane 

 (z) > 0., the positive sign holds: For jε ., ε>0., it follows that 

. |w(jε)|=ε+
 
1+ ε2>1.

If there were a z0 . in the upper half-plane with |w(z0)|  1., then a z1 . would 
also lie on the line segment from jε . to z0 . with |w(z1)| = 1. due to the 
continuity of |w(z)|.. This would be a contradiction, since then z1 ∈ [−1, 1]. 
would hold. Thus, |w(z)| > 1. in the upper half-plane. The given formula for 
the lower half-plane is seen analogously with 

. w(−jε) = −jε − j
 
1+ ε2

by considering the magnitude |w(−jε)| = ε +
√
1+ ε2 > 1.. 

To see Tn(z) = (wn + w−n)/2., set z = cos(x + jy)., and calculate 

. (wn + w−n)/2.

For (c) the poles of Q lie on an ellipse with foci ± jωc . symmetrically to the 
real and imaginary axes. The solutions of the two equations 

. cos(n(x + jy)) = cos(nx) cosh(ny)− j sin(nx) sinh(ny) = ±j/ε

show all the poles of Q. The sought n poles zk/(jωc) = cos(xk + jyk).with 
negative real parts are obtained with the given xk ∈ ]0, π [. and then always 
sin(xk) > 0., if you constantly set yk = y = −arsinh(1/ε)/n < 0. from the 
equation solutions. (d) Program the solution to the exercise.
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(A16) The values obtained by the DFT for iC . are DC gain ≈ 2.44.mA, RMS value 

≈ 2.99.mA, and distortion factor ≈
   14

k=2 |  ck |2  15
k=1 |  ck |2

= 0.1816.. 

Exercises of Chap. 7 

(A1)
  n−1 

k=0 sin ((2k + 1)πt) = 
2j 
−4

  
ejnπt

 2−2+
 
e−jnπt

 2 

ejπt−e−jπt

 
= 

sin2(nπt) 
sin(πt) 

.. 

(A2) Si(π) ≈
  4 

k=0(−1)k π2k+1 
(2k+1)!(2k+1) ≈ 1.852.. 

(A3) n-th partial sum of the sawtooth: S n(0) = n., slope of the Fejér mean n/2.. 

(A4) Modify the proof of Fejér’s theorem on p. 133 with 1
T

T/2
´

−T/2
Kn(t)dt = 1.. 

A number of useful summation kernels can be found, for example, in the 
textbook of J. S. Walker (1988). 

(A5) f (t)  = 
2 
π 
(S(t) − S(t − π))., S the sawtooth function. This results in the 

statement with Exercise A9 from Chap. 4. 
(A6) (a) Review of the proof of Dirichlet’s theorem on p. 130 shows that the 

integrability condition and the existence of the one-sided limits of f 

and the right- and left-sided derivatives at t0 . are sufficient to obtain the 
convergence of the Fourier series to (f (t0+)+ f (t0−))/2.. 

(b) It suffices to show integrability on [0, π/3].. 

. 

π/3
ˆ

ε

f (t)dt = −εln
 
2 sin
 ε
2

  
−

ˆ π/3

ε

t cos(t/2)

2 sin(t/2)
dt .

The first term on the right-hand side vanishes for ε→ 0., and the integrand 
remains bounded in the second term. 

(c) f is 2π .-periodic, even. For the Fourier cosine coefficients, it follows by 
integration a0 = 0. and for an ., n  1., with S(0+) = π/2. and 

. sin(nt) cos(t/2) = 1/2 · (sin((n+ 1/2)t)+ sin((n− 1/2)t)

with integration by parts that an = −1/n.. Since f is differentiable for all 
t  = 2kπ ., k ∈ Z., (c) follows from (a). 

(d) With x = t − π . follows ln|2 cos(x/2)| = ln|2 sin(t/2)|. and hence the 
result. 

(A7) The solution is the Ritz-Galerkin solution u4 . on p. 252, Sect. 9.5. 
(A8) With the continuity of the translation in the L2

.-norm, the assertion follows 
directly from |(f ∗ g)2π |   f  2  g 2 .. Elementary proofs of these facts can 
be found in A. Zygmund (2003), there at I-9.4 and II-1.11.
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Exercises of Chap. 8 

(A1) T is the Dirac distribution δ .. G, H , and R are continuous on D ., but not 
linear. S is not defined for all ϕ . from D ., e.g., ϕ(t) = eth(t). with a test 
function h = 1. in a neighborhood of zero. U is a distribution. 

(A2) t 
. 
δ(t) = −δ(t)., t2

.
δ(t) = 0., t

..
δ(t) = −2

.
δ(t)., t2

..
δ(t) = 2δ(t).. 

(A3) Apply pf (t−2)., pf (t−2+ )., and δ(m)
. to a test function tϕ(t). (see p. 168). 

(A4) With a test function α  0., α = 1. in a neighborhood of zero 

. vp (t−1) = α(t) vp (t−1)+ (1− α(t))
1

t
.

(A5) The statement follows from the definition of the Cauchy principal value with 
the mean value theorem and Lebesgue’s dominated convergence theorem 
(Appendix B, p.  496). 

(A6)  (tλ+) , ϕ = − limε→0 

∞́ 

ε 

tλ ϕ (t)dt .. The statement follows through integra-

tion by parts with ϕ (t)dt = du., u(t) = ϕ(t) − ϕ(0)., v(t) = tλ ., and 
application of the mean value theorem. 

(A7) 
.. 
f (t)  = − sin(t)

 
s(t)− s

 
t − 

π 

2

  
+ δ(t)+ α 

. 
δ(t)+ 2s

 
t − 

π 

2

 
.. 

Illustrate the result with a sketch. 
(A8) For ψh(t) = (ϕ(t + h) − ϕ(t))/h., h  = 0., it holds according to the mean 

value theorem: 

. |ψh(t)− ϕ (t)| = |ϕ (t + λh)− ϕ (t)|  sup
t∈R
|ϕ  (t)| |h|,

with a suitable λ ∈]0, 1[.. That is, for h → 0. the functions ψh . converge 
uniformly to ϕ .. Similarly, one shows for derivatives of ψh . of any order n 

the uniform convergence to the derivative ϕ(n+1)
. of ϕ . for h → 0.. That is, 

ψh → ϕ . in D . for h → 0.. For ϕ ∈ D ., it follows from the continuity of 
distributions T on D . 

. 

 
T (t+Δt)−T (t)

Δt
, ϕ(t)

 
=
 
T (t),

ϕ(t −Δt)− ϕ(t)

Δt

 
−→
Δt→0

 T (t),−ϕ (t) .

(A9) (a) Substitution x = nt . yields 

. 

