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Preface

Fourier analysis and distribution theory are fundamental mathematical tools for
describing and solving a wide array of technical and scientific problems. These
include areas of physics, mechanical engineering, electrical engineering, and signal
and control theory. This text is intended for future scientists seeking to understand
the theoretical foundation of mathematical modeling, Fourier analysis methods, and
their practical applications. It builds on the author’s earlier work, published by
Vieweg in 1996, and incorporates insights from many years of lectures delivered
to students of applied mathematics, physics, electrical engineering, and communi-
cations engineering at the Technische Hochschule Niirnberg Georg Simon Ohm,
starting in their fourth semester.

The book is tailored for undergraduate and early master’s students in mathe-
matics, physics, and engineering. A basic understanding of differential and integral
calculus is a prerequisite. The text is divided into chapters covering the mathematical
foundations of Fourier series, distributions, and Fourier transforms, each comple-
mented by examples of practical applications. The fundamentals of distribution
theory, widely used in engineering disciplines, enable and simplify numerous
calculations for physical and technical problems.

The book is structured such that theoretical and application-oriented chapters
each account for half of the content. The theoretical chapters introduce Fourier series
and integrals, distributions, and the z-Transform.

The application chapters are designed to be read independently, depending on the
reader’s interest. These chapters provide an introduction to the fundamental types of
linear partial differential equations and essential principles of linear systems theory.
Topics include methods for linear filter design and sampling, offering an accessible
introduction to modern signal processing. The unified representation of analog and
discrete linear systems within the framework of distributions is also explored.

The sections on discrete Fourier and wavelet transforms, along with their appli-
cations in signal processing, and the introductory discussion on the finite element
method, provide a glimpse into the numerical aspects of practical applications.
Specific examples utilize physical SI units to ground the concepts in real-world
scenarios.



vi Preface

Through this book, I aim to offer mathematics and physics students a clear intro-
duction to widely used techniques in technology and engineering. Simultaneously,
I hope to provide technically oriented students with a comprehensible mathematical
presentation that supports their work. To facilitate learning, the text includes 175
illustrations. I trust that the presentation will encourage readers to apply their newly
acquired knowledge in practice and continue their learning journey with other
available literature if necessary. The appendices include essential theorems from
function theory and Lebesgue integration, which are used throughout the text.

I would like to express my gratitude to my colleagues Herbert Leinfelder,
Rudolf Rupp, and Jorg Steinbach in Niirnberg, and Peter Wagner in Innsbruck,
for their valuable discussions during the preparation of this book. Special thanks
go to Donna Chernyk and Kirithiga Nandini Gnanasekaran at Springer Nature for
their professional assistance in publishing this text. I am also indebted to Charlott
Caroline, Krefeld, and Friederike Laus, Niederzissen, for translating and typesetting
several chapters from German into English, and to my students, whose motivated
collaboration and constructive feedback in lectures and seminars contributed signif-
icantly to the development of this book.

An important part of this book are the exercises, which I encourage serious
readers to complete independently. Most exercises are designed to reinforce the
content of the book and develop strong calculation techniques. Exercises marked
with an asterisk are primarily intended for mathematicians and sometimes explore
topics not discussed in detail within the text. For reference, solutions to all exercises
are provided in Appendix C.

Niirnberg, Germany Rolf Brigola
January 2025
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Chapter 1 ®
Introduction Check for

Abstract As an introduction, the initial value problem for a vibrating string is
treated as an application of Fourier expansions to a differential equation. The
solutions are first prototypes of signals that will be studied in later chapters.
Theoretical questions are discussed for approximate solutions by trigonometric
polynomials and series solutions, which are subsequently answered.

1.1 Preliminary Remarks on History

Historically, trigonometric series such as

o
%0 + 3 (an cos(nar) + by sin(non))

n=1

were initially used to describe periodical events in astronomy and to work on motion
equations for vibrating strings. These types of series were later—under suitable
conditions for the series coefficients—named Fourier series. As early as 1753, D.
Bernoulli (1700-1782) was convinced that “almost every” vibrational shape of a
string could be expressed as a superposition of a fundamental vibration with an
angular frequency w and harmonics with angular frequency multiples nw, n =
2,3,4,... In 1807, French mathematician Jean-Baptiste Joseph Fourier (1768—
1830) used such trigonometric series to express solutions for the heat equation
(Fourier (2009)). For a thin bar of length [ with a thermal diffusivity &, where the
bar ends are kept at temperature zero, the temperature u(x, ¢) in x € [0, /] at time
t > 01is the solution of the following homogeneous partial differential equation:

ou 92u .
—(x,t) =k —(x,t) (no external energy input),
ot ax2

ux,0) = f(x) (initial temperature distribution f),

u(0,1) =u(l,t) =0 (the bar ends are chilled with ice).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 1
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2 1 Introduction

The Fourier series solution was expressed as

o0
nmw
M(x, t) — an e—k(nﬂ/l)zt Sin (Tx) ,

n=1
l
b —2/f( )sin<”” )d
=7 y ) dy.
0

Since Fourier argued in part intuitively, his theory of heat conduction was met with
concerns and reservations that were only addressed after decades of ultimately
very fruitful discussions. The exact clarification of fundamental mathematical
concepts for Fourier’s arguments essentially goes back to the work of mathemati-
cian P. L. Dirichlet (1805-1859). After almost a century, it became clear that
Fourier’s work provided important impact for many mathematical subdisciplines.
Questions derived from Fourier analysis, i.e., the representation of functions through
trigonometric functions, led Dirichlet to the modern concept of functions, stood
at the origin of G. Cantor’s (1845-1918) set theory, and were starting points for
B. Riemann (1826-1866) and H. Lebesgue’s (1875-1941) measure and integration
theory. Fourier series theory, with its abstract terms and the resulting new methods
for solving specific application problems, provides strong impulses to functional
analysis and modern numerical mathematics still today. Even during their initial
discussion period, Fourier’s ideas rapidly entered natural and engineering sciences
and are considered among the most effective mathematical tools in these fields
today.

To explain Bernoulli and Fourier’s basic ideas, let us first look at the problem of a
vibrating string. One way a string’s vibration can be understood is as an elementary
example of an acoustic signal. From this, we can already develop essential terms for
many Fourier analysis applications.

1.2 The Problem of the Force-Free Vibrating String

Let us look at the force-free motion of a thin homogeneous string of length /, fixed
in place at both ends. How will the string move if it is displaced from its at-rest
state and then released? To deal with this question mathematically, we introduce
a coordinate system and designate the transversal displacement of the string at
position x at time ¢ as the function u(x, 7).

We are searching for a function u(x, ¢) on [0, [] x Rar that is twice continuously
differentiable and which fulfills boundary value conditions (see Fig. 1.1)

w(©,6) =u(l,t) =0 for t >0,
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Fig. 1.1 Initial displacement

of a thin string A,O) = f(x)
0

as well as initial value conditions

u(x,0) = f(x) for O
lim z—l:(x,t) =g(x) for O

t—0+

X

L, f(O) = f() =0,

x <1, g(0) = g(l) =0.

NN
VASV/A

In our example, “to let go off the string” means that g = 0 on [0, /].

To determine u(x, t) for times t > 0, physics tells us that during forceless
motion, and with the previously mentioned boundary and initial conditions in place,
for small transversal displacements the function u(x, t) approximately satisfies the
one-dimensional wave equation:

92 92
—at;tzcz—az O<x<lI, t>0).
X

In this equation, the constant ¢> = P /o is the quotient of the string’s tension P and
mass density o. P is the quotient of tension force F and the string’s cross-sectional

area A. In this context, the constant ¢ has the physical dimension of a velocity.
If we additionally assume that u(x, t) is of the form

u(x,t) =vx) - w) (separation of variables),

substitution in the wave equation is as follows:

v = v w.
) . w dv .. d*w d2v
For this, we use the notation w = —, v = —, W = — and v/ = —-
dr dx dr dx

Division through c?vw (under the condition cZvw # 0) results in

i’:) v//

cw v

Because the left side is only a function of  and does not depend on x , the right side
can also not depend on x, and it has to remain constant. If we name this constant A,
we end up with two ordinary linear differential equations:

v/ — A =0,

W — Actw =0
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and initial and boundary conditions

v(0) =v() =0, (1.1)
v)w(0) = f(x) O<x <D, (1.2)
v(x) tl_i)r&zb(t) =gl O<x<D. (1.3)

As a calculus reminder of ordinary linear differential equations, we will determine
the solutions of v/ — Av = 0:

The v(x) =e** approach leads to the equation e** (s>—1) =0. Since e** 0 is always
true, we find solutions by determining the zeros of the characteristic polynomial
P(s) = s2 — A. The zeros of the characteristic polynomial P(s) = s — ) are

+VA A >0,
0 if A=0,
+j/—A A <0,

where j designates the imaginary unit with j> = —1. For readers accustomed to the
expression i, i2 = —1, which is more common in mathematics than J, it should be
noted that j2 = —1 is the notation widely used in electrical engineering and signal

processing, because in these fields the letter i is firmly used to designate the electric
current. Mathematician readers should easily be able to deal with this notational
variant in the text.

1. Case: A > 0: Let us assume that one of the solutions v(x) =¢; eﬁx—f—cz e~V

fulfills the boundary conditions. It follows that for the corresponding ¢ and ¢;

Cl e“/’i'O ) e_ﬁ'o =c1+c =0,
Vil Vil _

c1€ +cre

1 1
is valid. Because the determinant det 0, the result is ¢; =
eﬁ.[ e_ﬁ.l ?é

¢ = 0, i.e., only the zero solution is obtained. However, the zero solution does
not fulfill the initial condition (1.2) for f 0 and therefore cannot be an option.
2. Case: L = 0:¢c; +cox =0forx =0and x = [ alsoresultinc; = ¢ =0
here, i.e., this case constitutes another solution to the homogeneous differential
equation v — Av = 0 that does not meet our initial condition for f # 0.
3. Case: A < 0: It follows that the general solution of v’ — Av = 0 is given through

v(x) = c1 cos(v/—A - x) + ¢z sin(+/—A - x).
To fulfill the boundary value conditions, ¢, c; must be chosen so that

c1cos(+/—A-0) +crsin(+/—A-0) =0 =cycos(+/—A-1) + cysin(+/—A - 1),
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meaning ¢; = 0 and ¢; sin(+/—A - 1) = 0. This is possible for any given ¢; € R
and /—X -l =n-mw,n € Z, therefore for A of the form A,, = — (nn/l)z, n € 7.

To summarize, we can say that for every n € N the functions
. (hm .
v, (x) = ¢, Sin (T x) , ¢n € R arbitrary,

are solutions of v”” — A, v = 0 that fulfill the boundary value conditions (1.1).

We subsequently determine the general solution of & — A,c>w = 0 for
every value A, = — (nm/l)> analogously resulting in the so-called nth string
eigensolution

u,(x,t) =sin (? x) (a,, cos (# t) + b, sin (# t))

(n € N; factors ¢, of v, are included into a,,, b;,).

The nth eigensolution has angular frequency w, = cnm/l. By inserting initial
conditions, we observe that an eigensolution u, (x, ) is a solution for the problem,
if the following is true:

T T T
f(x) =a,sin (nT x) und g(x) = %bn sin ("T x) )
In the mathematical model, trigonometric polynomials, i.e., linear combinations of
the form

N N
fx) = ,;an sin (%x) und  g(x) = Z #bﬂ sin (?x) ’

n=1

are approximations for the exact initial conditions of a string’s vibration. The
resulting linear combination of eigensolutions with coefficients a, and b, of the
initial conditions

ulx,r) = gsin (? x) (an cos (# t) + b, sin (# t))

is then an approximate solution for the exact string displacement. To end up with
good approximations for different physical conditions, we want to deal with initial
conditions f and g that are as general as possible. The more trigonometric functions
we use to represent f and g, the better approximations we can expect. We therefore
setup f and g as infinite trigonometric series

) = ian sin (?x) and g(x) = i #bn sin (?x)
n=1

n=1
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and try to find a solution using the superposition of infinitely many eigensolutions
in the form of

o) = i (%) (s (221) + by sin (21)).

When the series converges to a sufficiently smooth function, it expresses a possible
vibration satisfying the boundary value conditions u(0,¢) = u(l,¢t) = 0. The
values a, and b, are determined by the fact that the initial conditions should be
fulfilled. Their physical unit is the same as of u(x, ). Inserting the series into the
initial conditions using term-by-term differentiation and interchanging the limiting
operation t — 04 with the series infinite summation operation result in

> nw
u(x,0) = apsin| —x ) = f(x),
X ansin ()

ou >, cnm nmw

Iim —(x,t) = —b, sin(— ): .

A, 5 1) 2_} p Drsin( T r) =800

In order to definitively solve the problem, some inevitable questions arise at this

point:

Question 1:  Which functions f and g on [0, /] can be expressed as trigonometric
series at all?

Bernoulli and Fourier’s fundamental thought was that through suitable selection of
the infinitely many coefficients a, and b,,, nearly every practically relevant function
could be expressed as a superposition of harmonic oscillations. This would make
the string problem solvable using the series method, for nearly “any” set of initial
conditions.

Question 2:  If we can assume that the given functions f and g can be represented
as such trigonometric series, how can we then calculate the required coefficients
a, and b, ?

We could only explicitly solve the vibration problem by determining these coeffi-
cients. We will answer Question 2 in the next two chapters. This will also require
an answer to the following question: Is the calculated series representation for the
wanted function u(x, ¢) actually a unique, twice differentiable solution to the initial
value problem? The solution above was calculated assuming a very special solution
form u(x,t) = v(x)w(¢) with separate variables. We also once learned that we
cannot differentiate function series simply term by term or interchange limiting
operations without care but did just that in calculating our solutions. This problem
therefore leads to the following question:
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Question 3:  Dependent on initial conditions f and g—in what sense do trigono-
metric series converge to the expression of u(x, ¢) at all? Is the series actually
twice differentiable? Is the solution found for the initial boundary value problem
for the wave equation unique?

These questions immediately show the concerns raised in the early nineteenth
century against Fourier’s approach to a solution. A. L. Cauchy (1789-1857) only
developed a convergence theory for infinite series during Fourier’s time around
1821.

Satisfying arguments regarding the solvability of linear partial differential equa-
tions only appeared around the middle of the twentieth century with the treatment
of such problems within the theory of generalized functions, or as we also say, of
distributions.

To answer the questions raised in a step-by-step manner, we will begin the next
sections with some fundamentals on trigonometric polynomials. In this regard, we
find that frequently expressions using complex numbers are very useful. Recom-
mended preparatory readings for readers, which have so far only been accustomed
to real analysis, are respective sections in E. Kreyszig (2011) or G. Strang (2017). A
collection of formulas such as that by L. Rade, B. Westergren (2004) can be equally
helpful. We will particularly use complex exponential functions and their close link
to trigonometric functions frequently.
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Six Important Protagonists in 250 Years History of Fourier Analysis

Daniel Bernoulli, Jean Baptiste Fourier, Peter G. Lejeune Dirichlet, Bernhard Riemann, David
Hilbert, and Laurent Schwartz

® All pictures from Wikimedia Commons, in the public domain everywhere.



Chapter 2 ®
Trigonometric Polynomials and Fourier ke
Coefficients

Abstract Representations of trigonometric polynomials are given as a preparation
for the following chapters, in terms of their Fourier coefficients and as a convolution
with a Dirichlet kernel. The computation of the complex coefficients is shown, and
the number of zeros of a trigonometric polynomial is calculated. The orthogonality
relation is deduced for sine and cosine functions with period T, but different
frequencies n/T and m/T. Furthermore, properties of the Dirichlet kernels are
discussed, which provide an initial insight into periodic pulse sequences, which play
an essential role in discrete signal processing.

2.1 Representation of Trigonometric Polynomials

A trigonometric polynomial with period 7 is a function f with values in R or C of
the form

N
f(6) = %0 + 3 (an cos(nwot) + by sin(nwor))

n=1

with N € N, € R, wp = 27 /T. The maximum of n with |a,| + |b,| # 0 is called
the degree of the trigonometric polynomial f.

For calculation purposes most often a complex representation of trigonometric
polynomials is useful. With the complex unit j, j> = —1 and the formulas for the
real and imaginary parts of e/“0’ | we have

COS(na)ol‘) — % (ejnwot + e—jnwgt) — 8%<ejnw0t)’

sin(na)ot) — zi (ejnwot _ efjnwot) — _% ( Jjnwot efjnwot> — %(ejnwot).
J

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 9
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With by = 0, it follows by insertion above

N
1 . 1 . j . j .
f(l) Cl_() + Z (_ane]na)ot + Eanefjnwot _ %bnejnwol + %bnejnwot)

2 2
n=1
N . N .
_ Z an — Jb” Jjnwot Z an + Jb” — jnwot
e e e e e
2 2
n=0. ) n=1. ,
=Cn =C—n
N —1 N
- chef”wol + Z cpe!ot = Z ¢!t
n=0 n=—N n=—N

The constants c,, or alternatively a, and b,, are called the Fourier coefficients of f.
For

N N
f@) = a_z() + Z (a, cos(nwot) + by, sin(nwot)) = Z L
n=1 —

we find the following conversion formulas between the Fourier coefficients:

by =0, ap = 2co, an = Cp+ C—p, by = jlcn —c—p).

2.2 Fourier Coefficients of Trigonometric Polynomials

Computation of Fourier Coefficients

The answer to the issue of computing Fourier coefficients results from the following
so-called orthonormality relations for trigonometric functions:

For all n,k € Z, the complex conjugate function e/kwor = e=/keot of efkeot
(jZ=-1 gives us

T
1 o 1 forn=k
_ Jnwot o jkawot dp —
T /e ¢ {0 for n # k,
0
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because
T T
/ef'"wofe—f'kwofdz = / ldt =T fork=n;
0 0

T

/ej(”_k)‘”o’dt = ; /2T 1| =0 fork # n.
J(n— kg Y

0

When f(t) has the form f(t) = Z,I{Vz_ N ke’ kot one computes ¢ by

T
1 .
== eIkt gy,
Ck T/f( )e
0

since
T N T
1 . 1 . .
? / f(t)e kaotdt e T Z Cn /e]nw()te kaotdt = .
0 n==N 79
T forn =k
0 otherwise
Furthermore, for the Fourier coefficients a,,, b,,n = 1, ..., N, we obtain

T
ao 1
— = — t)dt
co T/f() ,
0

f () cos(nwot)dt,

T

1 _; ; 2

ap=cp+cp= T/f(t) [e Jnaot +ef”w°’] dr = T
0

St~

2 cos(nwot)

by, = j(cn —c—p) = f (@) sin(nwot)dz.

T
%/f(l) I:efjna)ot _ ejnwot] dr =
0

—2j sin(nwot)

N
S—
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Equality of Trigonometric Polynomials

For each pair of continuous T -periodic functions f : R - Cand g : R — C, we
set

T
1 -
(flg) = (fOlg®) = 7/f(t)g(t)dt-
0

This defines an inner product in the vector space V of continuous 7 -periodic
functions. It has the same properties as the inner product for vectors in R"” order
C" and allows to transfer geometric terms like orthogonality of vectors to functions.
For continuous T -periodic functions f, g, and &, we have

(f +glh) = (f1h) + (glh)
(flg +h) =(flg) + (flh)

(aflg) =a(flg) (@)
(flBg) =B(fle) (BeC)

(fl1g) = (&lf)
(f1f) =0
(fIfy =0«<= f(t)=0forallt € [0, T].
. . eont 1 - ikt 1 forn=k
Therefore, the orthonormality relations (e/"®0’|e/*®0") = show that
0 forn#k

the functions (e«i naot )n <z, build a linearly independent system in the vector space
V. The subspace of all T-periodic trigonometric polynomials of maximum degree
N has dimension 2N + 1 and is spanned by the functions e/neot N < n < N,
wo = 2m/T. They form an orthonormal basis of that subspace with respect to the
inner product introduced above. With that notation, the kth Fourier coefficient c; of
a T-periodic trigonometric polynomial f is given by!

ek = (f(D)]e/* ™y (wy =27/T).

'The notation f(r) will be used hereafter not only for the value of f at ¢ but also for a function
(and later a distribution) f, to show its parameter ¢. In spite of this ambivalent notation—in place
of f or perhaps f(.)—the meaning will be readily apparent from the respective context.
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Thus, the Fourier coefficients of a T-periodic trigonometric polynomial are just its
coordinates with respect to that orthonormal basis. They are uniquely defined, in
other words

N

N
fo =Y cetonr = “?O + 3 @y cos(naot) + by sin(nwot)) = 0
k=—N n=1

for all t if and only if all ¢y, = 0 and correspondingly all a, = b, = 0.
Two T -periodic trigonometric polynomials are equal if and only if all their Fourier
coefficients corresponding to the same basis functions are equal.
Additionally, the formula for the Fourier coefficients shows that every T -periodic
trigonometric polynomial f of maximum degree N has the following integral
representation:

T N
(1) = %/f(s)DN(t—s)ds mit Dy(t —s) = Z glkwot=s)
0

k=—N

Real-Valued Trigonometric Polynomials and Complex
Amplitudes

For real-valued T-periodic trigonometric polynomials, we have f(¢t) = f(t), and
thus

N N N

fy =Y et = 3" et = N e = F (),
k=—N k=—N k=—N

with wg = 2w/ T. Equating the coefficients shows

f is real-valued if and only ifcy =¢c—;y (=N <k < N).

Since ¢ = |cx|e/ @2 and arg(c_j) = — arg(cx) hold for k # 0, we obtain
N N
£(t) = co+ Z |cy |ef kewotFarg(ei) Z |y |~/ (keot —arg(c—i)
k=1 k=1
N

=co+ Z lek] - 2R (ej(kwol+arg(ck))> .
k=1
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Therefore, in that case we get

N

f@) =co+2- ) |el cos(keot + arg(ck)).
k=1

as a representation in polar form.

The complex Fourier coefficients include the information on the amplitudes and
phases of the oscillations that build up f in linear combination. These values
cr are called complex amplitudes. C-valued trigonometric polynomials can be
visualized as circular waves (see p. 17) or as curves in C (Nyquist plots), either
through separate views of their real and imaginary parts or through visualization of
amplitude and phase progressions versus (time) parameter ¢.

Number of Zeros of Trigonometric Polynomials

We can generate a T -periodic trigonometric polynomial of degree N > 0

N 2
f@ = Z cpelkot (wo = ?)

k=—N

with |cny| + |c—n]| # 0 by substitution of z = e/“°’ into the rational function

N
Fio) — K C_N+C_N+1Z+...+CNZ2N
(z) = Z = N
k=—N
Since |z| = 1, the function f cannot have more than 2N zeros per period T.

Specifically, it follows that two trigonometric polynomials P and Q of degree N
are identical when they have the same values at 2N + 1 points in [0, T'[. In that case,
it is clear that P — Q has a maximum degree N, but more than 2N zeros in [0, T'[,
ie., P — Q is identically zero (cf. Appendix, Fundamental Theorem of Algebra).

2.3 Dirichlet Kernels

N
Let us consider the trigonometric polynomial Dy () = Z /¥ This function

k=—N
is called Dirichlet kernel of degree N, and it plays an important role in answering

question 1 from Sect. 1.2 regarding the possibility of representing periodic functions
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as trigonometric series. In polar form we have forr ¢ R

N
Dn(t) = Z e/* =1+ 2cos(t) +2cos(2t) + ...+ 2cos(N1).
k=—N

Observe that Dy is an even function. We can now substitute z = e/ and use the
common geometric sum formula for z # 1

2N 2N+1 _
k —

o Z
=0 z—1
For t # 27n, n € 7Z, we obtain
Dy i o Lz 42N 2N+
N = Z = N = _ N
Wy z (z—Dz
NHL =N N2 —(N+1/2)

z—1 - 12— 172

. 1
e/ (N+1/2)t _ o= j(N+1/2)t sin <<N + E) t)

e/t/2 — e—jt/2 - . <[>
sin| =
2

We can therefore write the function Dy equivalently in the following form:

2N +1 fort =2nn, ne’
N . 1
Dy(t) = Z e/kt — ] sin ((N + E)t)
k=—N — fort #2nn, ne€Z.
S]H(E)

Theorem 2.1 The following assertion holds true for the Dirichlet kernels Dy (t):

N N
. +oo fort =2nn, n € Z
lim e/M = lim (l + E 2005(kt)> = { f

N—oo, 7= N—o0 k=1 otherwise indefinitely divergent.

There is no single point t € R for which we have a limit of the trigonometric series

+00

Z e/ =1+ iZcos(kt).

k=—o00 k=1
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If the series were convergent at a point g, this would give us klim cos(ktg) =0,
— 00

and for k — oo it would lead to the following contradiction:
") _ 2
sin“(ktg) = 1 — cos“(kty) —> 1,
and also
.2 1 1
sin“(ktg) = 5(1 — cos(2kty)) — >

However, if we interpret Dy (¢) as a signal, say the voltage change output of an
electric transmission system, it appears intuitive that increasing N would result in
Dy (¢) as a model for an impulse sequence. The impulses will appear at the “times”
2nn, n € 7, but the signal will never disappear between these impulses; it will
increase its oscillations more and more (see Fig.2.1). Signal processing in causal
linear systems mathematically leads to integral transforms of a signal (convolution
with the system’s impulse response, cf. p. 66 and p. 219 later on). For increasing
N, the oscillations between the points 2w n lead to annihilation in integrals over
intervals [2nrn+e¢,2n(n+1) —¢], 0 <& < m, because, with increasing frequencies,
an increasing part of the area between the graph of Dy and the 7-axis will alternate
above and below the ¢-axis, thus adding to zero in the integral. We will work out
and confirm this intuition more precisely in computations and a proof on p. 23, p.
48, and p. 131 later on and in Sect. 9.1 as well.