+∞
ˆ

−∞

sin(nt)

πt
dt = 2

π

+∞
ˆ

0

sin(x)

x
dx = 2

π

+∞
ˆ

0

+∞
ˆ

0

sin(x)e−xy dy dx .

Reverse the order of integration, and use integration by parts. Alterna-
tively, use example 3 of p. 183. 

(b) Proceed analogously to the proof of Dirichlet’s theorem.
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(A10) From T (t) = −π
  ∞

k=−∞
.
δ(t − 2kπ)., it follows   T (t) , ϕ(t − 1

2 ) =
π 16

9 e
−4/3.. 

(A11) (a)
.
δ(t − a) ∗ s(t − b) = δ(t − (a + b)).. 

(b)
.
δ(t − a) ∗

.
δ(t − b) =

..
δ(t − (a + b)).. 

(c) s(t − a) ∗ f (t)  = 

t−a
´ 

−∞ 

f (u)du.. 

(d) (t − (a + b))s(t − (a + b)).. 

(e) s(t) ∗ [ln(t + 1)s(t + 1)] =  s(t + 1)[ln(t + 1) − 1](t + 1).. 
(A12) According to the hint 

. Gm1
σ ∗Gm2

τ (x) = 1

2πστ
e−v

2/2

+∞
ˆ

−∞

e−u
2/2dy

with 

. u =
√
σ 2 + τ 2

στ

 
y − σ 2m2 + τ 2(x −m1)√

σ 2 + τ 2

 
.

With dy = στ√
σ 2+τ 2

du., it follows 

. Gm1
σ ∗Gm2

τ (x) = 1

2π
√
σ 2 + τ 2

e−v
2/2

+∞
ˆ

−∞

e−u
2/2du.

(A13) For x. in the complement of supp(f ) + supp(g)., it holds for any y ∈ Rn . 

due to x = y + (x − y). always y  ∈ supp(f ). or (x − y)  ∈ supp(g)., thus 
f (y)g(x− y) = 0., and thus (f ∗ g)(x) = 0.. 

(A14) The proof is straightforward using the convergence properties in D .. Show 
that ψ(x) =  T (y), ϕ(x + y) . is a continuous function of x and has a 
continuous derivative with 

. 
ψ(xn)− ψ(x0)

xn − x0
−→  T (y), ϕ (x0 + y) 

for xn→ x0 .. Proceeding inductively, one obtains 

. (T ∗ ϕ)(k) = T ∗ ϕk = (−1)kT (k) ∗ ϕ.

The result holds also for the case of several variables. 
(A15) For x  ∈ supp(T )., there is a neighborhood U of x, such that for all ϕ ∈ D . 

with supp(ϕ) ⊂ U . it holds:  T , ϕ = 0.. If x ∈ supp(
.
T )., then there 

would be a ϕ ∈ D . with supp(ϕ) ⊂ U . and  
.
T ,−ϕ =  T , ϕ   = 0..
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Since supp(ϕ ) ⊂ supp(ϕ)., this would be a contradiction to x  ∈ supp(T ).. 
Therefore, R \ supp(T ) ⊂ R \ supp(

.
T ).. 

(A16) (1 ∗ 
. 
δ) ∗ s = 0  = 1 = 1 ∗ ( 

. 
δ ∗ s).with the unit step function s. 

(A17) Choose a > 0.with supp(G)∩ ]−a, a[= ∅.,ψ ∈ D .with supp(ψ) ⊂ [−a, a]., 
0  ψ  1., and ψ = 1. in [−a/2 , a/2].. With g(t) = (1 − ψ(t))/t ., then 
T0 = gG. is a particular solution and T0 + kδ . (k ∈ C.) the general solution of 
tT (t) = G(t).. 

(A18) For example, T = δm .with m  n.. 
(A19) The solutions are s(t)., eαt s(t)., and 

.
δ .. 

(A20) It holds
.
S = s ∗T = δ∗T = T .. ForU ∈ D + .with

.
U = T ., it is (S−U) = 0., 

and hence S − U = c. constant. From the support condition follows c = 0.; 
hence U = S .. 

(A21) Since one can transform an equation of n-th order (also in the sense of 
distributions) into a system y  = A(t)y. of the first order, it is sufficient to 
consider such systems. For any solution y ∈ D n ., a fundamental matrix F(t). 

of the system with F(0) = E . (identity matrix), and u = F−1y., it follows  by  
differentiation with y  − Ay = 0. that Fu  = 0., and hence u = c. constant. 
Therefore, y is a linear combination of the columns of F , which consist of 
infinitely differentiable functions. 

Exercises of Chap. 9 

(A1) 
.. 
f (t)  = 

4A 

T 
δ(t + T )  − 

2A 

T 
δ(t + T/2) − 

2A 

T 
δ(t − T/2). for − T  t < T .. 

Representation of the corresponding periodic impulse sequence by a gener-
alized Fourier series and twice (generalized) term-by-term differentiation of 
the Fourier series of f (t). yields with ω0 = π/T . and coefficient comparison 

. f (t) = 3A

4
+ 4A

π2

 
cos(ω0t)−

cos(2ω0t)

2
+ cos(3ω0t)

9
∓ . . .

 
.

(A2) Impulse response. One solves the homogeneous initial value problem (see 
p. 217) LC

..
U(t)+ RC

.
U(t)+ U(t) = 0, U(0) = 0,

.
U(0) = 1

LC
.. 

With the roots of the characteristic polynomial P and the notations 

. ωd =
1√
LC

> 0, α = R

2L
> 0, ω1 = |α2 − ω2

d |1/2,

three cases arise for the impulse response h(t).. The function s(t). denotes the 
unit step function. 

(a) ωd = α . (double real root of P ): h(t) = ω2
d te
−αt s(t).. 

(b) ωd < α . (two real roots of P ): h(t) = ω2
d

ω1
sinh(ω1t)e−αt s(t)..
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(c) ωd > α . (complex roots of P ): h(t) = ω2
d

ω1
sin(ω1t)e−αt s(t).. 

Step response. a(t) = (h ∗ s)(t).. 

(a) a(t) = 
ω2 
d 

α2

 
1 − e−αt − αte−αt

 
s(t) for ωd = α.. 

(b) a(t) =
 
1− (cosh(ω1t)+ 

α 

ω1 
sinh(ω1t))e−αt

 
s(t) for ωd < α.. 

(c) a(t) =
 
1− (cos(ω1t)+ 

α 

ω1 
sin(ω1t))e−αt

 
s(t) for ωd > α.. 

System response to a rectangular signal 

For Ue(t) = U0s(t)−U0s(t −T ).we have Ua(t) = U0(a(t)−a(t −T )).. 

For t →∞., Ua(t). decays limt→∞ Ua(t) = 0.. 
Periodic solution for a sine excitation 

For the input signal Ue(t) = U0 sin(ωt)., one calculates independently of the 
values R, C, and L the solution with the frequency response 

.   h(ω) = 1

1+ jωRC − ω2LC
.

The solution Ua(t) =. 

. U0ω
2
d

  
ω2
d − ω2

(ω2
d − ω2)2 + 4α2ω2

sin(ωt)− 2αω

(ω2
d − ω2)2 + 4α2ω2

cos(ωt)

 
.

Regarding (c), if you transform a first-order system so that the system 
matrix A in the terminology of control engineering is the so-called observer 
canonical form as given on p. 232, then you find the impulse response in the 
component a31s(t). of eAt s(t).. 

(A3) (a) y   + 4y  + 6y + 4y = f .with inhomogeneity f . 
(b) yH (t) = c1e−2t + c2e−t sin(t) + c3e−t cos(t).. 
(c) h(t) = 

1 
2

 
e−2t + e−t sin(t)− e−t cos(t)

 
s(t),. s(t). the unit step function. 

(d) 
. 
X = AX + F + x0δ .with initial values x0 ., the matrix 

. A =

⎛
⎝
0 0 −4
1 0 −6
0 1 −4

⎞
⎠ and F =

⎛
⎝
f

0
0

⎞
⎠ .

Then, as on p. 231, the third component of X is the solution y from (a). A 
fundamental matrix is G(t) = eAt

.. G31(t)s(t). again shows the impulse 
response h from (c). For x0 = 0. and supp(f ) ⊂ [0,∞[., the causal 
solution of the inhomogeneous problem is the convolution eAt s(t) ∗ F .; 
for continuous F this is the formula of variation of constants. 

(A4) For |z| > l ., u(0, 0, z)= −γρ0
+l
´

−l
1√

(z−w)2
dw= −γρ0 sgn(z)ln

 
z+l
z−l

 
.. 

The equipotential surfaces are rotational ellipsoids. With the substitutions
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. l1 =
 
x2 + y2 + (z− l)2, l2 =

 
x2 + y2 + (z+ l)2

and elliptical coordinates v = 1
2 (l1 + l2), w = 1

2 (l1 − l2). follows l1 =
v + w ., l2 = v − w ., lz = −vw.. For the argument of the potential function 
(see p. 236, Sect. 9.4) follows 

. 
l1 + l − z

l2 − l − z
= (v + l)l + w(l + v)

(v − l)l + w(v − l)
= v + l

v − l
.

Thus, the equipotential surfaces are given by the equations v = const.. They  
are rotational ellipsoids, since l1 + l2 = 2v . is the sum of the distances of a 
point (x, y, z)  ∈ S . to the two focal points (0, 0, l). and (0, 0,−l).. A power  
series expansion of the potential shows that u for very large distances v  l . 

resembles the potential of a point mass at the origin. 
(A5) For the potential u at the origin, according to Coulomb’s formula (p. 237) 

. u(0) = 1

4πε0

2π
ˆ

0

ˆ π/2

0

σ0 cos(θ)

R
R2 sin(θ)dθdφ = Rσ0

4ε0
≈ 169.5 kV.

(A6) For the sphere K around the origin with radius r and the internal Dirichlet 
problem 

. Δu = 0 in K, u = f on ∂K,

Green’s function is given by G(x, y) = 1
4π

  
1
|x−y| −

r

|y| |x− r2

|y|2 y|

 
.. 

One can also write G(x, y). in the following form: 

. G(x, y)= 1

4π

 
(|x|2 − 2x · y+ y · y)−1/2−r(|x|2y · y−2r2x · y+r4)−1/2

 
.

Partial differentiation with respect to y1 ., y2 ., and y3 ., respectively, yields the 
gradient grady G(x, y). for x ∈ K \ ∂K ., y = (y1, y2, y3) ∈ ∂K ., |y| = r .: 

. grady G(x, y) = (|x|2 − r2)y

4πr2|x− y|3 .

For |y| = r ., n = n(y) = y/r ., x ∈ K \ ∂K ., the normal derivative follows as 

.
dG

dn
(x, y) = grady G(x, y) · n(y) = |x|2 − r2

4πr|x− y|3 .
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Using formula (8.5), p. 239, one obtains a representation of the potential 
u(x). for x. in K \ ∂K . based on the given boundary values: 

. u(x) = r2 − |x|2
4πr

ˆ

|y|=r

f (y)

|x− y|3 do(y).

This is the Poisson integral formula for the sphere. For x = 0. and R < r ., 
with the boundary values u(y). for |y| = R ., the mean value formula for 
potential functions follows 

. u(0) = 1

4πR2

ˆ

|y|=R

u(y)do(y),

more generally u(x) = 1
4πR2

´

|y−x|=R
u(y)do(y).. 

This can be used, for example, to prove the maximum principle for potential 
functions in R3 . (see p. 70). Interested readers are referred for further 
information to the literature on potential theory and partial differential 
equations. 

(A7) (a) To show is  Δg, h =  g,Δh = h(0),. for h ∈ D(R2).. 
With the Laplace operator in polar coordinates, one calculates 

. lim
ε→0+

2π
ˆ

0

ˆ ∞

ε

ln(r)

 
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2

 
h(r, φ) rdrdφ.

(i) With integration by parts it follows 

. 

∞̂

ε

rln(r)
∂2

∂r2
h(r, φ)dr = −εln(ε)∂h

∂r
(ε, φ)+ (ln(ε)+ 1)h(ε, φ)

+
∞̂

ε

1

r
h(r, φ)dr, and

∞̂

ε

ln(r)
∂

∂r
h(r, φ)dr = −ln(ε)h(ε, φ)−

∞̂

ε

1

r
h(r, φ)dr.

(ii) Since h(r, φ). is 2π .-periodic in the variable φ ., it follows
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. 

2π
ˆ

0

1

r
ln(r)

∂2

∂φ2
h(r, φ)dφ = 1

r
ln(r)

∂

∂φ
h(r, φ)

    
φ=2π

φ=0
= 0.

In summary, one obtains 

. 

2π
ˆ

0

∞̂

ε

ln(r)

 
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2

 
h(r, φ) rdrdφ =

. 

2π
ˆ

0

h(ε, φ)dφ −
2π
ˆ

0

εln(ε)
∂

∂r
h(ε, φ)dφ.

The first integral converges for ε→ 0+. to 2πh(0). and the second integral 
to zero, since ∂h

∂r
. is bounded and limε→0+ εln(ε) = 0.. 

(b) Green’s function for the circular disk K around zero with radius R is 

. G(x, y) = − 1

2π

 
ln(|x− y|)− ln

 |y|
R
|x− R2

|y|2 y|
  

.