Fig. 2.1 Dirichlet kernels D3 20 T T
and Do
15 - B
10 - b
N 4
5 — -
o A aadh A pad
\ M JW’ v ‘W\l WUVURY
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2.4 Summary on Trigonometric Polynomials

For trigonometric polynomials f of degree N > 0 with a minimum period 7', the
following relations hold:

2
Basic angular frequency wy = 7”
N | r
Complex form fy =Y celt = - / F(s)Dy(t —s)ds
k=—N 0
N .
with Dy (t —s) = Y e/ft=9 2= ],
k=—N

Sine-Cosine form ao N )

f0 =5+ D~ (ax cos(kent) + by sin(kwot)).

k=1

Conversion formulas ar — jbk ar + jby

h=—F—, Ch=—71—

2
withbg =0, k=0,..., N;

2

ap .
o =0, @k =ck +oeok, b= jlck —c—p).
| T
Orthonormality relations — /ej"“)otejkw[)’dt _ ]9 for k # n
T 1 fork=n.
0
. T
Computation of Fourier coefficients cx = T / f(t)efjk‘”o’dt
0
T
a _ | /f(t)dt 2 /T £() cos(kawot)dr
N_ ap = — cos
> =7 A= | wo
0
T
2 .
by = 7 f () sin(kwot)dt.
0
For real-valued f hold ck =C—f, ar =2R(ck), br=-23(cx),
N
and the polar representation f@®)=co+2 Z |ck| cos(kawot + arg(ck)).

k=1
Number of zeros per period maximally 2N zeros in [0,T].
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Visualization of the trigonometric ‘ see Fig. 2.2

polynomial P(t) = 0.3 sin(wpt) +
J sin(2wot) — cos(Bwot), wo = /2,
period T = 4, as a circular wave.

Fig. 2.2 Circular wave
1

O1m (P(1))
-1

1

ORe(pP(1))
Lt 4 ]

2



Chapter 3 )
Fourier Series Check o

Abstract This chapter presents basic results on pointwise convergence of Fourier
series. As a fundamental example, the Fourier series of the sawtooth function is
studied. Properties of this series are deduced, such as pointwise convergence and
uniform convergence in closed intervals, that do not contain a discontinuity point.
The Gibbs phenomenon is worked out. The theorems of Dirichlet and Fejér are
presented and discussed with examples. Their rigorous proofs are postponed until
Chap. 7. Examples and exercises help the reader become familiar with the necessary
calculations.

3.1 The First Fourier Series

By building the limit N — oo, T-periodic trigonometric polynomials evolve into
trigonometric series

N +00
Iy =) aeltt — N g/ (g =27/T).

N—o0
k=—N k=—00

N
However, as we have seen in the example of the Dirichlet kernels ) e/ kt it may
k=—N
happen that no limit exists at any point.

If a limit function f of a trigonometric series with T-periodic partial sums
exists, then that function f is also T-periodic. First of all, to develop an appropriate
intuition for the behavior of trigonometric series, we study “the first Fourier series,”
mentioned for the first time by L. Euler as early as in 1744, i.e., we analyze the
convergence of the series

isin(kt) _ +§ Lejkt
k = 2kj

k=1
k0
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and work out a representation of its limit function by close inspection of the
Dirichlet kernels. We start with a few preliminary remarks on functions with values
inR orin C.

Approximation Errors and Pointwise and Uniform Convergence

In approximating a function f using a sequence of functions fy, N € N, the quality
of the approximation (in other words the error fy — f for increasing N) plays a
crucial role. For example, we can look at the error fx () — f(t) at single points
t in an interval / in the domain of definition of the functions f and fy or at the

maximum error sup | fx (t) — f(¢)| in /. It may indeed happen that l1m ( fn(t) —
tel
f(t)) = 0holds for any single ¢ € I, but the maximum error on / nevertheless does

not decrease when N increases. Consider the example of the function sequence
(fn)Nen and f, defined through

0 forO0<r<1

fn@) =Y auf [0,1] and f(t)::
1 fort=1.

For any ¢ € [0, 1] we find Nlim fn(@) = f(t), but the maximum error on the
—00

interval [0,1]is sup |fy(t) — f()| = sup N = 1 forall N € N. On the
0<r<1 0<r<1
other hand, for the function sequence (fn)nyen on the interval [0, 1/2], we get

Nlim fn@ = f(@) for all + € [0,1/2]. The maximum error (I/Z)N on that
—00

interval becomes arbitrarily small for increasing N. For the precise description,
we remember the definitions of pointwise and uniform convergence of function
sequences:

Definition A sequence of complex-valued functions fy : I — C converges

pointwise to a function f : I — C, if Nlim In() = f(@) forevery t € I. 1t
—>00

converges to f uniformly on I, if the maximum error sup | fy (¢) — f(¢)| on I goes

tel
to zero for N — oo.

For readers whose acquaintance with these terms has yet to grow during further
reading, the following important facts from first-year mathematical lectures are
summarized again:

1. A pointwise convergent sequence (fy)nyeN can have a discontinuous limit f,
even if all functions fy are continuous. This fact is shown by the example
above. But, when a sequence of continuous functions fy converges uniformly
to a function f, then f is also continuous.
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2. An important topic in the following studies is the uniform convergence of

o
function series. Such a series Y fi converges uniformly to a function f in an
k=1
N
interval I, if for N — oo the sequence of its partial sums Y f; converges
k=1

to f uniformly on /. A uniformly convergent series of continuous functions fi
with limit f on I can be integrated term by term on any bounded subinterval
la,b] C I:

b b o b
/f(t) dt=/ka(t) dt:Z/fk(f) dr.
P a k=1 k=1y

If the fi are continuously differentiable and their series is pointwise convergent
to f and if the series of derivatives f; converges uniformly on /, then the limit
function f is differentiable on 7, and we have

o d (e R
o= (H fkm) —;fk(t) (tel,

i.e., the series can be differentiated term by term.
o0

3. The Weierstrass M-Test is a test for determining whether a series > fx of
k=1
functions f; on an interval / converges uniformly:
If there is a sequence of positive numbers (My)kenN so that sup | fi(t)| < My for
tel

o0 o
every k € Nand if Y My < oo, then the series Y fir converges uniformly
k=1 k=1

0 kt
As an example, the M-Test shows that the series w

onl.

is uniformly

= k2

kt © 1
convergent on R, since sup|cos(2 )| < - = My and ) — < oo (see also

eR 'k k2 = k2

p. 35).
. . sin(kt
An Initial Idea to Study the Series T)
k=1

If you have ever felt daunted by the the “impulse function” §(¢) during a math or
physics lecture, the following idea may be helpful: We have already seen that for
large N the Dirichlet kernels in the interval [—m, 7] behave like impulses. We can
therefore recall a widely used introduction of the é-Impulse (see Fig. 3.1).
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fi(t) —
fe(t) —
1 = -
0
—4 -1 0 1 4
Fig. 3.1 Functions f] and fg as elements of a §-sequence
1 T
0.5 _
o1(t) —
o6(t) —
0 ' :
—8 -2 0 2 8

Fig. 3.2 The primitives o1, o of f1, fe

The impulse 4 (¢) is often introduced as a limit of the sequence of functions

N = ’t—N 1
fN()—UN()—;m-

1 1
The primitives oy () = - + — arctan(N¢t) converge for N — oo to the unit step
function (see Fig. 3.2)

0 fort <O
1

ot)=1- fort=0
2
1 fort>0.

Looking at the convergence oy N—> o, we find:
—00

1. on(t) — o(t) pointwise everywhere for N — o0, i.e., for every t € R.
2. It holds the mean value property

1 1
ot)=7 () +o)) =3 (hl_i)n&a(t +h) + lim o~ h)) .

3. o (t) is piecewise continuously differentiable.
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Therefore, we expect a similar behavior of the kernels Dy (f)—namely pointwise

convergence of their primitives. These integrals are closely related with the series
o

sin(kt
Z ](C ) because the derivatives of the series’ partial sums yield—up to a

k=1
factor and an additive constant—just the Dirichlet kernels.

© sin(kt
Study of the Series _ %
k=1

Inexperienced readers might find the following calculations intricate at first sight.
I therefore want to clarify that I have only assumed first-year course knowledge of
differential and integral calculus in putting this section together. The goal of the
following calculations is for the reader to achieve a basic estimation technique and
a confident handling of trigonometric functions.

We build primitives of the Dirichlet kernels between two “impulse peaks” of Dy
(compare the figure on p. 16), i.e., we integrate for ¢ € ]0, 2| from 7 to ¢.

t ! sin ((N + %)r) !
/DN( T )dr:/—rdrz/(l+2cos(r)+...+2c0s(Nr))dt
s sin(z) s

SRR (AR LI TR L

On the other hand, through integration by parts

t t

/u(r)v’(t)dt =u(f)v(r)‘t —/v(t)u’(t)dt,

T T

1 1 cos <(N + %)r)
u(t) = = v/(f):Sin ((N+—)T>, v(t):——17
sin(5) 2 N+

we have

T

cos ((N+%)t> | ? | 1 '
In(t)= — I ; + I /cos ((N—i—)t) dr, thus
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1
cos ((N—f—z)t) 1 max(r, ) {
1 i + 1 / sgn(t —m) cos ((N+§)r)
(N+§) SIH(E) N+§ min(r,1)

In(t)=—

!/

1
dr.

in(=)
Sin 2

Here, sgn(t — ) denotes the sign of (t — 7). Now, it holds 1/sin(z/2) > 1 for
0 <t <27 and sgn(t — 7)(1/sin(z/2))’ > 0for t € [min(r, ), max (s, r)]. This
is immediately apparent in the monotonicity properties of the function 1/ sin(z/2)
in the interval [min(r, ¢), max (s, t)]. This function is strictly decreasing for t < 7
while strictly increasing for t > 7.

The cosine functions on the right-hand side are dominated by the constant K = 1
(Jcos(x)| < 1 everywhere). As a standard technique, application of the triangle
inequality and increasing the terms at the right will yield the following estimation:

/

max(m,t)
[IN(@)] < 11 ; + ! I /Sgn(t—n) : lT dr
(N + 5) sin(z) N + 3 minGr.) Sm(z)
sin(t/2) "' =1
2

~

N 1. .t~
( +§)sm(§)

Therefore, Iy (¢) disappears for increasing N — oo. For every fixed 7 in ]0, 25,
we have the result

N .
ki
<r—n>+225m£ ) L0, e

N—o0
k=1
i sintkt)  [(w—1)/2 for0 <t <2m
— ok o fort = 0.

Theorem 3.1

o .
sin(kt
1. The series Z I(c ) represents the 2m-periodic sawtooth function S(t) (see

k=1
Fig.3.3)

r—1)/2 forO<t<2m

5@ = {0 fort =0.
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Fig. 3.3 The sawtooth S(t+2mn), neZ

e A
NN

2. The mean value property is fulfilled for all t € R

1
S() = i(S(H) + S(t-)).

(O8]

. S(t) is piecewise continuously differentiable.

4. The trigonometric series representation for the sawtooth function converges
uniformly on every closed interval which does not contain a jump discontinuity of
S(t). However, even though all partial sums are indefinitely often differentiable,
the limit function is not continuous.

Namely, for i <t < 2w — h, h > 0, we have sin(¢/2) > sin(h/2) > 0, and thus

—1|1(t)|< 1 !
=Nl <

N .
S@) — Z sm]((kt)
k=1

S T h
(N + 5) SIH(E) (N + E) s1r1(§)

for all ¢ € [h, 2m — h]. The approximation of Iy (¢) to zero depends only on N, not
ont € [h,2mw — h]; in other words hm In(¢t) = 0 with uniform convergence in

every closed interval [k, 2mr — k], h > 0

On the other hand, despite the uniform convergence of the partial sums Sy (¢)
of S(¢) in every interval [k, 2w — h], h > 0, we will find wavelike overshoots of
Sy (t) over S(¢) in a small neighborhood of the jump discontinuities. These ripples
move closer to the discontinuity points but do not die out as more terms are added
to the sums; the deviation from S(#) does not converge to zero. It turns out that the
approximating partial sums Sy (¢) always overshoot S(#) with about 9% of the jump
height S(0+) — S(0-). This property of the approximations Sy (t) was discovered by
J. W. Gibbs (1839-1903) and is therefore called the Gibbs phenomenon.

In the following illustration in Fig. 3.4, Si(sr) is the value of the sine integral

t
Si(r) = / smr(f) d

0

at the point t = 7.
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Si(m) .. S(t) + Si(r) ;r(? A

5(0+) = 7/2 2 t; —
0 1

0 t7 T

Fig. 3.4 Illustration of the Gibbs phenomenon

The Gibbs Phenomenon for the Sawtooth Function

To prove the Gibbs phenomenon we consider the first positive extreme points at ¢y
of the deviations Sy (z) — S(¢) between the sawtooth S(¢) and its partial sums Sy (¢)
forO0 <t < m. Since

| ! sin <(N + %)r)
SN(I) — S(l) = E]N(l) = / Wdf s
sin | —

2

one obtains by piecewise integration and comparison with p. 23
. 1 . 1
tsin| (N + E)T 7 sin | (N + 5)1
Sn(t) —S(t) I/—le' _/—rd
2sin (—) 2sin (—)
2 0 2

S(0+)=m/2

T.

Namely, the right integral can be written as — li%l In(e)/2 =m/2.
e—0+
1
sin <(N + —)t)
The derivative Sy (1) — §'(1) = —————%

. t
2sin | =
(3)

. To estimate the deviation at ¢y

shows the first positive zero as

IN =

N+ —
+2

1
IN sin ((N + —)1:)
2 d b4

T

(T T
0 2 sin (5)

Sy(@n) — Sitny) =
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we use the following transformation:

. 1 ) 1 T
sin ((N + E)T) sin <(N + 5)7) T — 2sin (—) 1
2/ sin ((N + E)r> .

= +

2 sin (£> T 27 sin (E)
2 2
. o 1 T
Together with the substitution t = (N + E)T and ty = —We get
N + —
+ 2
. 1
IN sin ((N + —)1:>
2 4
Su(tn) =S() = [ ——Far - T+
0
t . (T bs
N T — 28111 (z) ] 1 Sln(t)
+ [ ————=Fsin( (N + 2)t |dr = dr — — + ry(tN).
0 27 sin (E) 2 0 ! 2

rN(N)

1
By 2sin (%) < 7 and sin((N + E)T) >0for0 <1 <ty,itholds ry(ty) = 0
Now, using the known value of the sine integral (Exercise)

T

Si(n):/smt(t) dr = 1.8519. .. |

0

we accomplished

Sn(n) — Sty) 2028 +ry(y) =0

i.e., Sy (t) overshoots S(t) at ty.
Since the integrand of ry (¢y) has limit zero when T — 0+ and hm ty =0,

it follows hm ry(ty) = 0. Active readers can readily check this, for example,

by power serles expansion of the integrand or by application of L’Hospital’s rule
(Exercise).

Result Eventually, for increasing N one obtains an overshoot of the partial sums
Sy (t) over the function S(t) of about 9% of the jump height S(0+) — S(0-) = m,
even when the ty move closer to the jump point att = 0:

lim (Sy(ty) — S(tx)) ~ 0.28 ~ 0.097.
N—o00
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That result on the bad convergence of the series near jump points goes back to the
work of Wilbraham (1848) and Gibbs (1898).

All so far considered properties for the particular sawtooth example are char-
acteristic for many relevant trigonometric series in practice. Questions on the
representability of other T-periodic functions as superpositions of harmonic oscil-
lations are treated in the next section.

3.2 Basic Theorems on Fourier Series

The Fourier series of a function f : [0,T] — C is the series Sy(t) =
+00 . 2T

> ek e/kool \with @y = T whose coefficients cy are defined by ¢y =
k=—00

1T .
?ff(t)e—f’“"ol dr.
0

n
An nth partial sum S, of S¢ is the sum S, (1) = i Ck e/kwot and we say that
k=—n
Sy converges at t € Rif ”li)rgo S, (1) exists.

In the following sections we restrict ourselves for the most part to assertions on
piecewise continuous or piecewise continuously differentiable 7'-periodic functions
f. A function f is piecewise continuous when its real and imaginary parts are
continuous except up to at most finitely many points in ]0, T[. It is piecewise
continuously differentiable when the same holds true for f’ instead of f. Further
on, we postulate that all one-sided limits in [0, T'] of f exist in C in the first case
and of f’ in the second case. The right- and left-sided limits of f at ¢ are denoted
by f(t+) and f(r—), respectively.

Under the assumed conditions the functions f and f’ are bounded, and the values
at discontinuity points do not matter for definite integrals as in Fourier coefficients.
We set f(0) = f(T) and think f as extended to a T-periodic function on R,
which is also denoted by f. Such functions build a sufficiently large class for many
applications, and the following theorems on their representation as Fourier series
can be shown with the knowledge of common first-year lectures in mathematics. The
statements in the theorems go back to the work of Dirichlet (1829), Fejér (1904),
Wilbraham (1848), and Gibbs (1898). The first theorem is a variant of the more
general assertion, proven by Dirichlet, that periodic functions of bounded variation
are representable by their Fourier series. We denote this variant as follows:

Theorem 3.2 (Theorem of Dirichlet) If f is piecewise continuously differentiable

1
on [0, T1, then its Fourier series Sy converges at every point t to 5[f(t+) + f()];

hence it converges to f(t) at every point t of continuity. The Fourier series
Sy converges uniformly to f in every closed interval which does not contain a
discontinuity point of f.
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Theorem 3.3 (Gibbs Phenomenon) Atz discontinuity points of piecewise continu-
ously differentiable periodic functions f, the Gibbs phenomenon occurs. All Nth
partial sums of the Fourier series for the real or imaginary part of f overshoot the
respective jump for large N with about 9% of the jump height.

Theorem 3.4 (Theorem of Fejér)

1. If f is a continuous periodic function, then the arithmetic means

SN

N+1(0+ 1+ +Sy)

of the partial sums S,, n € Ny, of Sy converge uniformly to f for N — oo,
2. If the Fourier series Sy of a piecewise continuous function f converges at a

1
point to at all, then it converges there to E[f(t(w) + f(to-)]. If, in addition, f is
continuous at ty, then it holds Sy (to) = f (o).

Theorem 3.5 (Vanishing of the Gibbs phenomenon for Fejér Means) When

one uses Fejér means (So + 81 + -+ + Sn) of the partial sums of Sy to

+1
approximate a piecewise continuously differentiable periodic function f, then the

Gibbs phenomenon vanishes.

First Explanations of the Theorems
Pointwise Convergence in the Theorem of Dirichlet

An impression about convergence of Fourier series at a single point ¢ is obtained
from the already observed behavior of the Dirichlet kernels, here with period 27 /wq:

N

T T N
1 . . 1 .
Z ?/f(s) efjkwos ds e]kwot — ?/f(s) Z e]kwo(tfs) ds = I(N, 1).
0 0 k=—N

k=—N
Dy(t—s)

With increasing N, the kernels Dy (f — s) concentrate more and more around 7 (see
the figure below), while away from ¢ their oscillations grow with N — 00. On the

1 T
other hand, T f Dp(t — s)ds = 1 for all N. The oscillating parts of Dy (t — s)
0

do not much contribute to that integral. Thus, the value of the integral I (N, ¢) is
approximately the mean value of f in a small neighborhood U (N, t) of t. U(N, t)
shrinks with the kernels Dy (t — s) for N — oo to the point ¢, and the mean of
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Fig. 3.5 The integral of the
product is largely canceled f \ Dua(s ]7(3 —
where Dy highly oscillates
0 N / ‘ \ A
Vel

0 s T
Fig. 3.6 Averaging partial S
sums of the Fourier expansion a2 S4 i ]
for the sawtooth N (S1(t) + ...+ Sa(t))/5 —

0

0 ™

1
f on U(N,t) converges to E[f(H) + f(t-)] (see Fig. 3.5). We will convert that

impression into a mathematically precise proof later in Sect. 7.1.

On Fejér’s Theorem

P. Du Bois-Reymond (1831-1889) has shown that there are periodic continuous
functions, whose Fourier series diverge on dense subsets of their domains of
definition. Therefore, of special importance is the result of L. Fejér (1880-1959)
that for Fourier series of continuous periodic functions f the arithmetic means of
the partial sums converge uniformly to f.

When we write the arithmetic mean of S, (¢) = i cpelko p=0,...,N,in
the form e
- k| Kt
N+1(50(1)+51(I)+"'+SN(I)) =k_X_:N <1 o I)Ckej o,

we observe an attenuation of the higher frequency parts in that mean. Thus, we
have a smoothing effect in the approximation of a function f by averaging its
Fourier expansion’s partial sums. For a more detailed study of Fejér’s theorem, we
refer to the subsequent Chap. 7. The effect of the averaging is shown in Fig. 3.6
for the partial sum S4(#) of the sawtooth Fourier expansion and the corresponding
arithmetic mean of its partial sums up to the order N = 4. S(¢) shows the sawtooth
graph.



3.2 Basic Theorems on Fourier Series 31

On the Gibbs Phenomenon

To obtain the Gibbs phenomenon at discontinuity points, it suffices to examine a
T -periodic piecewise continuous real-valued function f with a single jump dis-
continuity at #y in [0, 7] and the mean value property f (zo) = [ f (fo+) + f (t0-)]1/2.
Using the sawtooth function S on page 24, we write f in the form f(¢) = g(t)+r(¢)
with

1 2
gt) = f@) — =[f@w+) — fto-)]S <—(t - to)) ,
b T

1 2
r(e) = —[f(t0") = Fl1)] S (7”0 - to)) .

The function g is continuous at ty with g(tp) = [f (to+) + f(t0-)]/2. By the Gibbs
phenomenon for the sawtooth, the function r shows the overshoot of the partial sums
of its Fourier expansion, which amounts to about 9% of the jump height f(tp+) —
f (to—) in the neighborhood of 7.

The vanishing of the Gibbs phenomenon in Fejér means for the approximation
comes from the fact, that the overshoot close to jump discontinuities, i.e., close
to steep flanks, is caused by high-frequency parts in the approximating sum (see
later p. 51). The amplitudes of the harmonic parts with higher frequencies, however,
are heavily damped in the Fejér means. As a consequence, the approximations are
smoothed and overshoots eliminated. On the other hand, this is paid by the price of
less steep flanks in the approximations. For this compare the figures on p. 35 and
p- 35 and Sect. 7.2, p. 136.

Fejér’s averaging method for smoothing and convergence improvement corre-
sponds to using the weight function (Fig. 3.7)

I—|x|/(N+1) for|x|]<N+1
wy (x) = 0

otherwise

at the discrete points |k| =0, ..., N (Fig.3.7).

In engineering applications of Fourier analysis the technique of smoothing by
weight functions is often called windowing. It plays an important role, for example,
in signal analysis. The triangle window provides the amplitudes of the harmonic

Fig. 3.7 The triangle 1.0

window w3 of Fejér’s 08

averaging ’
0.6
0.4
0.2
0.0
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oscillations with angular frequencies kwo, |k| < N, in a partial sum as above with
the weights 1 — |k|/(N + 1). In signal processing, for instance, one often wants to
work with much smaller tolerance limits than a 9% error by the Gibbs phenomenon
at steep signal flanks. The theorem of Fejér shows a first mathematical method for
improvement by windowing techniques without large additional effort.

The theorems show that one can represent a great many functions by their Fourier
series. In contrast to Taylor series, which represent in their domain of convergence
always infinitely often differentiable, i.e., very smooth, functions, Fourier series
allow the representation of quite “irregular” functions by superposition of oscil-
lations with increasing frequencies. Therefore, Fourier series offer much benefit in
mathematics and its application fields. The whole thinking in spectral and frequency
terms in many application areas goes back to the above theorems. For now we turn
first to some application examples. That will provide us with sufficient motivation to
study the theorems of Dirichlet and Fejér and their proofs in Chap. 7 in more detail.

3.3 The Spectrum of Periodic Functions

Significance of the Discrete Spectrum

The sequence (cx)xrez of Fourier coefficients of a periodic function f is called the
discrete spectrum of f.For T-periodic, real “signals” f : R — R, the magnitude
spectrum (|ck|)kez is symmetric because we have ¢, = ¢_ (Fig. 3.8).