(c) Analogously to the previous exercise, one finds for x ∈ K ., |y| = R ., 
n = y/R . the normal derivative 

. 
dG

dn
(x, y) = grady G(x, y) · n = |x|2 − R2

2πR|x− y|2 .

Inserting into formula (9.6) on p.  239, where according to Green’s 
formula in the plane the surface integral over the boundary of the sphere 
is replaced by the line integral over the circle, gives for a point in K 

with polar coordinates (r, φ). again the Poisson integral formula with the 
boundary potential U : 

. u(r, φ) = R2 − r2

2π

2π
ˆ

0

U(ψ)

R2 + r2 − 2Rr cos(φ − ψ)
dψ.

(A8) (a) Using the method of image charges, one finds Green’s function for the 
half-space H = { (x1, x2, x3) ∈ R3 : x1 > 0 }.: 

. G(x, y) = 1

4π |x− y| −
1

4π |x− ys |
.

Here, ys = (−y1, y2, y3). is the mirror point of y = (y1, y2, y3)..
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(b) Its normal derivative with n = (−1, 0, 0). and |x − y| = |x − ys |. for 
x = (x1, x2, x3)., y = (0, y2, y3). is 

. grady G(x, y) · n = − ∂G

∂y1
(x, y) = − x1

2π |x− y|3 .

(c) For the solution u ofΔu = −  
ε0

in H, u = f on the plane y1 = 0,. at 
a point x ∈ H ., formula  (9.6), where the boundary measure of the sphere is 
replaced by the Lebesgue measure in the plane y1 = 0., gives the approach 

. u(x)=
+∞
ˆ

−∞

+∞
ˆ

−∞

f (y2, y3)

 
∂G

∂y1
(x, y)

 

y1=0
dy2dy3 +

ˆ

H

 (y)

ε0
G(x, y)dλ3(y).

(d) With the given data  (y) = qδ(y− x0)., x0 = (2, 0, 0)., and u = 0. on the 
plane y1 = 0., for x = (x1, x2, x3) ∈ H . it follows 

. u(x) = q

4πε0

 
((x1 − 2)2+ x22+ x23)

−1/2−((x1 + 2)2+ x22+ x23)
−1/2
 
.

(A9) For example, solve the linear system of equations given on p. 257 with 
Maple, Mathematica, Maxima, or Matlab. The approximate value for 
u(L/2, L/2). is 0.1827 .m. For graphical representation as on p. 258, connect 
the approximate values of the solution with polygonal lines. 

(A10) Solve analogously the problem with an L-shaped membrane as on p. 244. 
Make use of a triangulation near the edges as fine as possible with your 
computer. The FEM solution below was computed for f = 0.5.N/m 2 . and 
k = 2.N/m. 

(A11) As in the previous exercise, write a small program for a computer algebra 
or numerical system. For an interior node xk . of the interval subdivision, the 
corresponding basis function is 

.vk(x) =
 

Hp
L

(x − xk−1) for xk−1  x  xk,

−Hp
L

(x − xk+1) for xk  x  xk+1.
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Using a(u, v). and l(v). from p. 248, set up the system of equations, and 
calculate the required approximate solutions: 

. T (L/6) ≈ 274.271 ◦K, T (L/3) ≈ 276.414 ◦K, T (2L/3) ≈ 279.628 ◦K.

Note: The analytical solution of the problem is piecewise linear, continuous, 
and, in the present case, concave. It is 

. T (x) =
 
(T1 − T0)

3k2
L(2k1+k2) x + T0 for 0  x  L/3,

(T1 − T0)
3k1

L(2k1+k2) (x − L)+ T1 for L/3  x  L.

(A12) You can find the Fourier series of f1(x). using the similarity theorem from 
formula collections. For the sequence of amplitudes Ak ., k ∈ N., it follows 

. (A1, A2, A3, A4, A5, . . .) =
4al

π2

 
1, 0,

1

9
, 0,

1

25
, 0, . . .

 
.

The overtones quickly become very weak compared to the fundamental tone, 
the octave is absent, and the tone sounds pure and soft. 
For the 2l-periodic, odd extension of f2(x)., the impulse method from p. 214 

immediately yields f2(x)=
  ∞

k=1(−1)k+1 2n2h
(n−1)k2π2 sin

 
kπ
n

 
sin
 
kπ
l
x
 
.. For 

n = 2., h = al/2. as a special case f2(x) = f1(x). is included. For the 
amplitudes Ak ., it follows, e.g., with n = 100. approximately 

. (A1, A2, A3, A4, . . .)≈
6.3428h

π2 (1 , 0.5 , 0.3312 , 0.2484 , . . .) .

Comparing these amplitude values with each other shows that for increasing 
k they approximately decrease as 1/k ., the sound is rather hard and shrill. 
This corresponds to the experience one has when plucking a guitar near the 
bridge. 
For increasing n ∈ N., the function sequence

 
f2,n
 
n∈N . is generated with f2 ., 

which converges pointwise to the sawtooth − 2h
π
S
 
π
l
(x − l)

 
. (cf. p. 44). 

Accordingly, the amplitudes Ak,n =
    2n2h
(n−1)k2π2 sin

 
kπ
n

     . converge for n→

∞. to the amplitudes Ãk = 2h
kπ

. of this sawtooth. The solutions of the wave 
equation for the displacements f1(x). and f2(x). are not differentiable, thus 
only to be understood as distribution solutions. 

(A13) For (a) and (b), the impulse response is h(t) = ts(t)., s(t). the unit step. Naive 
discretization of the convolution equation in the form
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Fig. C.2 Naive result 

Fig. C.3 Regularized 
solution 

. x(tk) = Δ

n 

i=1
h(tk − si)f (si)

with Δ = T/n., 1  i, k  n., and equidistant nodes leads to a numerical 
solution as shown in Fig. C.2 (exact solution thick, numerical solution 
oscillating strongly with growing amplitude). Tikhonov regularization as 
given with the same system matrix A leads to the solution in Fig. C.3, where 
the exact solution is shown thick with an offset of +0.1 so that the two 
curves can be clearly distinguished. The determinant of A in the example 
is approximately 10−200 .. 
For (c) the impulse response is h(t) = 1

(RC)2
te−t/(RC)s(t).. Distort the 

solution x(t). of the convolution equation for ω0 = 2. rad/s,RC = 1.s, and 
U0 = 1.V 

. (h ∗ f )(t) =
 
−4 cos(ω0t)− 3 sin(ω0t)+ e−t/(RC)(4+ 10ω0t)

 U0s(t)

25
,

and thereby calculate numerical approximate solutions for the inverse 
problem. You get qualitatively similar results to those in (a) and (b). Use a 
computer algebra program like Mathematica or Maple for the computations. 