Since

ap = cp + C—p, by = jlcn —c—n),

we have

Ay =Ja2 + b2 = JAcyc_y = 2|y

|col
le—2] |e2]
le—1] e

B .

| | I [ | | I
—30.)0 —2w0 —wo 0 wo Qu)o 3(;.)0

Fig. 3.8 Schematic diagram of a magnitude spectrum
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forn # 0 and wy = 27/ T as amplitude of the nth order harmonic of

f@) =co+ ) 2lex] coskwot + arg(cy)).
k=1

The sequence (2|ck|)ken is called amplitude spectrum; the sequence (arg(ck))reN 1S
the corresponding phase spectrum of f.co = ap/2 is the DC part in f, for example,
the DC part in a periodic AC voltage f. The spectrum shows the amplitudes and
phases of harmonics with specified angular frequencies kwy, k € N, which build up
as superposition a 27 /wg-periodic signal f. For real-valued periodic functions f,

o oo

the number D = Z lexk |2 Z |ck|? is called distortion factor. It is a measure
k=2 k=1

for the amount of upper harmonics in f and thus for the distortion compared with

the pure fundamental oscillation. In Sect. 4.6 we will see how the distortion factor

can be computed with the help of the normalized power of a periodic signal f.

Further Examples of Fourier Series

1. Explicit Computation of a Fourier Series Representation

A T
— t = ——
2 2
2A
JFO =324 for —— <1t<0
T
T
0 O<t < —
2

ft+T)= f(@t), A>0

(see the illustration in Fig. 3.9) ¢y, ax, bk.

We compute the Fourier coefficients cg, a, bx. From the graph we see that
aop A
co=—=—.
0T Ty

2
For k € 7\ {0} and wy = ?” we obtain

Fig. 3.9 Sketch of the f()
T -periodic function f A

S YR S LR I
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T T
1 . 1 2A .
= — t e*f’“"o’dtz—/—— t — T)ye Jkeot g
Ck T/f() T T( )
0 T/2

T
With the substitution u =t — T and f () = 0 on [0, 5[, we have also

0 . =0
1 24 © 2A[ e Jkeou !
k= — /——ue_] Dol gy = — [(—(—jkwou—l):|

T—T/2 ! 2L (jkeo)? u=—T)2
gu)
e~/ keou o—Jkaou '
(g/(l/l) = —(—]ka)o) [—jka)ou — 1]+ —(_]kwo):u e—jkwou >
(—jkap)? (—jkwo)?

Inserting the limits of integration yields

T

2A 1 0 jko= (T
A .
- _ = |l _-1_ Jkm i —
= 5 [ 1 e (ko 1)]
cos(km) + j sin(km)
——— ————
(—DF 0
Az [1+ DG - 1)
=—— — T — .
22k J
With ¢, = ¢_, we obtain for k € N
A L 0 for even k
- =29 =——[1——1]=
ar = cx + c—k i(ck) 2 (=D _2A for odd k.
k22

A
b= j(ck —cp) = =23(qx) = (—1>"k—.
T

With the spectral values c, respectively, a; and by the harmonic “building blocks”
of f are known, and f can approximately be reconstructed as a trigonometric
polynomial from the partial sums of its Fourier series. The function f possesses
the Fourier series expansion
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Fig. 3.10 Approximation 7t —
with a partial sum S§7 of the At Sq(t) —
Fourier series expansion /\

T2 0 T2 T

Fig. 3.11 Approximation B
with the Fejér mean S7 Ar 572 3

T2 0  T)2 T

f@t) = % +y (i [(—1)" — 1] cos(kwot) + %(—1)" sin(ka)ot)>

272
Pt k=m
A 2A A . A .
= — — —cos(wgt) — —sin(wpt) + — sinRwopt)
4 w2 7 27
——
DC part fundamental oscillation first harmonic

Cos 3 t sSin t + ..

second harmonic

All partial sums are infinitely often differentiable, but their limit function is not
continuous. Figure 3.10 with seven spectral values c; clearly shows the Gibbs
phenomenon:

For comparison we look in Fig.3.11 at a smoothed approximation by the
corresponding Fejér mean S7 of the partial sums. The Gibbs phenomenon has
disappeared. That improvement comes at the expense of a less steep slope in the
jump neighborhood and thus a greater error at the edges of the graph.

2. Fourier Series Expansion with the Use of an Already Known Series

The series

=Y %(2"” cos(r) 4 SN cosBD)

4 9
k=1

N

is uniformly convergent (compare p. 20). By >

= we have the
=1 k(k+1) N +1

estimate
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N

|cos(kt)| 1 2N
Z Zﬁ kzk(k—l-l) N—>ooN~|—1

k=1 k=1

Term-by-term differentiation yields the sawtooth function

fo=-Y Sm]((kt) = —S().
k=1

The sawtooth S converges uniformly in [, 27 — k], h > 0. Therefore f(¢) is a
primitive of —S(¢) in ]0, 27 [:

2
f@) = ¥+c (t €10, 2x[) .

To determine the constant ¢ we observe the DC value ¢y = 0 for f, i.e.,

2 2 ) 3 2
l‘ —
/f(t)dt - / (% +c>dt = % +2rc=0, thus c= —%.
0 0
x 1 7
As an application one obtains for # = 0 the limit of the series Z 26

3.4 Exercises

(A1) (a) Compute the Fourier coefficients a; and by of the function given in
Fig. 3.12.
(b) Give the Fourier expansion in trigonometric form and in polar form up to
the 5th harmonic.
(c) What is the limit of the Fourier series at the point x = 07?
(A2) Consider the T-periodic function u(¢) given by

Fig. 3.12 Sketch of a Af(z)
periodic function, whose

Fourier series shall be A 1 :
calculated l :
| | T
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(+-3)

usin(wgt) for 0<t <
u(t) = T
0 for —
2

N oo N

<t <

(a) Sketch a graph of u(¢) for 0 <t < 2T.

(b) Compute the complex Fourier coefficients c; and the real Fourier coeffi-
cients ay and by.

(c) Write the Fourier series in complex and in trigonometric form, and gen-
erate graphically an approximation by a few trigonometric polynomials.

(A3) A function f is given by

T
‘sin(gt)} for —— <t <
f@0 = 2 2
for 0<t<

f@+T)=f@), tekR, W=

(a) What are the Fourier coefficients ay, by, cx of f?
(b) What is the necessary degree of a Fourier partial sum so that it deviates
not more than 0.5 - 10~3 from the series limit at the point r = T/2?
& sin(kt
(A4) Calculate for the sawtooth function S(z) = ) sin(kt)
k=1
number N € N so that for a fixed maximal error £ > 0 the deviation

and a given h > 0O a

N

‘S(r) = > (Smyety el

k=—N

in [h, 7] does not exceed ¢.
(A5) (a) Calculate for x, r € R the Fourier series expansion of f(r) = e/*sin®
(b) What are the Fourier series of cos(xsin(z)) and sin(x sin(t))
(see Fig.3.13)?
Hint: Use the Bessel functions.

Fig. 3.13 TIllustration of a cos(5 1 sin(t))
frequency modulated function ! 0 (\ n 0

M
SN,
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(A6) Let a be real with |a| > 1. Find the sums of the series

o0 o .
cos(kt) sin(kt)
f([):Z T andg(t)zz S
= ¢ - ¢
o0 K
Hint: Use F(z) = > — forz € C, |z] < |al.
a

k=0
(A7) Calculate the Fourier series in 10, 7 [ of the function f(¢) = e¥

(a) As a cosine series
(b) As a sine series

Realize the difference between the two cases, and plot the graphs of the -
periodically extended functions.



Chapter 4 )
Calculating with Fourier Series S

Abstract General properties of Fourier series for piecewise continuously differ-
entiable functions are worked out. This includes symmetry properties, amplitude
modulation, derivatives and integrals of Fourier series, asymptotic decay of Fourier
coefficients, spectrum, and the Parseval equation. An example of an everywhere
convergent trigonometric series is given that cannot be the Fourier series of a
classical function. Further examples and exercises on the contents complement the
chapter.

4.1 Symmetry Properties, Linearity, and Similarity

In the following sections—if not otherwise stated— f and g are C-valued piecewise
continuously differentiable T-periodic functions with the mean value property.
Therefore they can be represented by their Fourier series. The Fourier coefficients
of f are denoted by ¢ and those of g by dy, and we set wy = 27/ T. We often call
the parameter ¢ a time parameter and w a (angular) frequency parameter. We work
out some important rules for the handling of trigonometric polynomials and Fourier
series.

Interval of Integration
Since f(t)e /%! is T-periodic, one can integrate over an arbitrary interval of
length T to get the Fourier coefficients:

a+T

T
1 : 1 ‘
ok = ?/ foye it = = / feltatdr (@ eR).
0 o

Time Reversal

1T . 10 .
Since we have ?ff(—t) e~ koot qy — 7 [ @ e/keot 4t = ¢_;, we obtain
0 -T
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+00
f== )" cyelter

k=—00

Complex Conjugate Functions
By

T T

I f—— ! ‘ r

1 f —jkwot dt = — t) efkeot dt = ¢ s

T/f()e T/f()e €k
0 0

we obtain

+00
Fi =) et

k=—o00

Even Functions
If fiseven, f(t) = f(—t)fort € R, thenby c¢; = c_x and by = j(cy —c—x) =0
all sine terms disappear, and it holds

T/2
4
ay =ck +c—y = ?/f(t) cos(kwot) dt (k € Np).
0

The Fourier series of an even function is a cosine series.

Odd Functions

If f is an odd function, f(t) = —f(—t),t € R, then all terms ax = ¢y + c—r =0
disappear. Then, the Fourier series of f is a sine series. Since f(¢) sin(kwpt) is an
even function, it holds

T/2
4
by = jlcx —c—i) = T / f () sin(kwot) dt , (k e N).
0
Linearity
+00 .
af 1)+ Bgt) = Y (ack + Bdy) e/ ', (a, p€C).
k=—o00
Similarity

T

For « > 0 the function F(¢) = f(«t) has period —. It possesses the same Fourier
o

coefficients as f(¢):
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| | sin(t)] — |

0

—27 —T 0 T 27

Fig. 4.1 Graph of f(t) = |sin(t)|

+00

F@t) = f(at) = Z ¢y efkawot

k=—00

A change of frequency does not change the amplitudes of the harmonics, but it
changes the assignment of the Fourier coefficients ci to the angular frequencies
kawg.

Namely, fromt = af,0 < 7 < —, we get
o

T/a T

, 1 ,
had / f(at) e Jkawot qp — — / f(@ e kT 4r = ¢
T T
0 0

For known Fourier series of signals f(r), this similarity property allows to
immediately see the Fourier expansions of similar functions f(«t) without new
computations.

Examples

1. f(t) = |sin(t)| (Fig.4.1).

For T = 27, we have
a T 1 T

All b = 0, since f iseven; — = — fsin(t) dr = ——cos(?)
2 my b4

0

T
For odd k we have a; = — f sin(t) cos(kt) dt = 0, because substitution ¢t =
T o

x +m /2 leads with the addition theorem cos(k(x +m/2)) = — sin(kx) sin(km /2)
to an integral of an odd function over the interval [—mx /2, 7 /2]; hence

/2
2 . . [ km
ar = —— / cos(x) sin(kx) sin - dx =0.
big

—1/2
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For even k = 2n, n € N, we use the addition theorem

. (a + ,3) (oz — ﬁ) sin(a) + sin(fB)
sin cos = )
2 2 2

With 7 = # ont = # it follows & = (1 +2n)t, B = (1 — 2n)t, and

therefore

b b/

% /sin((l + 2n)t) dr + /sin((l —2n)t)dt

0

an

1
b4

0
1 ((1 4+ 2n)m) —1] + — (1 = 2m)m) —1
<1+2n[cos( +2n)m) — ]+1_2n[cos( —2n)7) — ])

—1 -1

2 1 N 1 B 4
Ta\l+2n 1-2n)  @n+D@n-Dn’

We obtain the result

AOES

-
T, Oo4k 1

24 (cos@n) | cos@dn) | cos(6r) 2 R e
P 3 3.5 5.7

2. By the similarity theorem on p. 40 and the last example, the function f(¢) =
| sin(2¢)| has the Fourier series expansion

+oo 4kt
2 e/ 2 4 (cos(4t) cos(8t) cos(12t)
t=__§: - -__ o)
F® nkz_oo4k2—1 T n( 3 + 3-5 + 5.7 +

T

Remark For a T-periodic f and o = 7 the function f(at) is 2w-periodic,
T

and it holds

400 1 2
flat) = E Ck e/ mit k= — / f(at) e Ikt qr .
2
k=—00 0

Therefore in literature often only 277 -periodic examples are treated.

3. When f :]0, T[— R is given, then f can be extended to a 27 -periodic even or
an odd function (see Fig. 4.2).
A 2T -periodic extension then has—dependent on the chosen option— a pure
cosine or a pure sine series representation.
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A A
t
f(®) 2T -periodic
even extension
> >
0 T t =T 0 T 3T t
A
2T -periodic
odd extension
. >
=T T 3T t
Fig. 4.2 Even and odd 2T -periodic extensions
Cosine series for f (2T -periodic evenly extended)
T
£ a°+§: b, 2/f(t) 4 ar
= — agcos| —t), ar=— cos | — .
2 T T T T
= 0

Sine series for f (2T -periodic oddly extended)

~ T
f(t)=];bksin<]%t>, :%0/ (t)sm( >dt.

Both series represent the same function on the interval ]0, 7'[. The sine form was
already used when we treated the problem of a vibrating string in Sect. 1.2. There,
the initial conditions f(x) and g(x) for the string vibration—2/-periodically

extended to the real axis R—had been odd functions on R.
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4.2 Translations in Time and Frequency Domains

Translation in the Time Domain
By the substitution T = ¢ + fy in the computation formula for c;, we get phase
changes of the Fourier coefficients, namely

+o00
fati)= ) (el

k=—00

Example
The function

t for —w<t<nm
0 for tre{—m, m}

f) = {
is (27 -periodically extended) a sawtooth function (Fig. 4.3), represented by

1
—(mr—1t) for O0<t<22m
S(t) =

0 for ¢ € {0,2m}

The amplitudes in the Fourier expansion of f must be twice as large as in S,
and with e/*7 = (—l)k we obtain from the Fourier series of S(¢) with the above
principle (compare p. 19)

T ejk(t+m)

o0 . k
f=-—23% oy :_22(_1%5“‘]({_’).
k

k=—00 =1

k0

Translation in the Frequency Domain and Amplitude Modulation

1 . +00
From — /ejmot f@ye/* ™ dr = ¢y, we get " f(t) = D e/t
0 k=—00
Fig. 4.3 The graph of a t) = —25(t + 7).
scaled and shifted Af ( ) ( )
27 -periodic sawtooth T
+ + —P
—T T
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Jnwot

e
Jnwot
1) % ¢ ) - Spectrum
Spectrum of e/™0t f(¢)
of f(t)
L, LT
—2wo 0 2w 0 nwo
Fig. 44 Complex amplitude modulation causes a shift of the spectrum
cos(nwot)
ft) L cos(nwot) f (%)
> >
Spectrum Spectrum
of f(t) of cos(nwot) f(t)
| H, b oty
—2wo 0 2wy —Two 0 0

Fig. 4.5 Amplitude modulation with a cosine generates two sidebands in frequency domain

Multiplication of a 27 | wo-periodic function f(t) with the function e/"® produces
a shift of the spectrum of f(t) by nwo (Illustration Fig. 4.4).

For better understanding of possible applications, we consider an amplitude mod-
ulation with cos(nwot) f(f) and observe that cos(nwgt) = (e/"®0! 4 e=/neoty 2,
The spectrum (di)kez of cos(nwot) f(¢) is then given by

dp = %Ckfn + %Ck+n,
i.e., the spectrum is shifted to the left and to the right by the angular frequency nwy.
We find two sidebands with halved amplitudes. In signal processing this property
enables the shift of a signal spectrum to a freely selectable frequency band, for
example, to transfer a speech signal spectrum into a non-audible frequency band and
to bring it back to the audible band by repeated amplitude modulation (Illustration
Fig.4.5).
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Example
. . 0 cos(kr) .
The 27 -periodic function f (1) = > 2z (compare also p. 35) has the Fourier
k=1
coefficients co = 0, cx = c—x = ax/2 = 1/(2k?) fork > 1. Consequently

21 4 a—j2t oo
e/t e/ k42 + G2 js

== 2

k=—00

cos(2t) f (1)

a > a +a
2 k+2 k—2
@2y Gzt i

2 cos(kt)

k=1

= ! +5 (t) + ! 2t) + 13 (Bt + > 4r) +
= 3 9COS 32COS 25 COS 36COS

4.3 Derivatives of Fourier Series

Theorem 4.1 If f is continuous on R and piecewise continuously differentiable,
then the Fourier coefficients c)_ of its derivative f' are given by

’ .
¢ = jkwock.

The Fourier series of f' is obtained through term-by-term differentiation of the
Fourier series of f.

Piecewise integration by parts between the points 0 =79 < t; < ... < t,, = T,
where f’ possibly does not exist, yields for k # 0

te
te .
—/f’(t)ef’“”o’dt].
te—1
Tg—1

1 m

JjkawoT Z |:f(t) e

=1

By continuity and T -periodicity of f, it follows

T

1 .

T/f/(t) e Jkeot gy — Jkwock.
0

17 m
For k = 0 we have Tff/(f)df =ZZ] (f () = f(te-1)) = f(T) — f(0) =0.
0 =
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Example

o
The function f(r) = Y
k=1
differentiable. Term-by-term differentiation yields the sawtooth series —S(¢) (see

p. 35).

cos(kt)

2 is continuous and piecewise continuously

Remark If the derivative f’ is not again piecewise continuously differentiable, it is

not ensured that the Fourier series of f’ converges at all. If, however, it converges

at a point ¢, then by the theorem of Fejér it has the limit ( f/(z+) + f'(¢-))/2 there.

Term-by-term differentiation of Fourier series of discontinuous functions generally

leads to divergent series. For example, term-by-term differentiation of the sawtooth
) & sin(kt)

series f() = Y.

k=1
G. Cantor and H. Lebesgue have shown that term-by-term differentiation of Fourier

series of piecewise continuously differentiable functions with jump discontinuities
leads to series, which converge at most in a null set (compare Exercise A7).
Therefore, term-by-term differentiations of Fourier series, which are inserted into
differential equations, for example (cf. Sect. 1.2), in general need clear mathematical
arguments. We will only see in later chapters on distributions, in what sense we
nevertheless can work successfully with such divergent series.

results in a series, which converges nowhere (see p. 15).

4.4 Integration of Fourier Series

For a piecewise continuous 7 -periodic function f(¢) with Fourier series expansion
+00 _ '
> ek e/koot we consider its integral function F(r) = f (f(x) — co)dx. The

k=—00 0

function F(¢) is continuous and T-periodic with piecewise continuous derivative

f(t) — co. Therefore, the integral function is representable by its Fourier series
+00
F(ty= Y Feeltr,

k=—00

Integration by parts and the fact F(0) = F(T) = 0 yield for k # 0

/ I:efkwol]dt /  — o ikeot gp Ck
= () koo ko (f () — co) ko’

T 1
1
T //(f(x) — ¢g) dx dr is the mean value of F.

Fy

=
[
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t
Hence [(f(x)—co)dx = Fo + Z k_ eikeot and
0

k=—00 .]k
k0

/f(x) dx = cot + Fo + Z ka)o K efkaot

k;é()

Theorem 4.2 The integral of a T-periodic, piecewise continuous function f is
built of a T-periodic function, which oscillates around the ramp cot + Fy. Definite
integrals of f are obtained with term-by-term integration of the Fourier series of f:

B B o
/f(f)dt=/f(t)dt—/f(t)dt=
o 0 0

+oo'3

co(Bf —a) + Z ka ( fkw"ﬁ—efkwo"‘> = > /ckejk“’o’ dr.

k=—o00
k;éO «

Comments With more effort than above one can show that the integral function F
is representable by its (uniformly convergent) Fourier series, if f is only absolutely
integrable on [0, T']. F is then absolutely continuous. This can be found, for
example, in the textbook of Tolstov (1976).

. % sin(kt)

Example The sawtooth series f (1) = >

k=1

0 to ¢ yields the 2z -periodic function (see p. 35)

has no DC part. Integration from

t
os(kt)
Foy = [ fwar=" Z
o k=1
. 72 2t — 2
with DC part Fy = i For 0 <t < 2m, we have F(t) = 1

4.5 Decrease of Fourier Coefficients and Riemann-Lebesgue
Lemma

The objectives of this section are statements on the connection between smoothness
properties of periodic functions and the qualitative behavior of their spectrum.
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Thereby we will see that local properties of a function f affect its entire spectrum.
For a T -periodic function f, which is Riemann integrable on [0, T'] and T -periodic
with the Fourier coefficients ax, by, and c, respectively, we find the following
important inequality. As usual again wy = 27/ T .

The Bessel Inequality (F.W. Bessel, 1784-1846) is

mmz 1 o] +00 1 T

2 2y _ 2 2

2 +§E (arl* + 15 = Y il <?/|f(t)| dr.
k=1 k=—00 0

For the partial sums fy (#) of the Fourier series of f, it holds with wy = 27/ T

L N | 7 _ N N
T/f(l)fzv(t)dt= > a;/ﬂt)e*f’““ofdr: > wa= ) lal
0 k=—N 0 k=—N k=—N

By the orthonormality relations from 2.1, we also obtain for all N € N

N N
T/fN(an(r)dr: > el
0 k=—N

Hence we have

T T
1 1 -
0< = / 1f() = fn @) dr = T /(f(t) — INO)(f @) — fn(0)de
0 0

T T T T
1 _ - -
= /|f<r)|2dr—/f(r)fNa)dz—/f(z)medr+/fN(r)fN<r)dr
0 0 0 0

k=—N

Ly al
_ 1L 24, 2
= T/If(t)l dt— Y Jel
0
From this follows the right half of the Bessel inequality by the limit for N — oo.

The left half follows from the conversions for the Fourier coefficients on p. 17:

lax 1> 4 |br|? = (ck + c—1) (& + %) + j(cx — c—) (=) @k — %)

= 2¢Cr + 2c_(Ck ,
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and therefore |ag|? = 4|co|?, |ax|*+|bx|* = 2(|cx|*+|c_x|?) fork > 1.In particular
we always have

T T
i/|f<t>—f (1) dr < l/|f(r)|2dr
T N ST :

0 0

Implication The Fourier coefficients of a Riemann integrable function f on [0, T]
are square summable:

o0 o0 —+00
MlalP <o, Y IklP<oo. Y lal* <oo.
k=0 k=1

k=—o00

The Riemann-Lebesgue Lemma

Theorem 4.3 (Riemann-Lebesgue Lemma)

1. For the Fourier coefficients ay, by, cx of a T-periodic function f, which is
Riemann integrable on [0, T], it holds

lim gy = lim by = lim ¢ = 0.
k— 00 k— 00 |k|— 00

2. More general, for Lebesgue-integrable functions f, it holds for the function
flw) = [ f@)e /" dt, which is the Fourier transform of f (cf. later

—00
Chap. 10)

|w|— o0

+00
lim f(w)= lim / f(Hye @ dr =0.
|w|— o0
—00

T
Thus, also integrals like f f () sin(wt) dt are canceled with increasing |w| — oo by

0
the increasingly dense oscillations of the harmonics. For that, simply set 2 (¢) = f(¢)
in [0, T], h(t) = O otherwise, and apply 2. to 7. We will use the Riemann-Lebesgue
Lemma repeatedly.

Proof

1. The assertion follows immediately from |cx|> — O for |k| — oo.
2. We use that a Lebesgue-integrable function can be approximated by a step
n
function of the form g = )~ a1, with bounded, pairwise disjoint intervals I;
k=0
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cos(407t/T) —

f(t) —
CRAANANANANANAR ANAANT
1

_\/\/\/\/\/\/\/\/\/\/\/\JV\/VW
0 T

Fig. 4.6 The more oscillations in the product, the less contribution to its integral

o
(cf. Appendix B). Choose g such that [ |f () — g(r)| dt < & for a given & > 0.
—0o0

For the Fourier transform g of g analogously as fabove, it holds |g(w)| < & for
|w| large enough (Exercise, left to the reader). Therefore, for large enough |w]|,

+00
If(@)] < |f() - )]+ g < / L (1) — g(0) dt + |3(w)] < 2e.

Since ¢ is arbitrary, lim f(a)) =0.
|w|— o0

The function f, illustrated in Fig. 4.6, varies only slowly compared with a
fast oscillating harmonic factor. In the integral of their product the positive and
negative parts cancel each other out more and more with increasing frequency of
the harmonic factor. We will refer to the Riemann-Lebesgue Lemma later in the
proof of the inversion theorem for the Fourier transform (cf. Theorem 10.1). The
lemma also holds for L!-functions of several variables.

Order of Magnitude of Fourier Coefficients and Smoothness of f

For a T-periodic function f, which is integrable on [0, T] and has Fourier
coefficients cx, we find the following relation between the magnitude of the Fourier
coefficients ¢ and differentiability properties of f:

Theorem 4.4 If f, f/, ..., £V are continuous on R and if ™ is piecewise
continuous, then it holds

00
Z k™ cr|? < o0, in particular therefore |k c| —> 0 for |k| — oo.

k=—00
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On the other hand, if for a finite set A, all k € 7\ A, for a suitable constant M > 0,
an integer m € N, and an o > 1, we have the inequalities |ci| < M|k|’(’”+°‘), then
f is m-times continuously differentiable.

It is a remarkable fact that local properties of the function f have an effect on
its entire spectrum, and vice versa global properties of the spectrum reflect local
properties of f. The theorem shows that highly localized disturbances with loss of
differentiability properties change the entire spectrum.

Proof For the Fourier coefficients cg, c;c, c,(cm) of f, the results in Sect. 4.3
imply
. -1 .
c,((m) = (]ka)o)c,((m )= = (jkawo)" ck.

The first part of the theorem is therefore obtained from Bessel’s inequality and the
Riemann-Lebesgue Lemma for £, With @ > 1 and the conditions in the second
assertion, one finds for n < m and sufficiently large ko € N

DKl <M Y kT oM Y kT < oo

|k|>ko |k|>ko k>ko
+00 .
Thus, the series Y (jkwo)"ck e/koot gre uniformly convergent also for n < m
k=—00

and represent the continuous functions £ by the theorem of Fejér on p. 29.

A more detailed discussion of the interrelations between smoothness properties
of periodic functions and the magnitude of their Fourier coefficients can be found in
Tolstov (1976) or Zygmund (2003).

Examples

1. The sawtooth function is piecewise continuous but not continuous. Its Fourier
coefficients decrease like 1/|k| (case m = 0). The function g, defined by g(¢) =
t2 for t in [—7, 7], g() = gt + 2nk), k € Z, composed of parable arcs, has
quadratically decreasing coefficients (Exercise):

2 cos(t) cos(2t)  cos(3r)
g(t)z?—4( 2 T x T q:)

g(#) is not continuously differentiable (case m = 1).
+00 .
If a function f(r) = Y. cxe/*® is continuously differentiable with a
k=—00
piecewise continuous second derivative (case m = 2), then the amplitudes of the
harmonics with angular frequencies kwg decrease for increasing |k| € N faster

than 1/|k|2 (Illustration Fig. 4.7).
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[(t) —

—4
—r 0 7r

Fig. 4.7 Graph of the twice piecewise continuously differentiable function f

t(m+1) for —m <t <0,

F l’ t=
or example, f (1) {t(n—t) for 0<r<m,

f@) = g (sin(t) + SinG1) | sin(>1) +.. )

33 53

M
2. If k| € W for all k € Z \ {0} and a suitable constant M > 0 as in the last

example, then it follows

+o00 00 00 00 |
D2 Wl = Y klexl + ) kle—il S2M ) 5 < oo.
k=—o00 k=1 k=1 k=1

+00 .
Then f(r) = Y crel keot jg continuously differentiable.
k=—00
3. When the Fourier coefficients c; of f fulfill |kl‘im |k|™|ck| = 0 forallm € N,
— 00

then f is infinitely often differentiable. Namely in that case, for arbitrary m € N
the sequence (|k|"*?|ct]), ., is bounded, and with a suitable M € R we find

+00 +00 |k|m+2 +00 1
2 MMl = 3 Slad <M Y o <o
k=—00 k=—00 k=—00

k0 k0

Hence it follows that f is m-times differentiable for every m € N.

Intuitively spoken, the above asymptotic statements mean that for a good repro-
duction of periodic functions with a “kink” or jump discontinuities the amplitudes
of the harmonics must not decrease too fast.
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4.6 Spectrum and Power and Parseval Equation

A T-periodic alternating voltage U, averaged over the period T with an effective

. . 1 LUl
resistance R, provides the output power P = T R
0
the normalized power P of a T-periodic piecewise continuous function f(t) =
+00 .
3 ¢ e/k@0! is defined with the normalization R = 1
k=—00

dr. Correspondingly,

T
P= l/|f<t>|2dt
. ,
0

VP is called effective value or root mean square of f (RMS). In mathematics the
effective value is called the norm of f, and one writes || f|l» = V'P. The inner
product of p. 12 is also defined for piecewise continuous functions, and it holds
| £ll2 = V/{F1f) for the norm of f.

For piecewise continuous T'-periodic f and g, the norm ||f — gllo = (f —
glf — g)/? of their difference f — g defines a distance between the two functions.
In that context two functions are identified if they differ only on a null set. With
this identification, the introduced inner product is positive definite. The functions
f, more precisely, had to be replaced by their corresponding equivalence classes
with this identification. Nevertheless, it is common to speak of functions further on
instead of equivalence classes. The norm || f|2 of f is zero if and only if f # 0
at most in a null set, and for two functions f and g we have the triangle inequality
If E£gll2 < I fll2+ ligll2. In Sect. 5.1 we will come back to this distance and the
related convergence concept for function sequences, i.e., to convergence in quadratic
mean.

Theorem 4.5 (Parseval Equation) The normalized power of f can be expressed
by the spectrum (ci)kez of f:

1 T +00
P= ||f||§=7/|f(t)|2dt= > lal®
0

k=—o00

This equation is called Parseval equation after M. A. Parseval (1755-1836).
Because the normalized power of f(f) = ck e/kwot g just |ck|2, we can also
formulate:
The normalized power of f is equal to the sum of the powers of all harmonic parts
of f. This important relation will be shown in Chap. 7 for piecewise continuous
periodic functions. With theorems of Lebesgue’s integration theory, it can be shown
for all square Lebesgue integrable functions on [0, T'] (cf. Chap. 7, Exercise AS).
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4.7 Exercises

The exercises with an asterisk x for this and the following chapters are mathemat-
ically more difficult than the others and are intended primarily for mathematicians
among the readers.

(A1) Let f(t) = cos(t) be given for 0 < ¢t < 7.
Sketch a graph of the odd 2w -periodic extension of f, and compute the
Fourier series of this 27 -periodic function.

(A2) Let the 2 -periodic function & be given by

lforO<t<m
h(t) = 0forr =0
—1for —m <t <O.

(a) Compute its Fourier series (Fig. 4.8).
(b) What is the Fourier series of the 4-periodic function g(¢) outlined in
Fig. 4.9? Use the similarity theorem and the result on translations for

this.
Fig. 4.8 One period of & A
| $ >
Fig. 4.9 One period of g A 3

3/ 1/2 5/2
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1 5

—3for- <t <=

2 2
8 = 0f0rt=l
2

1
3f0r—§<t<—.
2 2

(A3) (a) For |sin(¢)| give the trigonometric polynomial f as an approximation

(A4)

(AS5)

(A6)

(A7)

with wg = 2

2
f@ = %0 + (arcos(kwot) + bisin(kwot)) .
k=1

(b) Sketch the amplitude spectrum of f.

(c) What is the amplitude spectrum of the modulated function
cos(61) f(1)?

(d) Compute the Fourier series for g(¢) = cos(6t) f (¢).

(e) For N € N, what is generally the Fourier series of cos(Nwot)g(t) for

ao

o0
> + Z ay cos(kwot) ?

k=1

gt =

t
What is the Fourier series of the 2w -periodic function f f(x)dx, if f(x)
0

is the 2w -periodic extension of the rectangle function — sgn(x — ) for
0<x <21?
Let two trigonometric polynomials f and g be given by

N _ +N ‘
f@®) = Z el and g@t) = Z d; e/kt

k=—N k=—N

+N
Prove that the product f - g has the Fourier coefficients iy = Y. c¢pdi—n
n=—N
for —2N < k < +2N (setd,, = 0 for [m| > N).
Compare continuity and differentiability properties of some Fourier series
with previous examples here and in your formulary. Consider examples,
1

whose Fourier coefficients decrease asymptotically like R or

1
k2—1
Show that term-by-term differentiation of the Fourier series for the rectan-
gle meander f(t) = sgn(t), —w <t <m, f(t+2kw) = f(t), k € Z,leads
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(A8)

(A9)

(A10)*

(A11)*

to a series, which converges only at the points 7 of the form r = (2k—1)7/2,
keZ.
Show that the following series expansions hold:

72

k
(a) r2_?+4 Z( 1)’<C°S( D for —m <1<,
1 k kt
(b) rcos(r) = 3 sin(t) +2 Z( 1)’<&1) or —w <t <,

cos(kt)
1

. 1 &
(c)tsm(t):l——cos(t)—ZZ(—l) for —m <t <.
2 S -

Compute the limits of the series

=1 > 1 > 1
, _1 n+l_’ _1 n+l1 .
Z 4n2 — 1 ;( ) n? r;( ) 2n —1)3

n=1

Use Fourier series of periodic functions in your formulary.
. . n_ sin(kt)

The graphical display of the sums )

k=1

function that all partial sums in ]0, 7 [ are strictly positive, in |—z, O[ strictly
negative, i.e., that they do not undershoot the sawtooth in ]0, 7 [ and do not
overshoot in ] —s, O[. Show this conjecture by induction. In which tolerance
ranges can the sawtooth be approximated by such partial sums?

This exercise shall show that there are convergent trigonometric series,
which are not Fourier series in the classical sense dealt with so far.

suggests for the sawtooth

(a) Prove that

L sin(n D/ sinGne/2)
D_sin(kn) = sin(t/2)

(with continuous extension at the zeros of the denominator).
Hint: Use 1 —e/¥ = e/%/2(—2) sin(¢/2) and a similar computation as
with the Dirichlet kernel on p. 15.

(b) Show that the sine coefficients by of the Fourier series of an integrable
function f on [0, 2n]—which does not necessarily represent the

function f—fulfill Z by /k < oo. For this use the comment on p. 48,

and expand the 1ntegral function of f into a Fourier series.
(c) (Abel’s Lemma) Show that for each two sequences (ai)keN, (Dk)keN
n n n

ands, = Y ar,onehas Y apby = spbyy1 + Y. sk(bx — brt1).

k=1 k=1 k=1
(d) (Abel-Dirichlet Test) Show with (c) the following generalization of the
well-known Leibniz criterion for alternating series:
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(e

4 Calculating with Fourier Series

n
For a sequence (ap)ien, let | > ak| < M hold for all n € N and
k=1
o
a constant M > 0. Then the series Y arpby converges for every
k=1
monotonically decreasing sequence (by)reN With klim b =0.
—00
X sin(kt
Show using the comment on p. 48 that ) (k1)
k=2 ll’l(k)
where, for & > 0 in every interval [#, 2r — h] even uniformly to a
continuous function. But verify that this series cannot be the (classical)
Fourier series of that function.

converges every-



Chapter 5 ®
Application Examples for Fourier Series ke

Abstract This chapter shows applications of classical Fourier series. The following
topics are treated in respective sections: the best approximation in quadratic mean
(RMS approximation), periodic convolution and its role in AC Circuit calculations,
the boundary value problem for the 2D-potential equation on a circular disk with the
Poisson integral formula, the classical solution for the vibrating string, the approxi-
mation theorem of K. Weierstrass, and the 1/f theorem of N. Wiener. Examples and
exercises are provided. These include, for example, the inhomogeneous vibrating
string, the homogeneous one-dimensional heat equation, periodic convolution of
given periodic functions, and Kepler’s equation.

5.1 Best Approximation in Quadratic Mean

The focus of the following considerations is no longer, as before, on pointwise or
uniform approximations to periodic functions f by trigonometric polynomials, but
rather approximations, whose mean squared deviation from the considered function
f should be small.

A T-periodic piecewise continuous function f : R — C (or its restriction to
[0, T']) shall be approximated by a trigonometric polynomial

N
P(ty= > opelt,

k=—N

wo = 2/ T, so that the mean square error becomes minimal:

T
%/mr) — P(®)|*dt = min!
0
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If f has the Fourier coefficients cg, the mean square error can be written in the
following form:

IT 1) — P()|*dr
?/If()— 0|
0

k=—N k=—N

T N N
= % / (FO) =Y e (i) — Y we khar
0

T N N N
1 2 — — 2
7 [1roPa = 3 wm- Y @t Y
0 k=—N k=—N k=—N

T N N

1

?/If(t)lzdt— > P+ Y e — el
0 k=—N k=—N

independent of the oy

The above integral becomes minimal if and only if oy = ¢ for |k| < N. Thus, we
obtain the following theorem on best approximation in quadratic mean:

Theorem 5.1 The best trigonometric approximation polynomial of degree at most
N for this purpose is the Nth partial sum P(t) = 2,127:7 N Ck €/ koot of the Fourier
series of f.

Geometric Interpretation

When we look in a subspace U of R" for an approximating vector y to a given vector
X = (x1,...,x,) € R"” so that

n

x—y*=> (xi — y)* =min!
i=1

then, as is well known, y is the orthogonal projection of x into U. The inner products
of (x —y) and vectors u € U fulfill the orthogonality relation (Fig. 5.1)
x—y)-u=0forallue U.

The same fact holds true in higher dimensional vector spaces with an inner product.
In the same sense, the Nth partial sum fy of the Fourier series of f is the orthogonal
projection of f into the vector space 7Ty of T-periodic trigonometric polynomials
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Fig. 5.1 Orthogonal x—-y X
projection into U

up to the degree N. The piecewise continuous 7T -periodic function f has a unique
decomposition f = fy + fﬁ with fy € Ty, and

(flf,‘|h) =(f — fnlh) =0forall h € Ty,

with the inner product on p. 12. For A(¢) = ZIIC\’:_N o e/k0t we have

(f = fnlh)

| 7 N N
- / (fG) = Y e ) 37 @ye v ds
0 k=—N m=—N

N N
:(Zochk—ch(x_k>=0.
k=—N

k=—N

The function f is an element of the infinite dimensional vector space of all T-
periodic piecewise continuous functions. The orthogonal projection fy with the
integral representation

T
1
In@) = ?/f(S)DN(t — s)ds
0

is an element of the (2N + 1)-dimensional subspace 7y, where Dy denotes the
Dirichlet kernel with degree N.

Convergence in Quadratic Mean

Theorem 5.2 The Fourier series of a T-periodic piecewise continuous function f
converges to f in quadratic mean.

This theorem is equivalent to the validity of the Parseval equation. If f has the
Fourier coefficients cg, then we have with wg = 27/T
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N

T N T
! ikawot |2 1 2 2
?/'f(”— > el d’=7/|f<r>| dr = Y Jal — 0.
0 0

k=—N k=—N

The notion of convergence in quadratic mean is often more important than pointwise
convergence for technical and also theoretical purposes. By the theorem of Dirichlet
(cf. p. 28) pointwise representation of periodic functions f by their Fourier series, as
presented in our context, is only ensured for piecewise continuously differentiable
functions. In fact, there are examples of continuous periodic functions whose
Fourier series diverge at infinitely many points. On the other hand, one knows from
Carleson (1966) that Fourier series of continuous periodic functions f converge
almost everywhere (cf. Appendix B). Besides the remarkable theorem of Fejér
(p- 29), the most important result for applications is probably the above formulated
convergence in quadratic mean, which can be shown for the Fourier series of very
general functions.

This result has been stated above for piecewise continuous functions and will
be proven for this class of functions in Chap.7. In functional analysis, using the
Lebesgue integral (cf. Appendix B) for elements f of the vector space L2([0, T']) of
all square integrable complex-valued functions, the following more general theorem
is shown. Any function f € L2([0, T1), defined on the interval [0, T'], can be
extended to a T -periodic function on R as usual.

Theorem 5.3 The Fourier series of a function f € L*([0, T]) converges to f in
quadratic mean.

A proof of this theorem can be found, for instance, in Rudin (1991). Even
if functions f e L2([0, T]) are not necessarily represented pointwise by their
Fourier series, they can be approximated arbitrarily well in quadratic mean by
partial sums fy of their Fourier series. In this sense, one also denotes f by
f(t) = Y 2° cpe/ @’ This means that the partial sums fy for N — oo
converge to f with respect to the norm of p. 54: limy_oo || fv — fll2 = 0. The
distances between fy and f, measured with that norm, become arbitrarily small for
increasing N, i.e., the mean square error || fy — f ||% converges to zero. Actually,
pointwise convergence in general does not make sense for L2-functions without
additional conditions, since those represent entire equivalence classes of functions
(cf. p. 54) whose elements are not determined at individual points.

Computation of Distortion Factors

By the Parseval equality we can compute distortion factors with the help of the
normalized power P (compare p. 33). The distortion factor D for a real-valued
signal f with Fourier coefficients c; and normalized power P is given by D =
VZJN, where N = (P — |co|*)/2 and Z = N — |c1|*. For the example on p. 33,
we find, for instance, a distortion factor D of about D = 0.56.
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5.2 Periodic Convolution and Application to Linear Systems

In this section, we apply Fourier series to solve linear differential equations with
constant coefficients and periodic perturbation functions. Well-known examples are
equations of motion in mechanics or differential equations describing RLC net-
works in electrical engineering. For this we need the notion of periodic convolution.

Definition The T -periodic convolution for piecewise continuous T -periodic func-
tions f and & is defined by

T
1
(f # e = = / Fuyh(t — uydu,
0

If f and & are piecewise continuous as assumed, then (f * k)7 is continuous on
R and T-periodic. This property will be demonstrated in Chap. 7 and used there to
prove the Parseval theorem.

Remark With the Lebesgue integration theory, the periodic convolution can be
defined more general. Thereby the convolution exists almost everywhere for
functions f and A, which are Lebesgue integrable on [0, T']. The continuity of
(f * h)r can be shown for all T-periodic functions f and ki, which are square
integrable on [0, T'], and then yields the Parseval equality also for these functions.

The Fourier Series of a Periodic Convolution

Let the coefficients c; be the Fourier coefficients of f, the coefficients 4y those of
h, f and h piecewise continuous. For the kth Fourier coefficient of (f x h)r, we
obtain by interchanging the order of integration:

T
1 / 1 / ! f )h(t—u)du e =Tk g
T)]T1)
0
T
1 1 (T ket
= T f(”)? h(t—u) e 7" dr du = cihy.
0
0

hy-e= koot by 4.2

+00

(f xhr@) =Y cxhge/ "

k=—o00
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Result The Fourier coefficients of the T-periodic convolution (f x h)r are the
products of the corresponding Fourier coefficients of f and h.

Multiplying out the inequality (|cx| — |hx])? = 0, we get 2|cxhi| < |cx|? + |he|>.
With the Bessel inequality we thereby obtain

+00 1 +00
D ekl < 50 37 (el + i) < 0.
k=—00 k=—00

Therefore the Fourier series of (f * h)r is uniformly convergent. According to
Fejér’s theorem (see later p. 134), the continuous function (f * h)r is actually
represented pointwise by its Fourier series. The continuity of (f xh)7 will be shown
on p. 139.

Application to Asymptotically Stable Time-Invariant Linear
Systems

n
As application we consider linear differential equations ) aru® () = f@0).
k=0

Here, the u® denote the kth derivatives of u, and the a; are constant real
coefficients. Without loss of generality we set @, = 1. Many differential equations
in modeling physical or technical problems are of this type. For example, think
about electrical networks built with resistors, capacitances, and inductances or about
differential equations of oscillations in mechanics.

We now assume that the system is asymptotically stable, that is, for arbitrary
initial values, the solution of the associated homogeneous differential equation
vanishes for + — oo. This is exactly the case if all zeros of the characteristic
polynomial have negative real parts. The characteristic polynomial must then be
a Hurwitz polynomial, and all coefficients a; must be positive, i.e., with the same
sign as a, > 0.

Under these conditions, for right-hand sides of the form f () = A sin(wt + ¢)
the periodic solution is uniquely determined. It has the same angular frequency w
but a different amplitude and phase than f(¢) (cf. the common methods for solving
such differential equations).

For a right-hand side f(r) = Upe/®, the linear operator L, mapping f to
the uniquely determined periodic solution L(f), describes a so-called linear
time-invariant system (LTI system). We will analyze such systems after further
mathematical preparations in more general terms in Chap. 11. Schematically, the
facts presented here for harmonic oscillations f are shown in Fig. 5.2:

The function ﬁ(a)) expresses amplification or attenuation and phase shift in the
transmission depending on the angular frequency w. We obtain h(w) = 1/P(jw)
with the characteristic polynomial P of the given differential equation.
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Input asymptotically stable Output
> time-invariant >
4 linear transfer system L
ft) =Upel*? in steady state L(f)(t) = Uph(w) e/

Fig. 5.2 Schematic figure of a stable LTI system in steady state

The question arises whether, in general, there is exactly one periodic solution
for a periodic excitation. This solution would describe the long-term behavior after
decay of transient solution parts. Under suitable constraints on the right-hand side
f, we can prove the following theorem:

Theorem 5.4 An asymptotically stable linear ordinary differential equation of
order n with constant coefficients and with a continuous, continuously differentiable,
T -periodic right-hand side f has the uniquely determined T -periodic solution

D= Y cphyelko =),
u(t) crhy (wo T )

k=—o00

The coefficients cy are the Fourier coefficients of f and hy = 1/ P (jkwy), where P
is the characteristic polynomial of the differential equation.

Proof Inserting the series into the differential equation shows this statement
immediately. This series and all its term-by-term derivatives up to the order n
are uniformly convergent, since the Fourier series of f converges uniformly. In
particular, u is an n-times continuously differentiable function. The uniqueness
follows immediately from the fact that the difference of two T'-periodic solutions
is again T -periodic and must be a solution of the homogeneous equation. This can
only be the zero function by the presupposed stability. O

We can show the estimate |P(ja)0k)|_l < M |k|73/? for sufficiently large |k|, a
suitable M > 0, and polynomial degree n > 2 (Exercise A4). Therefore the series

+00 )
h(t)y =Y et

k=—o00

represents a continuous function. For equations of order 1, we can see with some
+00
calculations, comparing with the sawtooth function, that () = >
k=—00
ap > 0, is continuous except for the points t = 2nmw, n € Z. At those points h
has right and left limits (7 (coth(apm) == 1) for T = 2m). The series represents a
piecewise continuously differentiable function (Exercise AS). This holds true also
for other periods than 7 = 2. Therefore, we obtain with the convolution property

for Fourier series (Illustration Fig. 5.3):

1 Jkt
Jjk+ag € ’
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+o0

Z ¢y, e/kewot h(t) - (frm)o(t) = ) cxhye®o!

k=—00 k=—00

- Z oy e7heot —» 7

1
k= — h(t — s)ds
. -7 ]
0
Fig. 5.3 T-periodic convolution
Fig. 5.4 Lowpass RLC o—{ 1+l o
circuit R L
Ue(t) C= Ua(t)
O O

The Fourier coefficients of the solution u are the products of the corresponding
Fourier coefficients of f and h, and u is the T-periodic convolutionu = (f xh)r.

The function h is called the T -periodic transfer function.

Remark If we want to treat more general right-hand sides like a sawtooth function
or a rectangular meander as a model of switch-on and switch-off processes, a
modification of the classical notion of a solution for differential equations is
necessary. This can be done for the case with piecewise continuous right-hand sides
f by a modification of the common notion of a primitive function in the context
of Riemannian integration theory, as, for instance, in Dieudonné (2006). With the
results of the Lebesgue integration theory, functional analysis, and distribution
theory, it is possible to introduce a new notion of a solution, thereby weakening the
conditions on f to a very large extent. It suffices, for example, that the coefficients
cr of f are square summable. All Fourier series treated above then converge in
L%([0, T1), and the function u is the convolution (f % k)7 of two functions in
L2([0, T]). With the concept of generalized derivatives (Sect. 8.5) in distribution
theory and generalized Fourier series f and h (cf. Sect.9.1), finally (f % &) can be
interpreted as the solution of the differential equation, without additional continuity
or differentiability conditions on f as long as the Fourier coefficients of f being of
slow growth. This is a major progress in the treatment of many application problems.
We consider, as already mentioned, time-invariant linear systems in more detail
only after the necessary mathematical preparations in Chap. 11 and come back to
the issues noted here in Sect. 11.5. The last theorem and its generalizations form the
foundation of complex AC circuit calculation in electrical engineering.

Example (AC Circuit Calculation) The RLC lowpass filter shown in Fig. 5.4
with ohmic resistance R, inductivity L and capacity C due to Kirchhoff’s law, is
described by the differential equation
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d*u, du,
LC—2() + RC
dr? @+ dr

(1) + Ua(t) = Ue(2).

The zeros of the characteristic polynomial LCA> + RCA + 1 are

R R? 1 R? 1
—a E a? " IC for a1z 2 IcC
)\,1!2 =
R 1 R> 1
—a *Jiyze —ap for gz < ic

They have negative real parts, and the given linear system is asymptotically stable.
For U, (t) = Uy e/*@0! oy =27 /T, we obtain the T -periodic solution

Uo

ejkw()l )
1 + jkwogRC — kK2w}LC

Us(t) =

The continuous T -periodic transfer function is

T +o00 |
E hk ejkw()t = E ejkwot )
1 2,2
k=—00 k=—00 I+ ]kw()RC k a)OLC

Thus, the convolution rule can be used to obtain Fourier series representations
of the periodic system responses, if the Fourier expansions of (so far assumed
continuous) periodic input signals and the corresponding periodic transfer functions
are known.

Remark The spectral sequence (hy)iez = (%) corresponds
€ I+jkeogRC—K*wfLC |,

to samples of the function ﬁ(a)) = 1/(14 jwRC — w?LC), which in electrical
engineering is called frequency response of the filter. The lowpass effect of the
circuit, i.e., the attenuation of high-frequency input parts, can be seen in the
sequence (hy)kez and in the frequency response ft\(a)) of the example.