(A14) F(t,  s)  = f (t)g(s). is measurable. Further, T (t, s) = (t − s, s). is a linear 
transformation, so H(t, s) = (F ◦ T )(t, s) = F(t − s, s) = f (t − s)g(s). is 

measurable. Therefore
+∞́

−∞
|H(t, s)|dtds =. 

.

+∞
ˆ

−∞

 
ˆ +∞

−∞
|f (t − s)|dt

 
|g(s)|ds =

ˆ +∞

−∞
 f  1|g(s)|ds =  f  1 g 1.
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Thus, the theorem of Fubini-Tonelli (cf. 496) implies that f ∗ g . exists and 
belongs to L1(R).. 

For all α > 0., it holds
+∞́

−∞
hα(t)dt = 1. and lim|t |→∞ hα(t) = 0.. For t ∈ R., 

continuous f ∈ L1(R)., and ε > 0., there exists a δ > 0. such that 
|f (t − s)− f (t)| < ε . for all |s| < δ.. From this it follows 

. |f ∗ hα(t)− f (t)| =

      

+∞
ˆ

−∞

(f (t − s)− f (t))hα(s)ds

      

≤ ε · 1+  f  1hα(δ)+ |f (t)|
ˆ

|s| δ/
√
α

h1(s)ds.

The last two summands tend to zero for α → 0+., and the assertion follows, 
since ε . is arbitrary. 

Exercises of Chap. 10 

(A1)   f1(ω) = 
2 
jω  

.,   f2(ω) = 4j
ω3 .,   f3(ω) = √π

 
1
2 −

ω2

4

 
e−ω

2/4
., 

  f4(ω)=
 

π
a
e−(ω

2+2jωb)/(4a)ec+b
2/(4a)

.,   f5(ω)=2πj
 
−e−ωs(ω)+ δ(ω)

 
.. 

(A2) f (t)  = 
U0T 

πω0t
2 sin(ω0t) sin(2ω0t).. 

(A3)  Fa ∗ Fb =   Fa+b.. 

(A4) 
∞́ 

0 

sin(ax) sin(bx) 
x2

dx = 
π 

2 min(a, b).. 

(A5) g(t) = 
1 
2π 

+Ω
´ 

−Ω
  f (ω)ejωtdω . is the orthogonal projection of f onto the 

subspace PWΩ . of L2(R)., which contains functions bandlimited by Ω .. 
(A6)   S(ω) = −2πj sin(ωT ) 

ω 
sgn(ω).. 

(A7) Suppose f (t) = s(t). the unit step function for (a) and (b), g(t) =
cos(ωt)s(t).. 

(A8)   f (ω)  =
 

2(ω cos(1) sin(ω)−sin(1) cos(ω)) 

ω2−1 for |ω|  = 1, 

1+ sin(2)/2 for |ω| =  1. 
. 

The multiplication theorem holds, because  cos. has compact support and the 
Fourier transform of s(t + 1) − s(t − 1). is a slowly increasing infinitely 
differentiable function. 

(A9) For (a) and (c), f = h.. See also Example 1 on p. 338. 
(b) Using   f (ω) = 1

jωb
− 1

2b(jω−j√b/a)
− 1

2b(jω+j√b/a)
. follows with 

correspondences on page 298
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Fig. C.4 Illustration for 
− vp(cot(ω/2)). 

. f (t) = 1

2b

  
1− cos

   
b

a
t

  
sgn(t) = 1

b
sin

  √
ab

2a
t

 2
sgn(t).

(A10) (a) F−1(  f )(t) = j
 
4ej3t + e−j3t

 
e−2t s(t).. 

(b) Using cos(x)2 = (1 + cos(2x))/2. and cos(x + π/2) = sin(−x)., one 
obtains through integration by parts from p. 274 (  hRC,α . is real-valued 
and even) hRC,α(t) = sin(bt)

πt
cos(at)

1−(2at/π)2
,. later with b = π/ta, a = αb. 

the pulse shape on page 390, with b = T/2, a = αb. and the rule 
F(  f )(t) = 2πf (−ω). the correspondence between p and   p .on page 398. 
Verify despite different forms:  hRC,α(t)/(2b) =  hRC,α(t)/T = p(t).. 

(A11)   f1(ω1, ω2) = −π 

4 ω1ω2e−(ω
2 
1+ω2 

2)/4.. To obtain   f2 ., multiply the Fourier 
transform of the circular aperture on p. 314 by e−j (ω1+ω2) .. 

(A12) f is continuous and bounded; therefore 
.
f . also belongs to S  .. The derivative 

computed with the chain rule is the generalized derivative of f as a 
distribution in D .. However, this is not tempered. The generalized derivative 
of f as a continuous linear functional on S . is an extension of this functional 
from D . to S .. 

(A13)   f (ω)  = −2j (arctan(ω/a)− arctan(ω/b)).. With the hint, 
  g(ω) = −jπ sgn(ω)+ 2j arctan(ω/b).. 

(A14)   f (ω)  = −  
2 
ω2 .,   g(ω) = 2n!

(jω)n+1 .,   h(ω) = − 1
ω2 + jπ

.
δ(ω)., 

  p(ω) = (−j)nπωn−1
(n−1)! sgn(ω).,   q(ω) = 2 pf(|ω|−λ) cos(λπ/2) Γ (λ).. 

(A15) The Fourier transform is   f (ω) = π
a cosh(πω/(2a)) .. Thus, f is an eigenfunction 

of the Fourier transform for a =
√
π/2.with eigenvalue

√
2π .. 

(A16) (a) Use integral transformation (see Appendix B, p.  497). First compute 
F(ϕ ◦ AT ). for the transposed matrix AT

. and ϕ ∈ S(Rp)., and then F(TA).. 

(b) Map with a matrix A the parallelogram onto the square − 1  x, y  1.. 
Using (a), it follows fP (ω1, ω2) = 4

ω1(ω1+ω2)
sin(ω1) sin(ω1 + ω2).. 

(A17) (Fig. C.4) 

Exercises of Chap. 11 

(A1) The resistance R . represents the load.
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. |  h(ω)| = 1 
(1− 2LCω2)2 + 4ω2L2/R2

.

The circuit is a lowpass filter; it holds that Ua → Ue . as ω→ 0. and Ua → 0. 
as |ω| → ∞.. 

(A2) The filter order is n = 6., and the cutoff frequency ωc/(2π). is 3.397.kHz. 
(A3) (a) Using the complex impedances Z1 = 1/(jωC1). and Z2 = 1/(jωC2). 

and the standard notation in alternating current calculations with upper-
case letters, 
I1 = I2 + I3 . and

Vin−V1
R1 = V1

R2+Z2 +
V1−Vout

Z1 .. The voltage v+. at 
the operational amplifier is found similar to a voltage divider using v1 .: 
V+ = V1 Z2/(R2+Z2).. The “op-amp” is negative feedback, meaning 
in the steady state the op-amp input voltage is zero, and thus vout = v+.. 
From the last equation follows V1 = Vout(R2+ Z2)/Z2.. From this and 
the second equation Vout = VinZ1Z2/(Z1Z2+Z1(R1+R2)+R1R2).. 
Finally, 

.   h(ω) = Vout

Vin
= 1

1+ jωC2(R1+ R2)− ω2R1R2C1C2
.