Mechanical Systems of Second Order with Periodic Forces

Analogously to the above example from electrical engineering, we obtain a solution
for asymptotically stable mechanical systems of the form

mx(t) +kx(t) + Dx(t) = K(t),

with the important case of periodic forces K (¢). The periodic solution is received
by Fourier expansion of K (¢) and periodic convolution with the system’s periodic
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transfer function (up to now again under the continuity condition on K (¢), later
on with more generality in the Sects.9.1 and 11.5). Replacing in analogy the
coefficients of the preceding example by the constants m, k, and D is left to the
reader.

5.3 The Potential Equation on a Circular Disk

2u
dz?
ematical physics. In the theory of heat conduction, u is the stationary temperature,

i.e., the temperature which is reached after some time. This temperature is obtained,

if in the heat conduction equation %—’f = a? Au the left side is set to zero (a? is the

. 2 2 .
The Laplace equation Au = % + g}—"ﬁ + = 0 occurs in many areas of math-

thermal diffusivity in m?/s). In the theory of gravitation or electricity, the function u
represents a gravitational potential or an electrical potential. The equation Au = 0
is therefore also called potential equation .

The task to solve Au = 0 within a domain G, where u is given on the boundary
of the domain G, is called a Dirichlet boundary value problem. It can be solved for
functions of two variables on a circular disk by applying the convolution relation for
Fourier series. In a circular disk around the zero point with radius R, we consider
the problem

A 0%u " 3%u 0
u=—+—=0.
ax2  9y?
In polar coordinates this equation for 0 < r < R and 0 < ¢ < 2 is given by

2u  1ou 1 9%

A= —+-—+——
" 8r2+r 8r+r28¢2

=0.

Solution by Fourier Series Expansion for Given Boundary
Values

Inserting
r\k . r\k .
Uy = ¢y (§> e/ and u_g =c_y (E) e Jko

into the equation, we prove that these functions are solutions of the potential
equation for every k € Ny and arbitrary constants c; and c_,. With the superposition
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principle, we thereby obtain a solution of the form

+00

ur. )= 3 (%)'k' eiks

k=—00

provided that the series converges and represents a sufficiently smooth function. The
constants ¢ have the physical unit of u. With given boundary values U (¢) on the
circle r = R, the ¢ are just the Fourier coefficients of U (¢), 0 < ¢ < 27,

+00
uR. P =U@) = ) ae/.

The Poisson Integral Formula

For every r € [0, R[ and ¢ € [0, 27[, the following geometric series is absolutely

convergent and represented as

i <_ ej¢) K _ R*— Rrcos(¢) + jRrsin(@)
k=0 R—reid R% +7r2—2Rrcos(¢p)

Hence it follows

Jio <r>"" jké i(r)k jké i r\TK ke
—) &= —) e/* 4+ (—) e
R R = R

k=—00 k=0
o o
r\k . r\k .
— T\ eike (_) eIk _ 1.
> (7) M+ (3
k=0 k=0

Thus, we can also write this series as

i’o (r )‘kl eiko — R? — Rrcos(¢) + jRrsin(¢) + R? — Rr cos(¢)
“~ \R B R2 +r2 — 2Rr cos(¢)
—jRrsin(¢) 4+ 2Rr cos(¢) — RZ —r? R%Z 2
R2 + 12 — 2Rr cos(¢) "~ R2+7r2—2Rrcos(¢)’

Because u(r, ¢) is the Fourier series of the 2w -periodic convolution between U (¢)
. _ R2_,2 . . .

and the function g(r, ¢) = R 2R cos(@)’ which is additionally dependent on

r, we find from the convolution relation the resulting integral representation of the
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solution u(r, ¢) for0 <r < Rand 0 < ¢ < 27

R2_r2

2
1
u(r,¢) = o / v RZ 4+ r2 —2Rr cos(¢p — ¥) w-
0

This solution formula for the potential equation with the boundary values U (¢) on
the circle r = R is known as Poisson integral formula. If the function u(r, ¢) is, for
example, a stationary temperature distribution, then the temperature for each point
inside the circular disk is thus expressed by the (kept constant) temperature values
U), 0 < ¢ < 2m, on the boundary of the circular disk.

Smoothness and Uniqueness of the Solution and Maximum
Principle

In order to deepen our work with partial differential equations one more step, we
briefly investigate the question of differentiability and uniqueness of the solution.
For example, we require that the boundary condition U(¢) is a continuous,
piecewise continuously differentiable, 27 -periodic function. For every m € N we
get

Ikl
lim |k|m|Ck|<L> = lim [k|"|ck|e¥IC/R) = g

|k]—o00 R |k]— o0

By the results in Sect. 4.5 on summability properties of the series representation for
the solution, we find that u(r, ¢) is differentiable in both variables arbitrarily often,
and we obtain for ¢ € [0, 27

lim u(r, ¢) = U(@).

The proof of uniqueness can be done with the help of the so-called maximum
principle for the potential equation, which we formulate for more general domains
as circular disks in the plane. A domain G is a non-empty, open, and connected set.

Theorem 5.5 Let G be an open bounded domain in the two-dimensional plane
and 3G its boundary, and let a nonconstant function u fulfill the potential equation
Au = 0in G. If u is continuous on G U 9G, then it attains its maximum and its
minimum on the boundary of the domain.

Proof Fore > 0wesetv(x,y) =u(x,y)+ rs()c2 + yz). Then
%v 9%

W+8_)12:48>OIHG.
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If (x0, yo) is supposed to be an inner point of G with
v(xo, yo) = max{v(x, y) | (x,y) € GUIG},

then, from well-known theorems on extreme values, necessarily follows

2 2

v a°v
—(x0,y0) <0 and —(x0, yo) <O.
932 (x0, ¥0) an, 0y (x0, Y0)

This is a contradiction to the above equation. Therefore, v(x, y) attains its maximum
on the boundary dG. By continuity of u(x, y) and u < v, it follows immediately:

max u(x,y) < max v(x,y) = maxv(x, y) < maxu(x,y) + ,Smax()c2 + yz).
GUdG GUIG G G G

Since ¢ > 0 can be chosen arbitrarily small, we obtain the result

max u(x, y) = maxu(x, y).
Max (x, ) na (x, )
The same conclusion, applied to — u(x, y), shows that u attains also its minimum
on the boundary. O

The continuous functions u on G satisfying in G the equation Au = 0 are called
harmonic functions on G. In a plausible simple meaning, the maximum principle
for harmonic functions in a problem with constant temperature 7j on the boundary
of a bounded domain says that the stationary temperature in the interior of the
region can be neither lower nor higher than at the boundary, i.e., after some time
the temperature 7j will be reached everywhere.

Uniqueness of the Solution

Supposed # is a second solution, then we set v(x, y) = u(x, y) — u(x, y). Hence,
v(x, y) fulfills the potential equation and has zero boundary values:

v(x,y) =0 forall (x,y) € dG.

Then, the maximum principle says that v(x, y) = 0 everywhere in G U G, and this
means

u(x,y) =u(x,y) everywherein G UJG.
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Fig. 5.5 Potential ina
circular disk for the given
boundary function U

Illustration of the Solution for a Dirichlet Boundary Value
Problem

The illustration in Fig. 5.5 shows the solution of the Laplace equation on the unit
circle disk for the given boundary function U(¢) = cos(¢) + sin(2¢). Maxima
and minima of the solution lie on the boundary. Inside the circle there are no local
extrema, but a saddle point. The solution represents the stationary temperature
distribution or the electric potential inside of the circle for a given boundary
temperature or boundary potential U (¢).

5.4 Solution for the Problem of the Force-Free Vibrating
String

In our preceding work on the initial boundary value problem for the homogeneous
force-free vibrating string

9%u 282u
=c u(x,0) = f(x),

at? ax2’ 9
u
u0,t) =u(,t) =0, lim —(x,1) = gx),
t—0+ 0t

we had the solution approach
> nw chw cnw
u(x,t) = Zl sin (T x) (a,, cos (T t) + b, sin (T t)) .
n=

With term-by-term differentiation and interchanging the limit processes, we have
> niw
u(x,0) = ’;an sin (T x) = f(x),

. ou > cnm . /nT
h%l+ —t(x, t) = Z - b, sin (T x) = g(x).

n=1
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For sufficiently smooth functions f and g, therefore the solution can be determined
with the Fourier coefficients of f and g. The functions f and g are assumed to be
2[-periodic and oddly extended. The coefficients a,,, b, are

l ]
2 . /nm 2 . /nw
a, = Y/f(x) sin (Tx) dx, bn = % /g(x) S (Tx) dx.
0 0

Thus, we have obtained a series representation for the solution.

On Differentiability of the Solution

The question of which functions f and g are “sufficiently smooth” is answered by
the following theorem:

Theorem 5.6 If f is twice continuously differentiable on the entire axis R and
[ is piecewise continuous and if g is continuously differentiable on R and g"
is piecewise continuous, then the solution u(x,t) is twice continuously partially
differentiable. Differentiation with respect to x or to t twice results in convergent
series, which represent continuous functions.

Proof According to Sect.4.3, we obtain the Fourier coefficients fn(3) of f" by
threefold term-by-term differentiation of the series f(x) = > oo aysin (% )

Correspondingly we find the Fourier coefficients g,(lz) of g” by differentiating term
by term twice the series of the function g. For the coefficients a, of f and b, of g,
we have the relations

P
ay, = — ,
" w3n3 I

13
by = — D
" e 3n3 o

Thus, we can write u(x, t) in the form

NS 1 nmw cnm 1 cnm
ulx,t)=— <;> Z el sin <T x) (f,,(3) cos (T t)+;g,(lz) sin (T t)) .

With Bessel’s inequality it is found that also after twofold term-by-term differentia-
tion with respect to x or ¢ the result is a uniformly convergent series:
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n=1 n=1
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D’Alembert’s Solution for the Force-Free Vibrating String

We can also rewrite the solution into another form. Namely, if we set
ay = Ay sin(¢,) and b, = A, cos(éy),

then by the trigonometric addition theorems—again for sufficiently smooth func-
tions f and g—D’Alembert’s representation of the solution is obtained (Exer-
cise A7):

u(x,t) = Z % (cos (?(x —ct) — d),,) — cos (?(x +ct) + ¢n))
n=1
| | x—ct
=3 fx—ct)+ f(x+ct)+ - / g(t)dr
xX—ct

G. S. Ohm (1789-1854) concluded as an application of the series representations
first basic principles of acoustics for the string vibration.

Ohm’s Law in Acoustics The sound of the string contains the tone pitch,
determined by the fundamental frequency c/(2l), and the overtones depending on
the initial conditions with different amplitudes A,. The sound perception depends
on the ratio of these amplitudes A,=\/a> + b?.

Remark Transient vibrations, necessary for the recognition of a musical instru-
ment, and phases, which are acoustically important for the localization of sound
sources, are not taken into account in this characterization of timbre.

Concrete examples of string vibrations can be found in textbooks on mechanics
or acoustics. Some initial boundary value problems of the discussed type and also
string vibrations under the influence of constraining forces are dealt with in the
exercises.
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Uniqueness of the Solution

A prerequisite that allows musicians among the readers to learn skills on a string
instrument through regular practice, or even to risk an audition in front of an
audience, is the fact that a string will always sound the same if the initial and
boundary conditions are the same. Mathematically, this means that the solution to
our initial boundary value problem must be unique. A standard method to show the
uniqueness is to investigate the energy integral.

The energy of a twice continuously differentiable solution u (x, ¢) is given at time
t > 0 with tension P, mass density o, and cross-sectional area A of the string for
small displacements by

1
1 u\> 1 du\?
E= [ oA () +2pa () dx.
@ /29 (a;) +3 <8x>
0

kinetic potential energy density

By differentiation with respect to ¢ under the integral, observing the wave equation
with ¢ = P/, and applying the chain and product rules when differentiating, we
get

l l
1dE . / du d’u  ,0u 8u dx_/ du (P 3u L plu 2u ] o
A dr oo a2 Vo omar | YT/ % Qa2 dx 9x01
0 0

=0 by the boundary condition

This means that the law of energy conservation applies for the vibrating string:
E(t) is constant.

If now & were a second solution, then we had forv =u —

2 2
o _ 0%

. dv
8t2 =co v(x,0) = 0and [1_1>161+E(x, t)y =0forall x, v(0,7) =v(,t) =0

for all ¢; thus a—v(x 0) = 0. Consequently we have E(0) = 0, and therefore we

obtain by energy conservation E(¢) = O for all 7. Hence also (x t) = 0 for all x
and ¢, and finally
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X

av
v(x,t) =v(0,1) + / —(t,t)dt = 0.
ax
0

This says that the solution u is unique: u = u. For the beautiful experience of being
happy when listening to well-rehearsed music, we have to thank the law of energy
conservation.

Meaning of the Solution

For an initial velocity g = 0 the solution u(x, t) consists of the two waves % fx+

ct) and % f(x — ct), which move in opposite directions with velocity ¢ without
changing their shape, superpose each other, and are reflected at the ends of the string
with opposite phase. The influence of an initial velocity g # 0 is given by the
x+ct
additive component 2% f g(t)drt in the solution.
x—ct
The tone pitch is determined by the fundamental frequency ¢/(27) in the Fourier
series representation of the solution. Since ¢ = P/o is the quotient of the tension
P and the mass density ¢ of the string, the influence of tension, mass, or length
changes to the frequencies can be seen immediately in the series. Anyone who has
ever manipulated or even tuned a string instrument probably knows these effects
from experience.
Without regard to physical units, we illustrate the solution function u(x, ) for
0<x<1,0 <t < 2,c = 1, with concrete initial conditions f and g in two
examples (Figs. 5.6 and 5.7). In the first example we set

—1/(1—x2) f 1 1
F(0) = h(dx —2) with h(x) = | - or <x <l
0 otherwise.
2 for 0<x < 1/4,
In the second example we set f(x) = x or X /
2(1 —x)/3 for 1/4<x <1

Fig. 5.6 Smooth solution of
the 1D wave equation
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Fig. 5.7 Non-differentiable
solution of the 1D wave
equation

In both cases we use g = 0. In the first example, the initial condition f and the
solution are infinitely often differentiable. In the second example, f and thus also
the solution u are not differentiable (cf. later on Sect. 9.6).

5.5 The Approximation Theorem of Weierstrass

In the practice of mathematical modeling technical problems and also in many
mathematical proofs, one replaces a continuous function f : [a,b] — C
approximately by a polynomial. A basis for this is the following theorem of K.
Weierstrass (1815-1897).

Theorem 5.7 (Theorem of Weierstrass) Every continuous f : [a,b] — Cona
closed bounded interval [a, b] can be uniformly approximated by a polynomial.

Proof The function can be extended to a continuous 2(h — a)-periodic function f
so that for any given ¢ > 0 there exists a trigonometric polynomial P, of the form
P, = —(So +S1+---+S,_1), where sup |f(t) — P, <& 5 (according to Fejér’s

theorem, p. 28). Here, the S for k € No are the kth partial sums of the Fourier series
expansion of f. For each partial sum S there is a Taylor polynomial T such that

n—1
sup [Si(t) — T (1)] < 5. With T = % > Ty it follows immediately that
tela,b] k=0

sup |f (1) =T < sup |f(t) = Po(t)|+ sup |P(1) =T <¢

tela,b] tela,b] tela,b]

O

Remark We do not give any explicit examples here, because the method given
in the proof for obtaining approximation polynomials is laborious and complicated.
However, functions f in practice often have additional smoothness properties. Then,
one can find polynomials with less complicated methods, which interpolate the
function at certain node points and which also have good overall approximation
properties between the nodes (cf. p. 111).
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The theorem of Weierstrass can be sharpened if the function f, which shall be
approximated, has additional smoothness properties (cf. later on p. 142).

5.6 The 1/f-Theorem of Wiener

The subject of this section is an elementary proof of the famous 1/f-Theorem
of Wiener (1933). This theorem states that for a Fourier series f, which has no
zero and has absolutely summable coefficients, also the reciprocal function 1/f
has absolutely summable coefficients. When we discuss discrete linear filters in
Sect. 11.6, an application of this theorem is shown to the reconstruction of filtered
discrete data. The proof we follow was given by Newman (1975). Other proofs
with the help of theorems on maximal ideals in normed algebras can be found in

textbooks of functional analysis (e.g., in Rudin, 1991).
+00 ‘
For a Fourier series f(t) = Y cxe/ kt with absolutely summable coefficients, the
k=—0o0
value

+00
IFla= Y lad

k=—o0

is a norm. Evidently, we have || f|lco = max|f(¢)| < || fll.4. Two such series f
and g each, now considered as continuous functions on [0, 277], fulfill the following
inequalities:

If+glla<Ifllatliglaand|f-glla<Iflla-lgla

With this norm, the vector space A formed by such Fourier series is a normed
algebra with the function f(#) = 1 on [0, 27r] as multiplicatively neutral element.
One can show that this space A is complete, i.e., every Cauchy sequence in .4
converges to a function in .4 (for completeness see Rudin, 1991, for instance).

The first inequality is immediately obtained from the corresponding triangle
inequality for the partial sums, and the second is seen as follows:

+N ) N ;

For fy(t) = Y cre/® and gn(t) = Y. dre/M, the Cauchy-Schwarz
k=—N k=—N

inequality and the Parseval equality of p. 54 yield the convergence of fx gy to fg

in the norm ||.||; of L' ([0, 27]) (for the definition of ||.||; see p- 500):

2

1

g/|fN(t)gN(t)_f(t)g(t)|dt Sfv=fllz ligallz+ 11 £ 12 IIgN—gllzNj;oO.
0
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+2N

The Fourier coefficients hx(N) of fygn(t) = Y. hi(N) e/ are (compare
k=—2N
+N
Exercise A3, p. 56) hx(N) = Y cpdi—n (with dy, = O for [m| > N). They
n=—N

converge for N — oo to the Fourier coefficients /i of fg, since the L'-convergence
of fygn implies

17 .
|he(N)—hi| = E/(fN(t)gN(t)—f(t)g(t))e_-’k'dt <||ngN—fg||1Nj>OOO~
0

+00
Thereby, we have hy = Y. cpdi—p, i.e., the Fourier coefficients of f - g are
n=-—00
obtained by discrete convolution of the coefficient sequences of f and g. Thus, we

have for every N € N

+N +N +N
DI D eal D ldil < Il llgllas

k=—N n=—N k=—N

and eventually from that the inequality || f - glla < |fll4 - llgll4.

Attentive readers are reminded of the absolute convergence of the Cauchy
product of power series shown in calculus, where one proceeds quite analogously.
We continue with another useful preparatory inequality: For 2 -periodic and twice
continuously differentiable functions f and their derivatives f’/, the following
inequalities are valid:

max 1| < < max Hl+2 max |f'(@)|.
 dmax [fOI<Iflla < max | f (@] dmax [ f (@]

The first inequality is trivial. For the second one we estimate with the Cauchy-
Schwarz inequality (see also p. 35 and p. 51). For f with Fourier coefficients cx, we
have (compare also the Poincaré-Friedrichs inequality, p. 503)

2 2
1 212 < ' Teni2
Yo lad] < X 5 X KlalP <53 /If(t)l dt
keZ,k#0 keZ,k#0 keZ,k#0 0
nz
2 2
< Dax 1S 0OF <4 max [f/0OF

With ¢g < max;e[0,27] | f(¢)| now the upper bound for || f|| 4 in the inequality is
obtained.
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Theorem 5.8 (1/f-Theorem of N. Wiener) For every Fourier series f € A,
which has no zero, also 1/f belongs to A.

Proof Let f € A be given without a zero. We can assume that | £ (¢)| > 1 for all ¢.
Then there exists a partial sum P of the Fourier series of f, which has no zero so
that || P — f|l 4 < 1/3. Now we build the geometric series

L=l

and show that S converges in A to 1/f:
We have |P(t) — f(t)] < 1/3 for all ¢, and therefore by the triangle inequality also
for all ¢

[P = [fO]=|P@) = f(O] =

WIN

From this, for n € N we get the estimate

1

Pn

O

From (1/P") = —nP’/P"*! it follows with K = max | P’| that

1 / 3 n+1
— <nK | = .
pn 2

Consequently, from the preceding preparatory inequality above, it follows that

max
te[0,27]

max
1€[0,27]

! < (BnK +1) 3
—1 <@Gn -] .
P 2
Furthermore, by the norm inequality we have |[(P — f)"~ L AL|IP—f || <
n—1
%) , so that we now obtain for the summands s, of S, again with the norm
inequality in A,
(P — ! 9Kn +3
lIsnlla = pn < on .
A
o0
Therefore > ||syll4 < oo, what can be seen, for example, by the well-known
n=1

quotient criterion. Hence the series S converges in the norm of A, and by ||s, |lco <
Isn]l_4 it converges also uniformly (M-Test, p. 21). With ||(P — f)/P||’j4 — 0 for
n — 0o now, it follows for the geometric series
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LK (P
S‘FZ< P ) T

n=1

To prove finally the absolute summability of the Fourier coefficients of 1/f, we
denote the kth Fourier coefficient of 1/f by cx(1/f) and those of 5, = (P —
£)*~1/P" analogously by ¢k (s,).

The Fourier coefficients of S can be computed with term-by-term integration,
because the series converges uniformly. We obtain with s, € A and interchanging
the order of summation in the following absolutely convergent double sequence:

+00 00 +00 00
HfH Z (/1= D" D el < YD lewsn)l
- k=—o00 In=1 k=—o00n=1
oo 400 00
9Kn+3
=> > |ck(sn)|—2||sn||A Z <00,
n=1 k=—o00 n=1
Thus, the assertion of the 1/f-Theorem is proven. O

Remark The 1/f-Theorem is also valid for Fourier series of several variables. See
Rudin (1991) for that. An analogous result of this type for so-called Dirichlet series
can be found in Goodman and Newman (1984).

5.7 Exercises

(A1) (a) What is the distortion factor of the odd 2m-periodic extension of the
function f(¢) = cos(t) forO <t < m ?
(b) What is the distortion factor of the 2z -periodic rectangle signal r(f)
(Fig.5.8)?
(A2) Let f and g be given by Fig. 5.9.

Fig. 5.8 2m-periodic
rectangle signal

AL _ oA

27 0 v >t
—a — _— —7/2

Fig. 5.9 A rectangle and a triangle signal that shall be convolved
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Fig. 5.10 RLC circuit ——

whose asymptotic output L

voltage for the given input Uin(t) C = LUuut(t)
shall be calculated

(A3)

(A4)

(AS)

(A6)

What is the Fourier series of (f*g)2,?Is (f *g)2, adifferentiable function?
What is the T-periodic transfer function for the circuit in Fig. 5.10 with
inductance L, capacitance C, and ohmic resistance R?

What is for + — oo the output voltage U,,(t) for U;,(t) =
Up| sin(wopt)| ?
Set hy = 1/P(j2nk/T), k € Z, for an asymptotically stable differential

n

equation Y aru® = f with the characteristic polynomial P.

k=0
Show for n > 2 that the coefficients % of the T -periodic transfer function

satisfy for sufficiently large |k| the inequality
Il < Mk

with a suitable constant M > 0 (cf. p. 65).

Show that the 2 -periodic transfer function
+o00 ikt
el
h(t) =
0= 5
=—00

of the equation u'(¢) + apu(t) = f (1), ap > 0, is a 27 -periodic extension of
the function 277 e %07 (1 — e=2790)~1 on 10, 277[.

Remark: Since & solves the equation for the 2m-periodic impulse
sequence

+o00
f(t) =2n Z §(t — 2k),

k=—o00

which vanishes between two impulses (cf. later Sect.9.1), the solution
in ]0, 27r[ must coincide with a solution of the homogeneous differential
equation. The series of 4 converges uniformly on every closed subinterval
of 10, 27| and the one-sided limits for t — O+ and t — 27— exist. & is
piecewise continuously differentiable. Calculate these limits and the jump
height at r = 0 (see also p. 65).

What is the Fourier series representation for the potential u (7, ¢) in a circular
disk around zero with radius R, if the potential on the boundary of the disk
is given by
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(A7)

(A8)

(A9

~Q@p—n) for0<¢

R, =
u(R, #) %(q&—n) form < ¢

<7
<2 ?

Using the trigonometric addition theorems, transform the Fourier series
solution for the problem of the force-free vibrating string, with sufficiently
smooth functions f and g, into D’ Alembert’s form

x+ct

1 1
u(x,t) = E(f(x +ct)+ f(x —ct)) + % / g(t)dr

XxX—ct
and to

u(x,t) = i % (cos (?(x —ct) — ¢>n) — Ccos (?(x +ct) + qbn)) .

Solve—as Fourier did in 1807—the one-dimensional heat equation from
page 1 with thermal diffusivity £

2
—u(x, t) =k —u(x, t) (no external energy input)
ot dx2

u(x,0) = f(x) (initial temperature distribution f)

u(,t) =u(l,t) =0 (the bar ends are chilled with ice)

by a separation of the variables approach as for the vibrating string. Assume
that all occurring series converge uniformly.

For the inhomogeneous one-dimensional wave equation
Pu_ 20 4 F(x, 1), u(x,0) = f(x),
u(0,1) = u(l r) =0, lim, o+ 34(x, 1) = g(x),

one searches for a solution of the form u = v + w, where w is the solution
of the homogeneous initial boundary value problem as in Sect. 1.2, and v is
a solution of the inhomogeneous equation. The function v shall satisfy the
boundary congiitions v(0, 1) = v(l, t) = 0, the initial conditions v(x, 0) = 0,
and lim;_, o+ g—f(x, t)=0.
o
Solve the task by the approach v(x,7) = Y wv(¢)sin (k”) Use
k=1
term-by-term differentiation and coefficient comparison with the Fourier

o0
series of the inhomogeneous part F(x,7) = Y. F(t)sin (k’lf—"),
k=1
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Fig. 5.11 Sketch of the orbit YA
of planet P around its Sun §

(A10)

(A11)

5 Application Examples for Fourier Series

Cl]“
8

I
Fr.(t) = % f F(x,1)sin (k’}—x) dx. Assume that all occurring series converge
0

uniformly.

Solve the homogeneous equation
9> 9? 3
oy =02—u —2K—u with0 < k < E,
ar? dx? ot l

for the damped vibration of a string with the same initial and boundary
conditions as in the preceding exercise.

Kepler’s equation (J. Kepler 1571-1630) for the elliptic orbit of a planet P
is

(1) — esin(e(t)) = wt.

Here, w = 27/ T is the angular frequency with orbital period 7,0 < ¢ < 1
the eccentricity of the ellipse, and ¢(#) the eccentric anomaly at time ¢ (see
Fig.5.11).

For all ¢ € R the following is valid:

L L
RS ar ) = 1 — g cos(p(t)) =0

Furthermore ¢(0) = 0 and ¢(T) = 2n. Therefore, ¢(¢) is monotonically
increasing with ¢ and sin(g(#)) must be an odd function of ¢, due to the
motion’s symmetry. This motivates the solution approach ¢(t) = wt +

o0
> b sin(kwt). Find the solution, which goes back to J. L. Lagrange and

k=1
F. W. Bessel, by calculating the Fourier coefficients by.



Chapter 6 ®
Discrete Fourier Transforms, First e
Applications

Abstract This chapter presents the discrete Fourier transform DFT with applica-
tions and examples. The alias effect is studied in detail with its disadvantages, but
also with its great advantages for low-cost signal processing. The connection of the
DFT with interpolation by Chebyshev polynomials is deduced. Further applications
worked out are: trigonometric interpolation and interpolation with Chebyshev
polynomials. The use of the discrete cosine transform DCT in numerical Clenshaw-
Curtis integration is shown as well as the 2D-Cosine transform in image processing
like JPEG. The principle of the Fast Fourier Transform FFT is demonstrated with
a programmable algorithm. The exercises treat approximation error estimates of
trigonometric interpolations, dependent on the number of nodes, DFT frequency
assignments, low-cost subsampling, comparison of interpolations on an interval
with equidistant nodes versus Chebyshev abscissae. As practice tasks, a Chebyshev
lowpass filter can be designed with the help of the Joukowsky transformation, and
characteristic values like DC gain, distortion, or RMS value for a transmitter in
emitter circuit can be computed with a DFT.

6.1 Finite Discrete Fourier Transform (DFT)

The task of approximating signals f : [0,T] — C of finite duration 7 by
superposition of harmonic oscillations is solved by Fourier series expansion. In
signal processing practice or numerical integration, however, the signal f(¢), t €
[0, T'], is often not given as a continuous curve, but only by values f(#,) at certain
equidistant sampling times #, = nAt. From those, a trigonometric polynomial has
to be found by which approximate values of f(¢) shall be computed for times ¢ # t,
as well as approximations for the spectral values ¢, of the signal.

We assume that f : [0, T[— C is continuous and piecewise continuously
differentiable and that the limit f(7—) exists fort — T, t € [0, T[. For f on
[0, T, let

yz(}’O, y17 M) nyl)ﬂ yl’l = f(nAt)7
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 85
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be a given sampling vector with A+ > 0, n = 0, 1,..., N—1 and
T = NAtr. The signal f has a piecewise continuously differentiable T'-
periodic extension f,, which then has the sampling sequence (yy)nez =
(coroy Y=2,¥-1, Y0, Y1»---s YN—1, YN, --.). This sequence is N-periodic, i.e.,
YptmN =Y. m € Z,n=0,1,..., N—1.

As approximation ¢y for the kth Fourier coefficient cx of fp,

T
1 .
= / fpye ' de (k€ Z, wy =27/T),
0

the following Riemannian sum Cy is chosen with the available samples:

N

i N-1

! Z F(nAt) e Tkneodt oy — 1 Z yp e Ikn2T /N
N

n=0 n=0

/C'\k:

N

However, when using these approximations ¢ for the spectral values ci, we have to
take the following aspects into account:

1. The periodicity of the complex exponential function implies

-~ -~

r=c¢ foralll=k+mN, meZ,
because for m € Z one has: e /kn27/N — g—jktmN)n2n/N
Thus, the resulting sequence (Cp)iez is N-periodic. On the other hand, for
the Fourier coefficients c; of f,, we know that |kllim cx = 0 (cf. Sect.4.5).
— 00

Therefore, we can use at most a segment of length N of this sequence for
approximation of N spectral values of the function f,. For the DFT coefficients
¢y, of real-valued functions f, we have ¢ = N, ] <k SN /2, i.e., for even
N the coefficient cyy, is real.

+00 .
2. With f,(nAt) = f(nAt) = Y. ¢ e/"27/N for n # 0 and (cf. Theorem of

I=—00

+00 . .
Dirichlet, p. 28) > ¢ = M we obtain for k € Z, applying term-by-
I=—00
term summation of the convergent series,

1 N—-1 +oo ‘ )
/C\k — ﬁ <fp(0) + Z Z ¢ e]anz‘r/N e]kn2ﬂ/N>
n=1 l=—o00
+o00 N—-1 400

3 Cl% 3 emite=hn2n/N _% S ot f[;\(/())'

I=—00 n=0 |=—00
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N-1
The finite geometric series % 3 e k=D /N yields
n=0

ilvzileij(kil)nzn/lv_ 1 forl=k+mN, mEZ,
N ~ 0 forl#k+mN, meZ.

Summarizing, we refer to the result as Alias Formula:

R +o00 0) — T—
ae Y Ck+mN+fp(>2]§p< )

The coefficient ¢} contains the sum of all exact Fourier coefficients cgi,n of
fp, m € Z. The corresponding circular oscillations e/ (ktmN)oot wwith angular
frequencies (k + mN)wq cannot be distinguished on the basis of the samples
f(nT/N), because all functions e/ *+mN)@of match at all points nT/N:

gikn2n /N _ ojktmNm2w/N - forallm € Zoandalln =0, 1,..., N — 1.

This fact is called the “alias effect.” The complex amplitudes of all oscillations with
angular frequencies (k + mN) wg, m € 7 arbitrary are represented in Cy as sum.
If fp has a jump discontinuity att = T, then the term (f,(0) — fp(T—))/(2N) is
added to all DFT coefficients. This term vanishes, if one changes the value f(0) to
the mean value (fp(0+) + f(T—))/2.

Example For N = 10 and wy = 27/T, T = 1s, the following Fig. 6.1 shows
as example that the oscillations f1(¢) = sin(4wot) and f>(¢) = sin(14wot) are
indistinguishable on the basis of 10 samples at the times ty = kT/N, k=0, ...,9.
A DFT of f; + f> with these samples results in ¢4 = —j and ¢ = j as if the DFT
were of 2 f1.

Fig. 6.1 Illustration on the T T T T T T T T
alias effect f1 Eig —_

1 1 1 1 1 1 1 1

1
0 01 02 03 04 05 06 07 08 09 1




88 6 Discrete Fourier Transforms, First Applications
Consequences for Applications of the DFT

Frequency Assignment in the Baseband By assigning the DFT coefficients ¢y
and Cy_ to oscillations in the baseband with frequencies k/T, — N/Q2T) <
k/T < N/Q2T), and bandwidth B = N/(2T), one chooses the frequencies of
smallest magnitude that are possible according to the alias relation. For real-valued
signals, the symmetry of the frequency band in both semiaxes makes sense, due to
Ck = CN—k-

Example For N = 15 and T-periodic f}, with Fourier coefficients ¢, k € Z,

(¢o, €1, . .., C7) serves in the baseband as approximation for (co, ci, ..., ¢7),
(Cg, Co, ..., C14) serves in the baseband as approximation for (c_7, c_g, ..., c_1).

For N = 14 and T -periodic f, with Fourier coefficients ¢, k € Z,

0, C1, - .., Cg) serves in the baseband as approximation for (co, c1, ..., cs),
pPp
(¢g, Co, ..., C13) serves in the baseband as approximation for (c_g,c_5...,c_1).
pp

Since N is even, the coefficient ¢; = € > serves as approximation for the amplitude
of the oscillation cos (2N /(2T)). For real-valued f,, the coefficient ¢y > is real
and otherwise ¢y = Cn—r.

Frequency mappings in the baseband as above are convenient for T -periodic
signals, which are several times differentiable, if their Fourier coefficients c; decay
rapidly at higher angular frequencies |(k + mN)wg| (wp = 27/ T) (cf. Sect. 4.5 on
the asymptotic behavior of c;). Then one can take ¢; with |k| < N/2 as useful
approximation for cx. For T-periodic baseband signals, i.e., with frequencies only
in the baseband, the DFT coefficients reveal the exact Fourier coefficients. Such
signals are trigonometric polynomials and can be exactly reconstructed with the
DFT. Signal frequencies outside the baseband produce alias effects. A disadvantage
of the alias effect for detecting periodic oscillations of a frequency v in a specified
baseband is the requirement that the sampling frequency must be at least 2v. In
practice, one uses lowpass filters with the band limit as cutoff frequency before
sampling to mitigate alias effects. Signal components of f with frequencies v not
of the form v = n/T for some n € Z affect all Fourier coefficients of f},, and thus
also the DFT coefficients, when f is periodized to f),, even if such frequencies are
in the baseband. In this case, we speak of spectral leakage. For more on that, please
refer to Sect. 12.6.

The better the frequency resolution 1/T of a DFT should be, the longer the
sampling time 7 must be. The number N of the DFT samples determines the
bandwidth B for a given T. The frequency band [0, B] is also called Nyquist
interval, and B also Nyquist frequency.

Our human senses likewise make an assignment in the specified baseband in
the case of visual impressions. The human eye can perceive image sequences in a
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video with 24 frames per second—a frame rate in movies—as a continuous process.
Optical illusions, such as rotating wheels appearing to rotate slowly in the opposite
direction of motion in a film, are alias effects: We assign the alias frequency with
the lowest magnitude matching the sampled values. This, associated with a phase
change, can cause the impression of a slower motion opposite to the actual rotation
(Stroboscope effect, see Example 2 on p. 93).

Remark on DFT Scaling Factors Since different scaling factors are used in
software for a DFT, it should be noted that the correct values of the complex
amplitudes of analyzed harmonic oscillations are obtained only with the prefactor
1/N in the definition of the DFT coefficients Cy.

We can visualize the alias effect and the possible mappings between DFT
coefficients and spectral values of T'-periodic functions, if we extend the DFT
spectrum N -periodically. The following figure shows two possible correspondences
in the baseband of bandwidth B = N/(2T). T is the duration of an N-point DFT of
a real-valued function with spectral values at frequencies v, |v| €] 3B, 4B[. There
is a phase reversal when the frequency of an alias oscillation changes its sign. This
is the case when an alias frequency lies in a half-band of the form [m B, (m + 1) B]
or [—(m + 1)B, —mB] for odd m € N.

Example A DFT is performed for the 8 Hz oscillation
f (&) = 2sin(32 wot)

withT =4s, N =20 and wy = 27x/T. With32 — N = 12, — 32 4+ 2N = §, the
DFT coefficients ¢g and ¢}, are nonzero. We find

o~ .o~ . =

=], C12=—] =

oo

In the baseband [—2.5 Hz, 2.5 Hz], f corresponds to f,(¢) = —2sin(8wpt) as alias
with frequency 2 Hz and phase reversal compared to f (cf. the following Fig. 6.2
with 8§ Hzin [3B, 4B]).

Remark We will later see in Sect. 12.2 that signal sampling always generates
a periodic spectrum. Therefore the observations on aliasing here apply to every
sampling scenario accordingly.

Alias Effect and Frequency Assignment with Undersampling

We have seen that the bandwidth of a segment of the spectrum of f), is determined
by N and T and thus a segment whose spectrum is representable by a DFT
without aliasing. Not a priori determined is the position of such a spectral part
on the frequency axis. Its position can be determined from a priori knowledge
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Fig. 6.2 N-periodically Amplitude
extended DFT spectrum,
locations of repeated DFT
coefficients

or deliberately. This has disadvantages in observing unknown signals, but also
enormous advantages in signal processing for technical systems as for example in
communications engineering, because there the signals and the allocation of signal
frequencies in the spectrum can be chosen intentionally.

Again, we assume that a DFT with N values and sampling frequency N/T = 2B
is given for a function f as at the beginning of the section, and f is T -periodically
extended to f),.

While the above alias formula shows how amplitudes of real signals with
frequencies above N/(2T) appear as aliases in the DFT, in frequency detection
problems we want to detect signal components ¢; e/27%/T in frequency bands of
theform%é%é%or —W g%g—%withmk 1.

The assignment of DFT coefficients to frequencies in a band [—(m+1)B, —mB ]
U [mB, (m+ 1)B], B = N/Q2T), m € N, is useful if you know that the
sampled signal has frequencies only in the selected spectral range. If the signal is
also T-periodic, then it is a trigonometric polynomial, which can be reconstructed
exactly from the DFT, although the DFT—measured with the Nyquist frequency
of the baseband—has a too low sampling rate. This is called subsampling or
undersampling in a passband or bandpass sampling.

In practice a one-to-one mapping of signal components in those half-bands
to DFT coefficients and their respective signal frequencies could be done by
amplitude modulation (cf. p. 45) and subsequent sampling or equivalently by an
appropriate undersampling (cf. Examples 3 and 4 on p. 93). Therefore, we ask
for the correspondence between DFT coefficients ¢; to unique circular waves
c; €721/ T in these spectral bands.

In other words, we want to know the mapping of these half-bands to the baseband
through rephrasing the alias relations. The correspondences ¢; <—> ¢; are given in
the following theorem, whose statements follow directly from the alias formula.

Theorem 6.1

1. For eachm € Ny and each 'k, 1 < k < N/2, there is a unique circular wave

;€727 T iy the Fourier series of fp with % <l < M, whose complex
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amplitude corresponds to ¢y for even m or Cy_y for odd m according to the alias
formula.

2. There is a unique oscillation c; e/2m/T \ith <l < —%, whose
amplitude corresponds to Cy for odd m or Cn_y for even m.
For a selected m the correspondences between Cy, Cn_i, and c; are as follows:

_ (m+DHN
2

meven :

’c\k<—>clwithl=k+%, and Cn_x <— ¢ withl = — —%.
m odd :

Cr <~ ¢ withl =k — M, and Cn_y <— ¢y withl =—k +M'

3. Form € No, k =0and k = N/2 at even N, and for the band-edge frequencies
mN/Q2T) and (m + 1)N/Q2T), the following statements are valid with wy =
27 /T:

(a) If m is even, then the complex amplitudes of e/®0"™N/2 gpd e=i®otmN/2 4¢
parts of f, are added to Cy. If N is also even, then the complex amplitudes of
e/t m+DN/2 gpg e=j@otm+DN/2 g5 parts of f, are added to Cy .

(b) If m is odd, then the complex amplitudes of el®!M+DN/Z qnd of
e~ Jootm+ON2 g parts of f, are added to . If m is odd and N is even,
then the complex amplitudes of ¢/“0"™N/2 and e=I*0!mN/2 qre added to Ty 2.

Since sin(wotmN /2) always yields zero at the sampling points of the considered
DFT for all m € Z, only the complex amplitudes of the cosine parts in the circular
waves et/ MN/2 — cos(wotmN /2) + j sin(wotm N /2), as considered in 2.a) and
2.b) above, contribute to ¢o or ¢y /2. If m and N are both odd, thenm N /(2T) # n/T
for all n € Z, i.e., these are not frequencies in the Fourier series of the T -periodic
extension f, of f. The effect of such frequencies in the signal f on indeed all
Fourier coefficients of f,, and thus also on the DFT, is discussed later under the
keyword “leakage effect” in Sect. 12.6.

The following Fig. 6.3 schematically illustrates the correspondences of DFT
coefficients to high-frequency signal parts as given in the theorem before with
m =3.

Fig. 6.3 Undersampling Amplitude

shifts by aliasing

high-frequency bands into the m=3
range of the DFT spectrum - L . N
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Important Observation The theorem shows an enormous advantage of the alias
effect for applications in signal processing. For the purpose of detecting signal
components in a high-frequency band, the signal to be observed is subjected to
bandpass filtering before sampling, i.e., only signal components with frequencies in
the selected subband are permitted to pass the filter. This permits to detect signal
components with very high frequencies by a DFT with only a few samples and
short observation times 7 (cf. Example 3, p. 93). That is a key feature in modern
transmissions of high-frequency signals.

In digital communications, high transmission frequencies—in the range of
several GHz for WLAN or LTE—are used with much lower CPU clocks of the
digital end-user devices and limited memory capacity in real-time operation. The
transmitted signal consists of good approximation of time segments of trigonometric
polynomials with mutually orthogonal components and known constant frequency
spacings in a given high-frequency band. The complex amplitudes of the oscillations
carry the encoded user information. The associated oscillations are therefore
also called carriers. Examples are OFDM transmissions (Orthogonal Frequency
Division Multiplexing, see later Sect. 12.2), applying, e.g., 64-QAM modulation and
40 MHz bandwidth for WLAN according to IEEE802.11n.

A DFT with bandpass sampling makes it possible to reconstruct the amplitudes,
required for the user information at the receiver, with a low sampling rate—
depending only on the bandwidth and the spacing of the carrier frequencies.
Trigonometric polynomials in a passband (with large m in the last theorem)
are mapped by subsampling to a signal of the same bandwidth and the same
amplitude distribution which lies in another low-frequency alias band (small m
in the last theorem). One simply reads the DFT coefficients as amplitudes of
carriers with alias frequencies in the chosen band. For carrier frequencies in a
high-frequency passband, the analog-to-digital conversion (ADC) thus can save
enormous cost and energy, compared with alternative amplitude modulations using
mixers, by undersampling matching the bandwidth and carrier frequencies! (cf.
Example 4, p. 93). Frequency assignments as in the theorem on p. 90 can be
understood as an amplitude modulation into the baseband, by a simple mathematical
operation without additional hardware in practice. Readers with interest in digital
communications should consult the textbooks of Proakis and Salehi (2013) or Tietze
and Schenk (2008).

Examples (Frequency Assignments)

1. Alias Effect in the Baseband. Let us assume that we observe a real signal which

is a superposition of oscillations with frequencies up to a bandwidth of 400 Hz.

A DFT performed over T = 2 seconds with N = 512 points is assumed to show
only the DFT coefficients cgy and €43, as nonzero.

All complex amplitudes of signal components with frequencies |k + mN|/T,

m € 7, within the given bandwidth up to B = 400 Hz are added in the two DFT

! Check, for example, the specification of the ADC12DL040/65 of Texas Instruments.
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coefficients ¢ and ¢_i4 . This means that an oscillation with |k +mN|/T Hz
can contribute to these coefficients as long as |k + mN| < BT. With k = 80,
(80 + 512)/2 = 296, and |(80 — 512)/2| = 216 in the example, besides the
oscillation with 40 Hz, also 216 Hz and 296 Hz are possible signal frequencies
affecting Cgo and C437.

All functions with the same samples have the same DFT spectrum. The true
spectra of this variety of conceivable functions can be very different but are
indistinguishable from the DFT coefficients without additional information. In
signal processing one tries to avoid unwanted alias effects by using bandpass
filters and weight functions, the so-called window functions. For more details on
this, we refer again to the later Sect. 12.6 in Chap. 12.

2. Stroboscope Effect. We consider the DFT of the two complex-valued functions

fi(t) = e/20%0" and fo(r) = e /4 with N =24, T = 1sand wg = 27/ T.

They represent opposite circular motions. The DFT of f; yields ¢y = 1, =0
for k # 20. In the baseband with bandwidth B = 12 Hz, the alias for f; is the
slower opposite rotation e /40! = £(r).

Since for the Fourier coefficients ¢ of complex-valued periodic functions, the
equations ¢y = c_x need not be true, we can dispense with the symmetry of the
baseband in both semiaxes, if we know that only complex circular waves with
positive frequencies are sampled. Choosing the interval [0, N/ T for frequency
assignments in the example and assigning Cao to Cao /2%’ we obtain the
observed rotation fi, which in turn appears as an alias of f». Rotations e/"N@o!,
n € Z, result with the above DFT in the point 1 at rest as alias. The function
f3(t) = e/ in turn has the slower rotation e/®’ of the same direction as
alias.

3. High-Frequency Detection with Undersampling. Let us assume that a DFT with
N = 512 points, duration T = 0.256 x 1035 is sampling a real signal f in the
frequency band ]1GHz, 1GHz 4+ 1MHz[, and yields only the DFT coefficients
Cl60 = C352 and Clg4 = C348 as NONZEro.

With m = 1000, mN/(2T) = 1 GHz, N/2T) = 1 MHz, vi = 160/T =
625 kHz, and v, = 164/T = 640625 Hz, it must be true that f(t) =
27C160 cos (27 (1 GHz + v1)t) + 27Cie4 cos(2 (1 GHz + v7)1). The trigonometric
alias polynomial in the baseband is 2 Cjggcos(2w vit) + 2 Cig4c08(2 V1),

4. Gain in Computational Effort by Undersampling in the Radio-Frequency Band.
Assume we have signals in the radio-frequency band FM from 87.5 MHz
to 108 MHz], which shall be digitally processed. Sampling with 216 MHz
according to the Nyquist frequency would require an anti-alias lowpass filter
with cutoff frequency 108 MHz and yield a data stream of 2 - 216 = 432 MB/s
from a 16 Bit ADC to the signal processing unit. Undersampling with sampling
frequency f; = 43.5MHz shifts the signal spectrum to [0.5MHz, 21 MHz].
This would result in a data stream of only 87 MB/s for further signal processing,
which is a gain of about 80 % in computation time, compared to 432 MB/s,
without the need of an (costly) analogue mixer.
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5. Delayed Sampling, Correction in the Spectrum of Trigonometric Polynomials.
We consider a sampling of f(r) = 2e/90" 4(1 4 j)e/2®0! 4-(1 — j)e/3 with
T =18, wp = 2m/T. Assume that the sampling times are t, = nT/N + 0.1s
with N =4andn =0, ..., N — 1. The DFT spectrum of the delayed sampling
with the “synchronization error” At = 0.1 s is

(¢o,...,c3)=1(0,1.6180+ 1.1755j, —0.6420 + 1.2600;, 0.6420 + 1.2600,).

Since f is a T-periodic trigonometric polynomial with frequencies only in the
passband [0, N/T|[, the DFT coefficients ¢; of f are simply phase-shifted
toward &y = Crz¥, z = /04! due to the delayed sampling (cf. p. 44).

If the amplitude A of a “pilot carrier” is known, here for example A = 2
for the carrier frequency 1 Hz, one can recognize the phase shifts from the
obtained DFT coefficient of this carrier and correct the entire DFT spectrum.
In the example, the products &z % with z = & /A, k =0,...,3 yield the true
spectrum (0, 2, 1 4+ j, 1 — j) of f in the frequency band up to 3 Hz.

Of course, from z = e/“04" the time delay Ar = arg(z)/wo can be
calculated. In a transmit-receive scenario, where the amplitudes of trigonometric
polynomials represent the encoded information in a suitably chosen frequency
band, the use of known amplitudes on known carriers (preambles and pilot
symbols) is standard in transmissions such as DAB, DVB-T, DSL, WLAN, LTE,
etc. They are used for synchronization and generally for channel estimation.

6. Limits of Special Series. We had already seen in example 2 on p. 35 that
sometimes limits of series can be found if the series elements are Fourier
coefficients of a known periodic function. Also the alias relation for a coefficient

o0
¢t of a DFT of length N permits this, if the coefficients of a series Y aj, are of
the form a,;, = ck4mnN + ck—mn and the Fourier coefficients ¢4, Nmreslult from a
function with known necessary samples and spectrum.

We choose as an example the Fourier series of the 2-periodic extension of
f(@)=—t+1on[0, 1]and f(zr) = Oon[1, 2[. We know from example 1 on p. 33
the Fourier coefficients co = 1/4 and ¢ = ((—D¥T! + 1)/(2n2k?) — j/(2nk)
for k # 0. There, the Fourier coefficients must be multiplied by (—1)" , due to
the right shift.