(b) Coefficient comparison of the solution from (a) with the Butterworth 
frequency response gives R1 = R2 = 2813.49. Ω .. 

(c) One obtains a highpass filter with transfer function 

. HHP (s) = s2

s2 + s( 1
R2C1 +

1
R2C2 )+

1
R1R2C1C2

.

Coefficient comparison with the Butterworth polynomial analogous to 
(b) gives R2 = 2R1., R1 = 1125.4. Ω .. Plot the amplitude and phase 
response and the group delay of the filter. 

(A4) Verify the statements regarding the lowpass to highpass transformation, 

starting from a lowpass frequency response  hLP(ω) =
 n

k=1(−zk) n
k=1(jω−zk)

. of order 

n.with DC gain K = 1. and poles zk . of its transfer function. 
(A5) (a), (b) Obtain the statements by substituting into the transfer functions, 

respectively, the frequency responses, starting from a lowpass filter as in 
the preceding exercise. For example, in the bandpass filter w1,n . and w2,n . 

are the positive solutions of the equations 1/B(js + 1/(js)) = −j . and 
1/B(js + 1/(js)) = j . and for the bandstop filter analogously. 
(c) Starting from the lowpass pole z0 = jωce

jπ/6
., calculate with the inverse 

of the Joukowsky mapping the corresponding poles zBP,1 . zBP,2 . for the 
bandpass filter: 
zBP,1/ωc = −0.095278+j1.15133., zBP,2/ωc = −0.0713887−j0.862654.. 
Since it concerns a Butterworth filter, the bandstop poles are complex
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Fig. C.5 DFT without zero 
padding 
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Fig. C.6 DFT with zero 
padding 
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conjugate to the bandpass poles. The highpass pole is complex conjugate 
to the lowpass pole. 
(d) Use a computer algebra system and the bilinear transformation of p. 376. 
Compare the discrete with the analog filter. 

(A6) A DFT approximation of the Fourier transform of f . with eight samples is 
poor (Fig. C.5). In Fig. C.6 you see the Fourier transform represented by 
the thick line   f . over the angular frequency, dashed the approximation with 
2040 zeros appended to the samples from supp(f ).. Deviations of the two 
approximations from the spectral function   f . are unavoidable and due to the 
aliasing effects of the DFT, in the second case, reduced by adding many 
samples outside the support of f .. 

(A7) h = δ + 2
  ∞ 

n=1 δ2n.. 

(A8) The z-transform of x− .: X
 
1
z

 
., of  xα .: X

 
z
α

 
., and of v: − zX (z).. 

(A9) (a) Plot using a computer algebra system. (b) The transfer function of the 
discrete notch filter obtained through bilinear transformation is 

. H(z) = a0 + a1z
−1 + a2z

−2

b0 + b1z−1 + b2z−2
,

where a0 = A0(1+L2)
N

., N = 1+ L
Q
+ L2

., L = cot(ωca/2)., a1 = 2A0(1−L2)
N

., 

a2 = a0 ., b0 = 1., b1 = 2(1−L2)
N

., b2 =
1− L

Q
+L2

N
.. 

For A0 = 1., a = 1/44100.s, ωc = 2π · 466 .Hz, and Q = 10., as shown  in  
Fig. C.7, the amplitude response as a function of frequency is obtained and 
in Fig. C.8 the phase response of a discrete notch filter that blocks 466 .Hz. 
As part (c) of the exercise, cascade four such filters. 

(A10) The filter of order n = 5. has the following amplitude response and phase 
response (Figs. C.9 and C.10): 
Attenuation at the passband edge is 0.199 dB and at the stopband edge is 
49.181 dB.
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Fig. C.7 Magnitude notch 
filter 

Fig. C.8 Phase notch filter 

Fig. C.9 Gain Chebyshev 
filter 

Fig. C.10 Phase Chebyshev 
filter 

(A11) The impulse responses of the two causal stable filters with transfer functions 
H . andHinv = 1/H . are obtained through partial fraction decompositions and 
Laurent series expansions of the partial fractions. 
H . has zeros z0,1 = 1/3. and z0,2 = −1/5. and poles z∞,1 = j/2. and z∞,2 =
−j/2.. From  

. H(z) = 1− 4− 19j

60(z− j/2)
− 4+ 19j

60(z+ j/2)
,

the causal impulse response is obtained through Laurent series expansion for 
|z| > 1/2.:
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. h = δ0 −
4− 19j

60

∞ 

k=0

 
j

2

 k
δk+1 −

4+ 19j

60

∞ 

k=0

 −j
2

 k
δk+1.

h. has real coefficients and can also be rewritten with a bit of calculation into 
the form: 

. h = δ0 +
∞ 

k=0
hk+1δk+1, where hk+1 =

⎧
⎪⎪⎨
⎪⎪⎩

(−1)1+k/2
15·2k−1 for k even,

19·(−1)(k+1)/2
15·2k+1 for k odd.

The first filter coefficients—which can also be obtained using recursion 
equations on p. 366—are 

. (h0, h1, h2, h3, h4, h5, . . . ) = (1,− 2

15
,−19

60
,

1

30
,

19

240
,− 1

120
, . . . ).

Similarly, we have Hinv = 1 + 65
96(z−1/3) −

87
160(z+1/5) . and thus the 

corresponding causal impulse response 

. hinv = δ0 +
∞ 

k=0

 
65

96

1

3k
+ (−1)k+1 87

160

1

5k

 
δk+1.

(A12) (a) From |  h| = 1. follows C(z) = 1. for all |z| = 1.. Multiplication with the 
denominator in that equation yields two equal polynomials, M = N ., 
dk = 1/ck ., and thus the assertion. 

(b) Compute the group delay of a factor (z−1 − ak)/(1 − akz
−1)., and use 

the assumed causality and stability (n  0., |ak| < 1).. 
(A13) (a) Consider the following pole-zero plot. The squares denote poles, and 

the circles denote zeros of the transfer function H(z).. Translate this 
illustration Fig. C.11 into a mathematical proof of the desired statement. 

(b) Follows from part (a) of the exercise and from part (b) of the previous 
exercise A12. 

Note: In some literature zeros with magnitude 1 are still allowed for 
minimum phase filters. 

(A14) Proceed analogously to the proof of the example on p. 355. 