A 3-point DFT with T = 2 yields ¢y = 4/9 and ¢; = 5/18 — j+/3/18. With the
alias effect for the coefficient ¢y one immediately calculates

o0
Z;_ T _ T
6k—32 \°7C7 %) T

k=1

o0

From R(c)) = é + Y R(cek—s5 + c1—6k) and the according equation for the
k=1

imaginary part, left to the reader, we obtain the two limits
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o]

1 1 R 1 V3n
];[(6k—5)2+(1—6k)2:|:?’ ;(31«—2)(1—31():_ 9

A systematic theory for the calculation of series limits uses the residue theorem,
hypergeometric summation, or special functions like the polygamma function

U(n,z) = In I"(z). We find

dz n+1

e¢]

1 1 w(l,1/6) +¥(1,5/6) 71_2
Z[(6k—5)2 (1—6k)2] 36 9"

More details can be found in the work of Grosjean (1984) and of Choi and
Cvijovi¢ (2010) on specific values of the polygamma function. Summation

algorithms in computer algebra systems are discussed in the textbook of Koepf
(1998).

We now show that the DFT has an inverse, which is called IDFT.

Definition The linear transform

(o, Y15 ---» yn-1) — (Co, €1, ..., CN-1),
z,\ — Zy e —jkn2m /N

is called finite discrete Fourier transform or in short DFT. The coefficients ¢; are
uniquely determined for k =0, 1,..., N — 1 by the samples yy, ..., yy—1 and are
called DFT coefficients of y = (30, ..., yN—1)-

The Inverse Discrete Fourier Transform (IDFT)

Conversely, by the vector (g, C1, ..., Cy—1) exactly one vector (g, y1, ..., YN—1)
is determined, whose DFT coefficients are the ¢j:

Forn=0,...,N—landk =0, ..., N—1 we obtain with y, = Y ¢; e/kn27/N
=0

1 N-1 1 N—1N—
—jkn27w /N __ jln2n /N —jkn2w /N
ﬁ Yn € = ﬁ e €
n=0 n=0 [=0
N—-1 1 N—-1
— Al N Z e—j(k—l)n27r/N — Ak
=0 =l

1 for /=k, O otherwise (cf. 2. on p. 87)
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Theorem 6.2 The mapping (Yo, Y1, ..., YN—1) —> P (€0, C1, ..., Cn—1) is lin-
early one to one on CN . Its inverse mapping is called inverse finite discrete Fourier
transform, in short IDFT.

N-1 )
DFT: Gi= Y yye /kn2m/N (k=0,...,N—1)
=0
NoT
IDFT: vy, = Y ¢ e/fn2m/N n=0,...,N—1).
k=0

Properties and Calculation Rules for the Discrete Fourier
Transform

Now, let y, x € CV be given vectors and ¢, d € C¥ the vectors of their
corresponding DFT coefficients. For computational purposes, one extends these
vectors in CV to N-periodic sequences so that y,4 my = y, form € Z, n =
0,1,..., N — 1. Then the DFT is a bijective linear map on the vector space of all
N-periodic complex sequences with

N—1
_ — _ — eJ27/N
ck—N Eoynz ,k=0,...,(N—=1), z=¢e .
n=

We obtain analogous calculation rules as for Fourier series. The most important
rules are summarized in the following Table 6.1.

Here, we only prove the convolution relation as an example. With z = e/27/N
it follows for the m-th DFT coefficient of the cyclic convolution (y * x),cz—in
this text with the same prefactor 1/N as in the DFT—by interchanging the order of
summation:

I

I
M
L

=

=

N\

3

N
~———
VY
=z -
M1
AN

<

L

I

3

=

Ko
~——

|

&)

o)

In the last line it is used that the sequence (y,)nez is N-periodic. Note again the
alias effect. Readers are encouraged to prove the remaining relations of the table
and Exercise A21 by themselves.
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Table 6.1 Properties of Fourier series and the DFT compared

Fourier series DFT
Time-domain function Samples Spectral values
f(t) T-periodic yu = f(nT/N) N-periodic |¢; =
+o0 i — i N—1 X
F@) = Z Ck ejka)ot’ wy = ZTJT Vo = Z 'é\ke/anrr/N % Z Y e—Jkn2m /N
k=—00 k=0 n=0
T
e =5 [ ft)e ket gt
0
Similarity yp = f(nT/(aN)) as above
+00 .
flat)= Y cpelkawnt otherwise as above
k=—00

T /a-periodic, o > 0
Translations, amplitude modulation

ntmInez, (m € Z)

97

") kez, 7 =€/ N

+00 .
fa41)= Y cpelkentto) @"" yn)nez (Ck—m)kerz
k=—
. oo .
/MmN f(t) = ¥ cxmeltnt
k=—o0
T -periodic convolution N-periodic convolution with DFT coefficients
+0o00 . R
For f(t)= Y. cpelten! For y, = f(nT/N) @ kez
k=—
oo " -~
gty = > dge/t xp =g(nT/N) (dikez
k=—o0
+00 0 ! N-1 o~
(freT()= Y cxdpel™ (V*Xnez = § 2 Xm¥n-m (Crdi)kez
k=—00 m=0
Parseval equality
5 +00 ) QNS NS
HAF = > lexl v 2wt =3 Jal
k=—00 n=0 k=0

6.2 Trigonometric Interpolation

Let be given a sample vector (yo, yi, .- -

, YN—1) of a continuous function f on

[0,T], T >0, y, = f(nAr), NAt = T. We ask for a trigonometric polynomial
m

P@t) =

k=—m

3 ap ekt with wg

= 2m/T of degree at most m < N/2 so that

P(nAt) = f(nAt) at the equidistant sampling points nAf forn =0,..., N — 1.
To accomplish this we must find 2m + 1 coefficients for P.

Trigonometric Interpolation with an Odd Number of Samples

If the number N of the interpolation points is odd, N = 2m + 1, then the trigono-
metric interpolation polynomial is uniquely determined. Because a trigonometric
polynomial P(¢) # 0 of degree m has at most 2m zeros per period (cf. p. 14),
each two such polynomials which coincide at 2m + 1 points per period are already
identical.
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N-1

By construction of the DFT and the IDFT, Q(¢) = Y. ¢r e/ kot with the DFT
k=0
coefficients ¢ of (yo, ..., yN—1) is a trigonometric interpolation polynomial. Since

the functions e/’ and e/*+Mwot for k e 7 match at all points nAr and the
sequence (Cy)rez is N-periodic, it follows immediately

T 2 2 -~ 2 ! 2 ” 2
Q<nﬁ>:§ :ckejan :§ :Cke]an—i-} :Ck+NC](k+N)nN — § :Cke]an )
k=0 k=0

k=—m k=—m

Theorem 6.3 The uniquely determined trigonometric interpolation polynomial P
with a degree of at most m = (N — 1)/2 results from the DFT of (yo, ..., YN—1)
with wo =2/ T:

m
P(1) = Z Geelkeot (N =2m +1).

k=—m

The trigonometric form of P follows with the values P(nAt) = y, forn =
0,...,N —1asin Sect.2.1:

o~ m
P@t) = %0 + @ cos(kwot) + by sinkeo)),
k=1
2 N—1
ax =Ck +ck = NZyn cos <nk—) ,
n=0
N—1

-~ ~ 2 . 2
b = j(cr—c—k) = ﬁZyn sin <nkﬁn) .

n=1

If the samples are real, then P(¢) is also real-valued. In particular, P = f if fisa
T -periodic trigonometric polynomial of degree at most m.

Trigonometric Interpolation with an Even Number of Samples
If N = 2m is even, then the interpolation problem is not uniquely solvable; the
m

trigonometric polynomial P(t) = Y aye/ kot has N + 1 coefficients. The DFT
k=—m
of (yo, ¥1, ... yn—1) yields N coefficients (Co, . .., Cm—1, Cms - -+, CN—1)- .
If we map the coefficient ¢,, = /2 as amplitude to the oscillation e™/"*0" and
seta,, = 0, i.e.,

(a—m’ cee QQ, ---7am) = (’C\ms "'a?N—lslc\Os "'a?m—lvo)’
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then we obtain the trigonometric interpolation polynomial

m—1
Pi(t)= Y e/t

k=—m

However, in general P;(t) is not real-valued. Though, by aliasing we can also use
the assignment

lA o~ -~ -~ lA
@y ey @0y @y) =\ =Cimy oo, CN=1,€C05 -+ C—1, 5Cm | »

2 2

N-1
and then obtain as trigonometric interpolation polynomial with ¢, = Y y,(=1)"/N
n=0
m—1
Py(t) = Z T elket 43 cos(mat).
k=—m+1

P, is real-valued for given real samples y,. We now denote by V,, the real vector
space spanned by the functions cos(kwot), sin(kwot) for k = 1,...,m — 1, the
constant one and the function cos(mwogt). Then we can formulate the following
theorem:

Theorem 6.4 Let the number N = 2m of nodes t, = nT/N n =0,...,N — 1)
be even and y, = f(t,) be samples of a real-valued function f on [0, T]. Then ¢,
is real, and with ay, by as above, wy = 27/ T, the function

o~

m—1 ~
a, ~ ~ a,
Py(1) = ?0 + E (ak cos(kwot) + by sin(kwot)) + 7’" cos(mawot), Pr(ty) = f(tn),
k=1

is the uniquely determined real-valued trigonometric interpolation polynomial in
the vector space Vy,. If f can be extended to a T -periodic even function, then all
coefficients by = 0. If an odd T-periodic extension is possible, then all a; = 0.

Proof Let P be in V,, and have the samples yy, ..., y2,,—1 of P> and their DFT
coefficients C;. Since P(0) = P(T—) by continuity, it holds true (cf. the Alias
Formula on p. 87)

+o00
T = Z Dik42nm fork = —m +1,...,m.

n=—oo
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Since p, = 0 for |n| > m for P in V,, and p,, = p_,, are real, it follows p; = ¢
for |k| < m—1and p,, = /2 = p—m. Thus, having the same Fourier coefficients,
P and P, coincide. If f can be extended T -periodically to an even function, then
by symmetry it must be y, = y2,,—,, and thus ¢ = Cp—x = C—k. Then all by =
j (@€ —¢_x) = 0and P, is even. For an odd symmetry in a T -periodic extension of
f, we have correspondingly v, = —you—n, Ck = —C—4, 1.€., all Gy are zero and P,
is odd. |

Example For N = 4,1, = nn/2, T = 2r, and with samples yo = 1, y; = 2,
y2 = 1, and y3 = 3, we compute P, as above and obtain

~

1 3
P(t) = 173 sin(t) — 7 cos(2t).

Also P(t) = P>(t) + a sin(2t) with arbitrary real « is a trigonometric interpolation
polynomial of degree 2, since sin(2¢,) always yields zero. However, such a function
P isnotin V; for o # 0.

The given interpolations P and P, are trigonometric polynomials in the baseband
to a DFT. For bandpass signals f, trigonometric interpolation polynomials in
the corresponding passband can also be given with the help of a DFT and
bandpass sampling. In particular, trigonometric polynomials in a passband can be
reconstructed exactly with a DFT. The formulation of this is left to the readers.

6.3 The Discrete Cosine Transform DCT I

The interpolation formula gives reason to introduce a real-valued discrete Fourier
transform for real-valued functions, which is known in the literature as Discrete
Cosine Transform of Type I or DCT I for short. To do this, we assume a continuous,
piecewise continuously differentiable real-valued function f on [0, T'], which we
think of as being extended to an even 2T -periodic function f,, and consider samples
yn of fp with the symmetry y, = y_,.

With N = 2m samples y, = fp,(nT/m) forn = —m + 1,..., m, we obtain
for the DFT coefficients ¢} of fpand 0 < k < 2m — 1, due to the symmetry
Yn = Yntom = fp(nT/m £ 2T) and the relation e—Jmkn/m — = jmk(nE2m)/m

)
e
I

1 e k 2m1 k 1 " k
n=0

n=m+1 n=—m+1

m—1
Yo wkn Ym
(3 + E Yp COS <7> + > cos(kn)) .
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Since we have also ¢y = C_x = Cam—k, by virtue of the symmetry requirement,
it is sufficient to calculate the coefficients for k = 0, ..., m from the samples
Y0, - - - » Ym- One defines the DCT I of yi fork =0, ..., m by ¢ as above.

This transform is invertible like the DFT, due to the interpolation property of
the trigonometric polynomial P, from above, and the inverse transform is directly
readable from P, because of y, = P,(nT/m) with wg = 7/T. We set a;y =
Cr + C_x = 2¢) and obtain the discrete cosine transform DCT I and its inverse:

m—1
DCTI: G = 2 (%0 + Y yncos (Zi2) 4 y%cos(kn)) , (k=0,...,m),
n=1
~ m—1 ~
IDCTI: y, = 3 + Y @ cos (%)+%’"cos(nn), (n=0,...,m).
k=1

Before showing applications of the DCT, we turn to another option and consider
interpolation with a shifted set of nodes in comparison. This case results in the
variant known as DCT II, which is particularly widespread in DCT applications.
One reason for this is the optimality statement no. 4 of the later following theorem
on page 112.

6.4 Shifted Nodes, Discrete Cosine Transform DCT II

As before, we assume a given continuous, piecewise continuously differentiable
real-valued even 2T -periodic function f,. However, we now choose the following
shifted set of nodes, at which the samples are taken:

o+ 1
b= T for 0<n<2m—1.meN.
2m

We set y, = f,(t,) and obtain by symmetry of f, forn =0,...,m — 1

Yn = fp(tn) = QT —t,) = fp(tam—1-n) = Y2m—1-n-

To use the previous result, we define the function g on [0, 2T] by g(¢) = f,( +
T/(2m)). In general, the function g is not even, but g, = g(nT/m) = f,(nT/m +
T/(2m)) = y, is true forn = 0,...2m — 1. Now, as before, we interpolate this
function g on the interval [0, 2T'] with P, as above, where wg = w/T. The DFT
coefficients ¢x, k = —m + 1, ..., m, for the samples g, = y, are

2m—1 2m—1

1 . 1 .
o= — —jwkn/m _ = —jmkn/m
ck—nggne —ngyne :
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By e—jrrkn/m — ej7'[k/(2m) e—jﬂk(2n+l)/(2m), e—jﬂk(2M+l)/(2m) — e+j7rk(2n+l)/(2m)
for M =2m — 1 — n, we get from the symmetry y, = yom—1-n

T = ejnk/(Zm) Z Vi <Nk(2n + 1)>
2m

nO

We have ¢,, = 0, since the cosine terms in the sum are zero for k = m.

Eventually, we obtain for the shift f, () = g(t — T/(2m)) and its DFT coefficients
c( fo), =cre —Jjmk/@m) (compare p. 44) with wg = 7/ T the corresponding real-
valued trigonometric interpolation polynomial P3 from the formula for P, on p. 99:

m—1 ~ m—1

Pi(t) = Z Cre Jmk/(2m) e]kwot = ?0 + Z ay cos(kwot),
k=—m+1 k=1

N g Tk@n 4+ 1)
ap = — YV COS o

)fork:O,...,m—l.

As before, the map (yo, Y1, ..., Ym—1) —> (@0, a1, ..., dn—1) is invertible and the
inverse can be read directly from the interpolation formula. This map is called DCT
IL, its inverse correspondingly IDCT II. We denote the DCT II and the IDCT II with
m samples y, = f(2n+ 1)T/(2m)),n=0,...,m — 1 by

nol k(n+1
DCTI: G =2 3 yycos (™G0) hk=0,....,m—1),
n=0

> m—1
IDCTII: y, =2 4 Zakcos(w) n=0,.. . .m—1).
k=1

2m

Thus, with the same number of samples yy, ..., y,, it is possible to exactly
represent even real 27 -periodic trigonometric polynomials f up to the degree m
by a DCT I or a DCT II with the associated trigonometric interpolation polynomials
P, and P53 with wg = 7/ T. For P, and the DCT I the samples are y, = f(nT/m);
for the DCT II accordingly the samples are y, = f((2n + 1)T/(2m + 2)) with
n =0, ..., m.Inthe above formulas of the DCT II and P3, then m has to be replaced
by m + 1.

Remarks

(a) The coefficient ap/2 is the DC component ( e.g., the DC gain of an alternating
voltage f). In the literature and in software implementations of DFT and DCT
variants (as for example in Matlab, Mathematica or Maple) different scaling
factors are in use. Also the indexing often starts there with one instead of zero.
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Applying the DFT or DCT, attention has to be paid to such differences in the
definitions.

(b) As we have already seen, the decay of the spectral values |cx| of a periodic
function f for growing |k| depends on smoothness properties of f. For func-

tions with pointwise representation by their Fourier series as considered last, the
+00
alias relation ¢y = ) ¢4y permits estimates for the approximation errors
I=—00
of the trigonometric interpolations, and for the decay of the DFT coefficients

depending on the number N of samples. You can find such estimates for instance
in the textbooks of Briggs and Van Emden Henson (1995) or Kincaid and
Cheney (2002).

6.5 Numerical Integration by Clenshaw-Curtis Quadrature

A first application of the discrete cosine transform, shown here, is numerical
integration of a function on a bounded interval.
Let be given a continuous 27T -periodic real-valued even function f. The k-th
coefficient @ of the DCT I with samples y, = f(nT/m),m ¢ Nyn =0,...,m
T

is an approximation for the integral % J f@) cos(kmt/T)dr with the trapezoidal
0

rule. If f belongs to the vector space V,, introduced before, this quadrature with
the trapezoidal rule yields the exact Fourier coefficients of f according to the
interpolation theorem of p. 99.

Let us now find an approximation for the integral

b

I = /g(t)dt

a

of a function g assuming it is continuous and piecewise continuously differentiable

on [a, b]. Mapping the interval [—1, 1] to [a, b] with u(x) = boa, 4 # and

defining f by f(x)=g(u(x))u’(x), we obtain ’

+1
I:/f(x)dx.
-1

Substituting x = cos(¢), ¢ € [0, 7], we have with the notation I = I (f):

I(f)= / f(cos(g)) sin(p)de.
0
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The function f(cos(¢)) can be extended to a continuous even 27 -periodic function
represented by its Fourier series pointwise. We obtain from the Fourier series

_a |y
f(cos(p)) = > + ;ak cos(kg),

therefore through integration by parts (cf. p. 48) a representation of the integral as a
series

Ve

I(f)=a+ iak /COS(/“P) sin(p)de = ag + iak—(_l)k +1
’ k=1 0 Py 1—k2 °
I 2azy
(f)—ao+Z G

With quadrature after Clenshaw and Curtis (1960), one approximates the function
f(cos(¢)) in [0, 27] by the even trigonometric interpolation polynomial

N-1 ~
~ an
E k — N
+ ay cos(ky) + > cos(Ng)

P(p) =

2| S

with the 2N samples P(nmt/N) = f(cos(nmw/N)) forn = 0,...,2N — 1. Itis
uniquely determined by the theorem of p. 99. We require now that N = 2m is even.
T

Then the corresponding approximation Sy (f) = f P () sin(¢)de for the integral
0
I(f)is

m—1

SN(f)=ao+ )
k=1

2an; Ao
142 " 1 —4m?

The approximations @ for the Fourier coefficients a; of f(cos(p)) are now
computed with the N + 1 =2m + 1 samples f (cos (%F)) for 0 < n, k < N =
2m, according to the trapezoidal rule with the DCT I

i 2 (105 o () (22 + 2520 ).

; = ; WN—mm | _
The necessary coefficients ap; can be obtained by cos (T) = —cos (%)

Q

already from a DCT I with m + 1 summands. For 0 < n, k < m and

= e (5) 41 (e ()
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we find
G = y°+mi cos [ TER) 4 2m (_p
ay=—| = —_— —(— .
2k m\ 2 = n m 2

With x,, = cos(nm/N), the obtained quadrature rule is usually written in the form

SN =Y wa(f () + f(=x)) = w'y.

n=0

With precomputed weights w,, various functions f can quickly be integrated
numerically by inserting their samples at the nodes =+ x,,.

To specify the weights w,,, we write the quadrature formula in vector notation
with the matrix D belonging to the DCT I as follows:
D = (dkn)ok,n<m 18 the DCT I matrix with row index k and column index n

1 nk _ —
5= cos (Z2)  forn =0,n=m
dkn =
nil cos (”T”k) otherwise.
With the vector of the necessary samples y = (yo, - - ., ym)T, w=(wg, ..., wm)T,
with a = (@, @2, a4, . . . , dam) T —T stands for the transposition as usual— and the

column vector
b= (B/(1 — 4k*)o<k<m: Bo=Bn =1, i = 2 otherwise,
we get
Sv(f)=bTa=bT(Dy) = (D"b)Ty =w'y, and thusw = D7b.

Db can also be regarded as a DCT I with only slightly different normalization
factors.

All the weights wy, are positive and their sum is one.

To see this, we consider forn =0, ..., m and g = 2m = «,,,, @, = m otherwise,
el nk 1
apw, =1 — <; 21 cos (7> + 1 cos(nn)) =1-s.

We estimate the bracketed sum s
-1
e 1 2m

< -
51 ;4k2—1+4m2—1 Am2 —1
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. . . 2 11 .
The last equation is readily seen from ;7— = 57— — 57 (exercise for readers).

Thus, the positivity of the weights w,, follows. With the constant function f = 1, it
follows from 7 (f) = Sy (f) that their sum is one.

As an alternative to the approximation of the Fourier coefficients by a DCT I, you
could also use a DCT II with the shifted sampling points considered before. Such a
quadrature was already given by L. Fejér. From the interpolation theorem of p. 99,
it follows that the Clenshaw-Curtis quadrature with the N+1 given nodes is exact
for trigonometric polynomials f(cos(¢)) and thus, according to known addition
theorems for trigonometric functions, also for polynomials f up to degree N. For
this, it is necessary that the weights w,, above are positive with the sum equal to
one. The same assertions are valid for quadrature according to Fejér with the N + 1
nodes as given before for the DCT II.

Error estimates can be obtained from the known estimate for the trapezoidal rule,
according to which the DCT I integrates. Literature with such estimates was already
referred to before. Convergence of the approximations Sy (f) to I(f) for N — oo
follows from the convergence of the Fourier series of f(cos(¢)). Since we had

used 2N samples above, the alias relation between the Fourier coefficients c; of
+o00
the periodic function f(cos(¢)) and its DFT coefficients is¢;y = Y cgtonn- We
n=—00
see that the smoother the integrand is, the better the method converges.

It is remarkable that the Clenshaw-Curtis method is a so-called umniversal
quadrature method, i.e., for any k € N and all k-times continuously differentiable
functions f the maximum errors of Sy (f) are of order N ¥ for N > k — 1.

To clarify this statement, in the following we denote by F¥ the set

Fr={fec® (1,1 : 1/ Pl <1}

Here || f % |5 denotes the supremum norm of the k-th derivative of f, C k(=1,1D
the vector space of k-times continuously differentiable real-valued functions on
[—1,1]. By Py we denote the set of all polynomials of degree < N. The
above statement about Sy (f) then follows by a theorem of Jackson (1912) from
approximation theory:

Theorem 6.5 (Theorem of Jackson) For every k € N there exists a constant oy so
that for all N € Nwith N > k—1and all f € C*([—1, 1]) the following inequality
is true:

Ex(f) = inf If = Ploc < axNF1 £ P .
N

A proof with a sharper upper bound can be found in Rivlin (1974, 2010).

Theorem 6.6 The maximum errors of the Clenshaw-Curtis quadrature Sy (f) on
the sets F* fulfill for any k € N and for all N = 2m > k— 1 the following inequality
with a constant yy depending only on k:

sup{ [1(f) — Sn(f)l : feF'y<yN™
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m

Proof We consider as before the quadrature formula Sy (f) = > w,(f(x,) +

n=0
f(—xy)) with nodes x,, = cos(nm/N) for a function f on [—1, 1] with N = 2m,
m € N. Since the weights wy, . .., wy, are positive and their sum is one, we obtain

forall f € F kK and all polynomials P from Py, dueto I (P) = Sy (P), the inequality

H(H=SNOI=(f=P)=Sn(f=P)I < I(f=P)I+ISN(f=P)| < 4| f=Pl-

With this, for N > k—1 the assertion follows from Jackson’s theorem with y; = 4a.
O

An analysis and comparison of the Clenshaw-Curtis quadrature with the Gaussian
quadrature can be found in Trefethen (2008), a fast algorithm for computing the
weights w, of the method in Waldvogel (2003). For a detailed reading about
quadrature methods the textbook of Brass and Petras (2011) is recommended.

The Clenshaw-Curtis method is also used in the construction of interpolatory
algorithms for numerical integration of functions on high-dimensional cuboids. For
an introduction to the topic, interested readers are referred to the work of Novak
et al. (1999) and further sources mentioned there. However, for large dimensions
d > 10 one will rather prefer Monte Carlo methods for numerical integration. A
reference to these methods is the textbook of Leobacher and Pillichshammer (2014).

6.6 Approximation and Interpolation by Chebyshev
Polynomials

To conclude our first excursion into numerical mathematics, it should be pointed
out the close relation of the Clenshaw-Curtis quadrature to interpolation and
approximation of a considered function f on [—1, 1] by Chebyshev* polynomials.
This gives us examples for approximations of functions on bounded intervals
with a system of orthogonal functions different from the trigonometric functions
considered so far.

The Chebyshev polynomials of the first kind are defined on [—1, 1] for n > 0 by

T, (x) = cos(n arccos x).
With addition theorems for the cosine function, we obtain for n € N, with To(x) = 1
and T1(x) = x, the recursion equation (Exercise: Substitute arccos(x) = ¢ €

[0,7])

Thtr1(x) = 2xT, (x) — Th—1(x).