Exercises of Chap. 12 

(A1) Compute analogously to the proof of the sampling theorem. 
(A2) The windowed DFT shows a frequency that increases linearly with time. 
(A3) For the Hann window, Dt (wT )Dω(wT ) = 1

6 (4π
2 − 30)1/2 ≈ 0.513..
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Fig. C.11 Diagrams of the 
zeros and poles for the filters 

Test with examples the frequency localization of different window functions 
with different signals. 

(A4) The weights gk . relevant for the spectral leakage effect for the triangular 
window wT . for a signal of the form f (t) = Aejω1t . are given by 

. gk =
    
wT (2πk/T − ω1)

T

    =
1

2

 
sin(kπ/2− ω1T/4)

kπ/2− ω1T/4

 2
.

Additionally: Compare the corresponding weights of the rectangular win-
dow (size of local maxima of   wT ., decay behavior, etc.). Calculate    wT  .. 

(A5) The zeros of the characteristic polynomial have negative real parts. The 
Fourier transform of the equation x(3) + 4

..
x + 6

.
x + 4x = sin(t)s(t)+ 16δ +

6
.
δ +

..
δ . leads by resolving for   x ., partial fraction decomposition, and inverse 

transformation to the solution x(t).with support in [0,∞[. 

. x(t) = s(t)

 
41

10
e−2t − 29

10
e−t cos(t)+ 73

10
e−t sin(t)− 1

5
cos(t)

 
.

(A6) (a) The fundamental solution g . corresponds to the temperature distribution 
in R3 . at time t ., resulting when, under vanishing initial conditions at 
t = 0., the temperature is increased by one unit at the origin. The 
Fourier transform with respect to spatial coordinates yields, for fixed ω ., 
a differential equation in t .: 

. 
∂

∂t
  g(ω, t)+ k|ω|2  g(ω, t) = δ(t),   g(ω, t) = 0 for t < 0.

By Theorem 9.5, p.  217, it has a unique causal fundamental solution. The 
inverse Fourier transform (with respect to the coordinates of ω .) of the
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solution gives the desired fundamental solution for the heat equation, here 
in the 3D case with n = 3., 

. g(x, t) = (4πkt)−n/2e−|x|
2/(4kt)s(t).

(b) The corresponding solution of the inhomogeneous heat equation for right 
hand sides F ., for which the convolution integral exists, is given by 

. u(x, t) = (F ∗ g)(x, t) =
ˆ

R

ˆ

R3
F(y, s)g(x− y, t − s) dλ3(y) ds.

If F(x, t) = 0. for t < 0., then the time integral extends only over [0, t].. A  
sufficient condition for the validity of the formula is that for every interval 
[0, t]. and  > 0., there exists a constant Ct, . such that for all x.: |F(x, t)| ≤
Ct, e |x|

2
.. 

(c) The corresponding initial value problem with u(x, 0) = f (x). has the 
solution u = (F ∗ g) + w ., where w . is the solution of the homogeneous 
problem with initial condition f . as in formula (12.12) on p.  431. 
Test the results with concrete data analytically or numerically with the help 
of a computer algebra system, and generate graphical outputs. 

(A7) Using again the Fourier transform related to the spatial variables for the 

equation ∂2u
∂t2
= c2Δxu., c > 0., one obtains the fundamental solution g1(x, t). 

with g1(x, t) = 0. for t  0., using the unit step function s(t)., through 
  g1(ω, t) = sin(ct |ω|)

c|ω| s(t).. Inverse Fourier transform yields 

g1(x, t) =
 

δ(|x|−ct)
4πc2t

for t > 0,

0 for t  0,
. where δ(|x| − ct). denotes the Lebesgue 

surface measure on the sphere around the origin with radius ct .. Considering 
the D’Alembertian operator instead, the obtained fundamental solution g for 
t > 0. is (cf. Eq. (12.9)) g(x, t) = c2g1(x, t).. This fundamental solution g . 

is called the retarded fundamental solution, i.e., delayed due to the finite 
propagation speed c. The convolution integral exists for locally integrable 
F(x, t)., and the solution in the Kirchhoff formula, the so-called retarded 
potential at time t . is given by 

. u(x, t) = (F ∗ g)(x, t) =
ˆ

R3

ˆ ∞

0
F(x− y, t − s)g(y, s) ds dλ3(y).

This expression relates u. to the values of F . at earlier times t − s ., s > 0., i.e., 
it is a causal solution. 
Adding the solution from formula (12.8), p. 427, yields the solution of the 
wave equation in R3 . for nonvanishing initial conditions.
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The distribution  g(x, t) = g(x,−t). is also a fundamental solution. It is the 
so-called advanced fundamental solution. For a discussion of that see, e.g., 
the Feynman Lectures, available from the Caltech website. 
The solution for  u = A sin(ωt)s(t) ⊗ δ(x). is immediately seen by the 
fundamental solution: u(x, t) = A sin(ω(t −|x|/c))/(4π |x|) s(t −|x|/c). (see 
Fig. 12.24 and Eq. (12.9)). For the transformation of the integrals in (12.9), 
p. 429, use the substitution c(t − s)n = w.. Then the expression with the 

surface integral is transformed into
1

4π

ˆ

R3

f (x+ w, t − |w|
c
)

|w| dλ3(w)., which 

gives with y = x+ w. the convolution integral for f ∗ δ(t− |x|
c
)

4π |x| .. 

(A8) Analogous proceeding as in A7 leads with k = h̄/(2m). for t > 0. to the 
differential equation ∂

∂t
  ψ(ω, t)+ jk  ψ(ω, t) = 0,   ψ(ω, 0) =   ψ0(ω).. Inverse 

Fourier transformation of the solution yields for t > 0. 

. ψ(x, t) = (4πkt)−3/2e−j3π/4
ˆ

R3

ψ0(x− y)ej |y|
2/(4kt) d3y.

Since this book cannot serve as an introduction to the theory of partial differential 
equations and their significance in physics but aims to present the Fourier transform 
as one of many tools in this field, interested readers are referred to the many 
excellent textbooks mentioned in the text on such equations for further work.
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Almost everywhere, 493 
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Baseband signal, 88 
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Boundary value problem, 68 
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Cauchy-Schwarz inequality, 308, 449 
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Chebyshev abscissae, 110 
Chebyshev lowpass filter, 113, 127, 128 
Chebyshev polynomials, 107 
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differentiator, 157 
Clenshaw-Curtis quadrature, 104 
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Complex AC circuit calculation, 66 
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Convolution equations 
Tikhonov regularization, 266 

Coulomb formula, 237 

D 

d’Alembert, 261 
D’Alembert operator, 428 
Decibel (dB), 335, 371 
Derivative 

generalized, 173 
Difference equation, 365 
Differential operator, 218 
Dirichlet 

boundary value problem, 68, 237, 244 
Dirichlet kernel, 14, 29, 130, 208, 271 
Discrete cosine transform, 100 
Discrete fourier transform, 85 
Discrete Fourier transform (DFT), 85 

alias effect, 87 
Analog-to-digital conversion, 92 
bandpass sampling, 90 
bandwidth, 88 
baseband, 88 
baseband signal, 88 
DCT-2D, 122 
DCT I, 100 
DCT II, 101 
FFT, 118 
frequency assignment, 90 
frequency detection, 90 
IDFT, 95 
JPEG, 122 
leakage effect, 91 
Nyquist frequency, 88 
Nyquist interval, 88 
phase reversal, 89 
sampling frequency, 90 
spectral leakage, 88 
time window, 417 
trigonometric interpolation, 97 
undersampling, 90 
zero padding, 347 

Dispersion, 402 
Distortion factor, 62 
Distribution, 164 

causal, 202, 217 
chain rule, 187 
complex, 188 
continuity, 190 
convergence, 182, 188 
convolution, 193, 300 
coordinate transform, 188 
coordinate transformation, 186 

definition, 164 
δ .-Impulse, 156 
derivative, 171 
Dirac impulse, 160 
essential point, 193 
fundamental solution, 215 
indefinite integral, 180 
initial value problem, 221 
multiple variables, 233 
periodic, 207 
primitives, 180 
product rule, 173 
pseudofunction, 168 
reflection, 194 
regular, 166 
series, 185 
several variables, 187 
singular, 166 
support, 155, 193 
tempered, 289, 311 
tensor product, 191 
weak convergence, 165 

Dominated convergence, 496 

E 

Effective value, 54 
Energy, 75 
Exponentially bounded, 358 

F 

Fast wavelet transform, 474 
Fejér kernel, 132, 279 
Fibonacci numbers, 367 
Filter 

allpass filter, 341 
analog, 326 
bilinear transform, 376 
Butterworth, 377 
Butterworth filter 

highpass, 380 
causal, 332, 368 
Chebyshev lowpass, 113, 127 
Chebyshev lowpass filter, 128, 336 
discrete, 114, 351 
FIR filter, 372 
frequency response, 115, 327, 336 
frequency transformations, 341 
group delay, 329 
highpass filter, 341 
IIR-filter, 375 
integrator, 330 
inverse discrete, 368
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lowpass, 330 
lowpass filter, 373 
matched, 349 
minimum phase, 370 
minimum phase filters, 382 
non-recursive, 114 
notch filter, 381 
phase response, 329 
raised cosine, 390 
recursive, 114 
stability, 332, 339, 356, 368 
transfer function, 338, 358 

Finite elements, 243, 253 
stiffness matrix, 251 

Fourier, 1, 261 
Fourier coefficients, 10, 17, 50, 141, 214 

order of magnitude, 51 
Fourier series, 28, 32, 39 

best RMS approximation, 59 
comparison of coefficients, 212 
convergence in quadratic mean, 61 
derivative, 46 
1/f-Theorem, 78 
generalized, 186, 207 
Gibbs phenomenon, 25 
impulse method, 214 
integration, 47 
nth order harmonic, 33 
periodic convolution, 63 
product, 306 
properties, 39 
several variables, 140 
similarity, 40 

Fourier transform, 270, 287 
circular aperture, 314 
convolution, 280, 300 
discrete Fourier transform (DFT), 96 
Gibbs phenomenon, 277 
impulse trains, 303 
inversion formula, 271 
multiple variables, 310 
multiplication theorem, 283 
Plancherel equation, 283 
properties, 279 
rational functions, 298 
real functions, 273 
rectangular aperture, 313 
STFT, 410 
of tempered distributions, 290 
windowed, 410 

Frequency response, 67, 327 
discrete filters, 358 

Function 
causal, 217 

generalized, 160, 164 
harmonic, 71 
locally integrable, 165 
measurable, 493 
rapidly decreasing, 311 
step functions, 493, 501 
support, 155 

Fundamental solution, 215 
2D potential equation, 264, 519 
3D heat equation, 435, 531 
3D potential equation, 234 
3D wave equation, 435, 531, 532 
Schrödinger equation, 436 

Fundamental solution method, 233 
Fundamental theorem of algebra, 486 

G 

Gabor transform, 410 
Gibbs phenomenon, 25, 109, 136, 277 
Green’s formula, 234 
Green’s function, 218, 239 
Group delay, 329, 335, 371 

H 

Haar wavelet, 468 
Heat conduction, 68 
Heat equation, 1, 431 
Heaviside function, 168 
Heisenberg’s uncertainty principle, 404 
Hilbert space, 448 
Hölder Inequality, 294 
Huygens’ principle, 428, 429 

I 

Image charge, 240 
Impulse, 162 

strength, 162 
Impulse response, 218, 326 
Impulse sequence 

periodic, 209 
Initial boundary value problem, 2, 259 
Initial value problem 

causal, 221 
first-order system, 226 
on half-line, 223 

Inner product, 12, 449 
Interpolation 

Chebyshev abscissae, 110 
Chebyshev polynomials, 110 
trigonometric, 97 

Inverse discrete Fourier transform (IDFT), 95, 
396
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Joukowsky mapping, 127, 343 

L 

Laplace equation, 68, 233 
Laplace operator, 233, 244 
Lebesgue integral, 493 
Lebesgue measure, 491 
Linear filter, 326 

See also Filter, 
Linear systems, 64, 324 

asymptotically stable, 64 
first-order systems, 226 
impulse response, 218 
initial value problem, 220 
step response, 218 

Lowpass filter, 66, 88 
LTI system, 64 

M 

Malgrange-Ehrenpreis theorem, 437 
Maximum principle, 70 
Maxwell equation, 233 
Mean value property, 22, 25 
Mean values, 151, 153, 154, 166 
Measurable, 494 
Membrane, 143, 243 
Minimum phase filters, 370 
Möbius transform, 376 
Multi-carrier transmission, 392 
Multi-index, 187 
Multiscale analysis, 467, 476 

N 

Null set, 492 
Numerical integration, 104 
Nyquist pulse, 390 

O 

Ohm, 74 
Orthogonal frequency division multiplexing 

(OFDM), 92, 117, 392 
intercarrier interference, 394 
pulse shape, 393 

Orthonormality relations, 10, 12 

P 

Parseval equation, 54, 141 
Partial differential equation 

Dirichlet problem, 143 
heat equation, 1 
Laplace equation on a disk, 68 
vibrating string, 2, 72 

Partial fraction decomposition, 488 
Phase response, 329, 371 
Poincaré-Friedrichs inequality, 502, 503 
Poisson integral formula, 70, 236 
Poisson summation formula, 348 
Polarization identity, 284 
Polynomially bounded, 211, 290 
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