2 Russian mathematician Chebyshev is written in Cyrillic as [TadayTui YeOnmmés (1821-
1894).
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Thus 7;, is a polynomial of degree n, also defined on all of R and C. T, is even for
even n, for odd n an odd polynomial of degree n. T, has n different zeros in [—1, 1]
and always satisfies |7,,| < 1 on [—1, 1]. The coefficient g, in a,x" with the largest
power of x in T} is @, = 2"~!. The Chebyshev polynomials form an orthogonal
system over the interval [—1, 1] with respect to the inner product with the weight
function w(x) = 1/4/1 — x2,

+1

1
(Tns Tn)w Z/lTn(x)Tm(x)ﬁdx
0 for n#m

= 7 for n=m=0
/2 for n=m#0.

In the exercises at the end of the chapter, readers can work out on their own these
and some other properties of Chebyshev polynomials.

In our context, because of T, (cos(¢)) = cos(ng), we see that the Fourier series
expansion of f(cos(¢)) on p. 104, with the substitution x = cos(¢), corresponds
to a series expansion of f with respect to the orthogonal system of Chebyshev
polynomials. For continuous, piecewise continuously differentiable functions f on
[—1, 1], this series converges uniformly to f. When we normalize the Chebyshev
polynomials Ty to T} with respect to the introduced inner product, i.e., (Ty, Tx)y =
1 for all k, we obtain for x € [—1, 1]

o o0
ap ~ o~
Fe) =2 To) + Y aTi() = Y (f T Te).
k=1 k=0
The coefficients a; are ay = o (f, T})w with the orthonormalized Chebyshev

polynomials Tt ao = 2/4/7, and oy = /2/7 for k # 0, and they are the Fourier
coefficients of the cosine series representation of f(cos(¢)), due to the choice of the
weight function w = 1/+/1 — x2 in the inner product.

If functions that differ only on a null set (cf. p. 54) are identified, then the
inner product is positive definite. We obtain series representations as above for all
functions f : [—1, 1] — R with (f, f),, < 0o. In general, these series no longer
converge pointwise, but in the norm generated by the inner product. We denote
the real vector space of the functions f with (f, f), < oo by L2 ([—1, 1]). . For
f € L2([—1, 1]) this norm is given by

Ifllw =V {f flw-

Analogous to the theorem on p. 62, we get the following theorem that states the
completeness of the orthogonal system of Chebyshev polynomials in this vector
space (cf. Mason & Handscomb, 2002):
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Fig. 6.4 The Chebyshev 10
polynomials T, T», T3,
and Ty 0.5

0.0~
-0.5
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Fig. 6.5 Sign function o,
and S5, Sg, S19, Gibbs
phenomenon
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Theorem 6.7 Each function f € Li)([—l, 1]) has the series representation

o
ao
f==T+ Zaka,

2
k=1

with coefficients ay = ai(f, fk)w as above. The series converges in the norm of
2 . . .

L, ([—1, 1]) to f. The coefficients ai are the Fourier coefficients ay = ci + c_y,

k € No, of f(cos(¢p)).

The smoother the function f is, the faster the above series converges (cf. p. 51). An
algorithm going back to Clenshaw and Curtis (1960) permits a fast computation of
partial sums of that series representation of f.

For series expansions of functions f on [—1, 1] with Chebyshev polynomials,
because of their relation to the corresponding Fourier series expansion of f (cos(¢)),
we obtain analogous statements on pointwise convergence, convergence of arith-
metic means as in Fejér’s theorem, the Gibbs phenomenon, and on approximations
by partial sums as in Chap. 3, in Sect. 5.1 or in the following Chap. 6.

The following Figs. 6.4 and 6.5 show the Chebyshev polynomials 77 to 74 on
[—1, 1] and three approximations to the sign function o by partial sums S, of the
series expansion as in the last theorem with polynomial degrees n = 5, n = 9, and
n = 19. As in Fourier series expansions, we also observe the Gibbs phenomenon,
i.e., an overshoot in the neighborhood of the jump discontinuity at x = 0.

Remark The Gibbs phenomenon also occurs in approximations with other or-
thogonal systems. Examples are the systems of Legendre, Hermite, or Laguerre
polynomials, and for several variables the spherical harmonics. For improvement of
approximations by Fourier series expansion in the neighborhood of jump disconti-
nuities of a function f, we had used arithmetic means of partial sums according
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to Fejér. More general, convolution of a function f with a suitable summation
kernel is a useful method, providing weights to the spectrum of the function f (cf.
Sects. 7.2 and 10.3). Analogous methods are used for orthogonal systems other than
the trigonometric one. Details and further references can be found in Gottlieb and
Shu (1997). Helmberg and Wagner (1997) have shown a method to mitigate the
Gibbs phenomenon for trigonometric interpolation polynomials by appropriately
changing the function value at a jump discontinuity, when this point is a node of the
interpolation polynomial.

Interpolation with Chebyshev Polynomials

We consider real-valued continuous, piecewise continuously differentiable func-
tions f on [—1, 1]. Interpolation of f(cos(gp)) with the trigonometric polynomials
P> and P; of p. 99 and p. 102 directly implies corresponding formulas for the
interpolation of f with Chebyshev polynomials. Sampling f so that y, = f(x,),
X = cos(wn/m)) for the DCT 1, alternatively x,, = cos(w(2n + 1)/(2m + 2)) for
the DCT Il withn =0, ..., m, we obtain the following polynomials P> 7 and P3 r
interpolating f at the points x,,:

—~ m—1 -
with DCT I coefficients @ : Pa7(x) = § + > @ Tx(x) + 4 Tu(x),
k=1

~ m
with DCT II coefficients @i : P3 7(x) = § + > @ Ty (x).
k=1

Approximation errors of the trigonometric interpolation of a periodic function f
can be seen as alias effects, i.e., amplitudes of oscillatory components of f with
frequencies higher than the maximum frequency of the interpolation polynomial
are added in the amplitudes of the approximation due to aliasing. The error of the
interpolation with Chebyshev polynomials can be described correspondingly. For
example, let us consider the case of interpolation with the DCT II and the m +
1 nodes x,, = cos(w(2n + 1)/(2m + 2)), which are the zeros of the Chebyshev
polynomial 7,1 (0 < n < m). These nodes are also called Chebyshev abscissae.
We see from Ty (cos(x,)) = cos(kx,), using the trigonometric addition theorems,
that the polynomials 7} and (—1)1 Ti(om+2)+k are indistinguishable at the nodes x,.
Thus, for k = 0,...,m, forn = 0,...,m, and for arbitrary / € N we find the
relation (to be proven as an exercise for readers):

Ti(xn) = (=) Tiam2)45 (Xn)-

For the coefficients a; of the interpolation polynomial Ps 7, this means:
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DCT II Alias Formula The coefficients ay, of f =% T0+Z ar Ty and the DCTII

coefficients ay, k = 0, ..., m, with samples of f at the Chebyshev abscissae, are
related by

o0

G = ar+ Y (=D @@nt2) 4k + a@n2)-0)-
=1

Readers can themselves find an analogous alias relation for the case of interpolation
with a DCT I and the nodes x, = cos(wn/m) (0 < n < m). In particular, we have
to pay attention to such effects when, for instance, in nonlinear problems a term of
the form f(x)3 shall be approximated by Chebyshev interpolation of f.

To illustrate this (Fig. 6.6), we interpolate the function f = 2Tj9 + T>o with
5 Chebyshev abscissae as nodes. The coefficients ajg = 2 and a9 = 1 yield the
interpolation polynomial P3 7 = —Tp = —1, due to the alias effect with m = 4.

There are many studies on convergence of interpolation polynomials for the
increasing numbers of nodes, depending on the norm used to measure the approx-
imation errors. In the following some statements are given, and hints to details
in the literature. A reference is, for example, Rivlin (2010). In the following
theorem, C([—1, 1]) and C"([—1, 1]) are the spaces of continuous and of n-times
continuously differentiable real-valued functions on [—1, 1], provided with the norm
II.llco of uniform convergence. By S, (f) we denote the interpolation polynomial of
degree < n — 1 with the n zeros of the Chebyshev polynomial 7,, as nodes.

Theorem 6.8

1. For every function f € C([—1, 1]), the polynomials S,(f) converge to f for
n — oo with respect to the norm of L2 [ 1, 1.

2. For any array of interpolation nodes x ) in [—1,1], —1 < f") . <x,(,") <1,
neN k=1,...,n, there exists aﬁmctton fecC(-1,1]) so that the sequence
of the associated interpolation polynomials P, does not uniformly converge to f
forn — oo.

3. For Lipschitz continuous functions f on [—1, 1], i.e., functions f satisfying

|f ) = fOI < Lix =yl

Fig. 6.6 Alias effect with 3
Chebyshev polynomials f and

P3 7 have the same values at ?
the Chebyshev abscissae .
x, = cos(w(2n + 1))/10 for

n=20,...,4. The Chebyshev 0-
abscissae are approximately ]

—0.951, —0.588, 0, 0.588, VAV \/\/ \/\/
and 0.951 -1.0 ~05 1.0
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for x, y in [—1, 1], and a suitable constant L, in particular for continuously
differentiable functions f, the sequence of S, (f) converges uniformly to f for
n — oo.

4. The polynomials S,,(f) with the Chebyshev abscissae as nodes have the follow-
ing minimax property: For all f € C"([—1, 1]) with n-th derivative "™ the
following estimate is true:

21—n
— Su(f)oo < Tllf(")lloo-

For any other choice of nodes for interpolation polynomials, this bound for the
maximum error of the interpolation on C"([—1, 1]) is exceeded, i.e., the choice
of the Chebyshev abscissae as nodes is the optimal choice with respect to the
worst case error on C"([—1, 1]).

The first statement is proven in Erdés and Turan (1937), the second in Faber
(1912), the others in the already given literature on approximation theory. Compar-
ing different strategies for node selection, we note that the third statement of the
theorem for equidistant nodes does not hold true even for analytic functions f. A
well-known example for this by Runge (1901) is the function f(x) = 1/(1 + 25x2)
on [—1, 1] (cf. Exercise A23).

Different choices of nodes can also be compared by the norms of the operators
A, on C([—1, 1]) that map for n nodes a function f to the interpolation polynomial
An(f) of degree < n — 1. These norms | A, = sup{lAn(Pllec : I flloo < 1}
can be shown to grow with n like log(n) when Chebyshev abscissae are chosen as
nodes, but grow exponentially for equidistant nodes. Details on this can be found in
Rivlin (2010).

Altogether it results from the theorem that an interpolation with polynomials
of high degree, without known smoothness properties of the interpolated function,
in general is not reasonable. Therefore it should be pointed out that by piecewise
polynomial interpolation with the so-called splines uniform convergence can be
accomplished under relatively mild smoothness requirements for the interpolated
function. Interpolation with splines is also indicated if the nodes cannot be chosen
deliberately but are predefined. For more, please see the literature on approximation
theory.

An Extremal Property of Chebyshev Polynomials Useful in Filter Design

Finally, we review an extremal property of Chebyshev polynomials which explains
why these polynomials are often used in electrical engineering in lowpass filter
design. In transmission systems, such filters should be able to filter signal com-
ponents up to a cutoff frequency as undistorted as possible and to attenuate as well
as possible signal components with frequencies higher than the cutoff frequency.
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Theorem 6.9

1.

2.

For any xo ¢ [—1, 1] and among all polynomials P of degree n with P(xo)=1,
the polynomial P, = T,/ T,(x0) has minimum supremum norm on [—1, 1].
Compared to all polynomials P of degree n with |P(x)| < 1 on [—1, 1], the
Chebyshev polynomial T, grows fastest outside [—1, 1], i.e., for x ¢ [—1, 1], we
have

1T, () = [P (x)].

Proof

1.

Choose xo ¢ [—1, 1]. Since all zeros of T, are in [—1, 1], T,,(xg) # O for xo ¢
[—1, 1]. At the n + 1 points #; = cos(kr/n) for k = 0, ..., n, by definition 7},
successively has the alternating extremal values =+ 1 beginning with + 1.

If we assume that there is a polynomial P of degree n with P(xg) = 1,
and with smaller norm ||P|s on [—1, 1] than T,/T,(xq), then |P(#)| <
|T,,(tx)/ T (x0)| would also be true at all points f;. Therefore T, /T,(xg) — P
would have at least n sign changes and thus zeros: For example, for 7, (xg) > 0
it would follow that

P(10) < Tu(t0)/ Tn(x0) = 1/Tn(x0),
P(t1) > T, (11)/ Ta(x0) = —1/Ta(x0) and so on.

The difference polynomial would have another zero in x¢. Contrary to the
assumption, P and T,/ T, (xo) would then be equal.

. For any x¢ outside [—1, 1] and for polynomials P with |P(x)| < 1 on [—1, 1],

again with the supremum norm on [—1, 1], it follows from the first part of the
theorem

1

T, ‘ B
o TG0l

T, (x0)

1 H P
=
| P (x0)] P(xo)

‘ g ‘
oo

if P(xg) # 0. There is nothing to prove for the case P (xp) = 0.

Chebyshev Lowpass Filters

Chebyshev lowpass filters in electrical engineering possess frequency responses I,
which fulfill the equation

(@) = K/\/1+ 2T w/w.).
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Such filters let pass signal components with low frequencies largely undistorted
and strongly attenuate components with angular frequencies @ > .. The cutoff
frequency w./(2m), the order n of the filter, and the constants ¢ and K are chosen
according to an attenuation plan (compare again the lowpass example on p. 66,
Exercise A15 at the end of the chapter and subsequently Chap. 11).

The statement of the last Theorem 6.9 shows that Chebyshev lowpass filters have
advantages in attenuation for @ > @, compared to other lowpass filters with rational
frequency responses. This advantage comes at the expense of a distortion in the
passband of the filter due to the ripple of the Chebyshev polynomials 7,, with n
zeros in [—1, 1].

For a discussion of further applications of Chebyshev polynomials, we re-
fer to the textbook of Mason and Handscomb (2002) devoted entirely to these
polynomials. With the Chebyshev polynomials we have acquired, besides the
trigonometric functions, a second system of orthogonal functions with respect to
an inner product with a weight function, and we have seen series expansions of
functions by orthogonal projections onto subspaces of L2 ([—1, 1]) spanned by
these polynomials.

By rescaling, all results can be applied to functions over intervals other than
[—1, 1] (cf. Exercise AlS5 at the end of the chapter). The same concept permits
representations of functions with many other families of functions which form a
complete orthogonal system in a space with inner product. We will discuss this
aspect later on in Chap. 14. Readers who want to deepen their knowledge of this
are recommended to study the book of Folland (1992) and the rich literature on
functional analysis.

6.7 Further Application Examples for the DFT

From the abundance of technical applications, which are not possible without the
DFT or its closely related methods, only a few further examples shall be outlined
here with some appropriate references for further reading. Every prospective
engineer or scientist will get to know such applications in his or her studies.

Discrete Linear Filters

A discrete, causal linear filter with a rational transfer function ( cf. later Chap. 11)
processes a sequence of input values xi, k > 0, into a sequence of output values y,,
n > 0, according to the formula

N M
Y=Y @Xn—k+ Y byt
k=0 =1

with xg, yy =0fork <O, N >0, M > 1.
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Such filters occur in linear transmission systems in electrical engineering, and
indeed in discretization of linear systems in any other scientific field.

The N +1 coefficients a; and the M coefficients b; have constant values for time-
invariant systems and determine the filter response depending on the input values.
If the values x; are samples of a time-dependent function f at time interval T,
xx = fkT), k = 0,1,2,..., then the output value y, at time nT is calculated
from x,, the N previous values x,_n, ..., X,—1, and from the M previous output
values y,—uy, ..., yn—1. This is called a causal filter because the current y,, is only
determined by x,, and backward values xo, ..., x,_1. It is assumed that the system
is initially at rest.

When the second sum in the formula is omitted, such filters are called non-
recursive filters. When M > 1 and some of the coefficients b; are nonzero, the
filter is called a recursive filter. The frequency response of the filter (cf. Chap. 11
for details) is defined as the function

N

Zak e—jkwT

k=0

h(w) = —_
1 _ Z bl e—jle
=1

In stationary state, the frequency response shows the amplitude and phase changes
in samples of an oscillation, sampled at times kT, k € Ny, when passing through
the filter as a function of the angular frequency w of the oscillation (jw| < 7/ T).
An example for of a non-recursive filter is the following scheme with hold elements
delaying the propagation of values by one time step 7.

With hold time T, the filter has the 27r/ T -periodic frequency response

N
ﬁ(a)) :Z ai e %*T (Block diagram Fig. 6.7).
k=0

Xy = x(nT)
- T T - - - -
T Tp—1 Tn—2 Tn—N
ap aq as an
® >— - - - —»>
Yn = y(nT)

Fig. 6.7 Schematic non-recursive discrete linear filter
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For example, if the input values of the filter are x; = cos(kwT) fork > 0, x; = 0
for k < O, then for real coefficients ai in stationary state (n > N) the output value
Yn is given by y, = [h(w)| cos(nwT + ¢), ¢ = arg(h(w)) (Exercise Al).

We note that the filter response is a convolution of the filter coefficients with
the input values and in the recursive case also with the output values from behind.
This requires per time step N 4+ 1 or N 4 1 + M multiplications. It can be shown
that the convolution theorem for the DFT (cf. Table on p. 97) in connection with
fast algorithms for the computation of a DFT and IDFT—which we will come
to in the following— yields a considerable reduction of the number of necessary
multiplications. This is important in real-time applications with very high sampling
frequencies and high filter degrees N. Examples for the use of such discrete filters
are again DAB, DVB-T, DSL, WLAN, mobile broadcasting, etc.

The DFT is applied also in filter design for an intended frequency response n.
The filter coefficients are then calculated from prescribed samples of 71 so that the
result yields a close approximation of the desired response. Such DFT calculations
are embedded in iteration procedures for the stepwise optimization of the filter
coefficients.

Details of this, the so-called Remez-Parks-McClellan Exchange Algorithm, often
used in the design of non-recursive filters, can be found in the textbook on discrete
time signal processing by Oppenheim and Schafer (2013). We discuss other filter
design techniques, both for recursive and for non-recursive linear filters, later in
Sect. 11.6.

Time Series Analysis

The samples f(nT/N) of a function f are also called a time series. In wireless
transmissions, also in the medicine in electroencephalograms or in seismography,
one often has to deal with randomly noisy signals. Spectrum estimation can
provide essential information about such signals. An electroencephalogram can be
used in medicine to detect brain damage. For example, electroencephalograms of
patients with epilepsy or Alzheimer’s disease show increased amplitudes compared
to healthy patients in certain frequency ranges.

In safety engineering of power plants, one uses wide-ranging systems of vibration
detectors for monitoring. On the basis of the spectrum of mechanical vibrations,
periodic components with certain frequencies can be detected. By analyzing
amplitude and phase spectra with the aid of the DFT, loose vibrating components
can be located and safety risks eliminated.

Another field of DFT applications is, for example, radiation measurement in the
high-frequency range for testing electromagnetic compatibility (EMC). The signals
are typically in the range of up to 1 GHz. In order to avoid baseband sampling
with more than 2 GS/s (GS=Gigasamples) and unacceptable data throughputs with
required long measurement times, the observed frequency range is divided into
segments by bandpass filters, and the spectra are calculated part by part with the
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DFT. The results are combined to form the overall image. In the segment passbands
one can work with undersampling, few sampling points and short observation times
(cf. Example 3 on p. 93).

A key technology in modern communication systems such as WLAN networks,
digital radio, and digital television (DAB, DVB-T), but also in wired techniques
such as DSL or Powerline, is multicarrier transmission. The currently most
widespread transmission method is based on the discrete Fourier transform and
is known as OFDM (Orthogonal Frequency Division Multiplexing) in the context
of communication applications, cf. later Sect. 12.1. In wired transmission it is also
called DMT (Discrete Multitone). The transmission method takes its name from
the basic idea of transmitting the user information as amplitudes of a trigonometric
polynomial with orthogonal carriers. Besides the DFT also linear filters are used in
combination with sampling, coding, and estimation algorithms.

Details on communications engineering can be found in the textbook of Proakis
and Salehi (2013). Multidimensional DFT variants are essential in medical imaging
or in the generation of satellite images from SAR data (Synthetic Aperture
Radar). The textbooks of Salditt et al. (2017) and Cumming and Wong (2005) are
appropriate references for this. These and numerous other examples such as MP3
players, mobile phones, etc., clearly show that much in today’s households and our
technical society would not exist at all without the methods of Fourier analysis.

In measuring applications and in filtering or prediction of noisy random signals

T
f the autocorrelation function r(r) = Tlim % f f(@)f(@ + tv)dr plays a
— 00 -T

fundamental role. With the help of DFT and IDFT, one obtains fast algorithms
for numerical computation of the autocorrelation from the convolution rule, by
multiplication of the Fourier coefficients belonging to f.

Numerical Solution of Integral and Differential Equations

The discrete Fourier transform can also be extended to the case of functions
with several variables. It opens up possibilities for the numerical differentiation
of analytic functions, for the numerical inversion of Laplace transforms as well
as for the treatment of integral and differential equations. For example, use of the
DFT in potential problems of the form Au = f is one of the fastest numerical
solution methods in rectangular domains. Thereby, the discretization of the potential
equation yields difference equations, which can be solved with the DFT.

We do not go into any of the mentioned application fields in detail. As a
recommendation, however, interested students should read the paper Fast Fourier
Methods In Computational Complex Analysis by Henrici (1979), which deals with
a part of the mentioned topics, or the textbook of Briggs and Van Emden Henson
(1995).

For all applications one needs an algorithm to calculate the DFT and IDFT. Naive
calculation of a DFT for a sample vector (yo, y1, ..., YN—1) requires N 2 operations
(1 operation = 1 complex multiplication + addition). However, fast algorithms for
the computation of the DFT by exploiting its symmetries can considerably reduce
the number of necessary operations. Therefore, in the following the basic principle
of such algorithms will be briefly presented.
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6.8 The Basic Principle of the Fast Fourier Transform (FFT)

The history of fast algorithms for computing trigonometric series goes back to
Gauss, who used the same approach, as early as 1805 even before Fourier’s work,
as Cooley and Tukey (1965) in their famous article An Algorithm For The Machine
Calculation Of Complex Fourier Series. Thereby, the number of operations for a
DFT of length N = 2" can be reduced from N2 to N log,(N). An overview is given
in the paper Fast Fourier Transforms: A Tutorial Review and the State of the Art by
Duhamel and Vetterli (1990). We follow a presentation in Nussbaumer (1982).

The basic idea of all FFT algorithms is to compute a DFT of length N by a
factorization N = niny---ny (n1, na, ..., ng € N), so thatitis recursively computed
by DFTs of smaller lengths n1, no, ..., ng, symbolically

DFTy = DFT,, (DFT,,_,(...(DFT,,)...)).

For the case k =2, N =r - s,r, s € N, the procedure shall be shown by example.
We use the following notations here:

e(n)ze—jZnn
u = po—+ pir, po=0,....,r—1
p1=0,...,5s—1
v = q1 + qos, qo=0,....,r—1
qg1=0,...,5s — 1.

Wehave O <u <rs—1=N—-1,0<v<N-1,and

e(n +m) = e(n)e(m)

en)=1 forn,meZ.

For a given vector of samples (yo, ¥1,...,¥nv—-1), N = r -s € N and its
corresponding vector of DFT coefficients (¢, ¢y, ..., Cn—1), we write C(u) for ¢,

and Y (v) for %yv.

Thereby, we find the following representation for the Fourier coefficients C(u):

rs—1 rs—1

v=0

N
q1+40s=0

s—1 r—1

= Z Z Y(q: +qos)e<(p0+l’lr)(611 +q0s)) |

N
¢1=0 go=0

Observing N =r - s and e (250%%) = e(piqo) = 1, we see
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s—1 r—1

Cpo+pir)=Y_ Y Y(qi+qos)e (POrqo)e<P06h)e (plql)

rs s
q1=0go=0

_ ;izloe(m;]l) (POQI) Z Y(q +qos)e<POCIO)

q0=0

“DFT,

“DFT}

With this, we can formulate as algorithm:

FFT Algorithm

1. For po=0,...,r—1and ¢ =0,...,s — 1, compute

041 040
C(po, m)—e(p 1 ) E Y(CI1+610S)e<p 1 )
rs v r

2. Forpp=0,...,r—land p; =0, ...,s—1,ie.,foru =0,..., N—1, compute

s—1

Cw = Cpo+piny =Y e (=) Clpo.an.
q1=0

The necessary values of the exponential function are calculated and stored in
advance for a given N = r - 5. Then the algorithm requires rs(r 4 1) operations
for the first step and s> operations for the second step.

Example For N = 10° = 10 - 100, naive calculation of the DFT needed N? =
1,000,000 operations. With » = 10, s = 100 the above algorithm needed only
N( + s + 1) = 111,000 operations, i.e., we were approximately 9 times faster.

As mentioned, the algorithm can be extended to the case of k factors, N =
niny ...ng, and thus the computational effort can be further reduced. The choice
of N as a power of two proves to be particularly advantageous for practical
applications. We leave with the presented exemplary introduction of the basic
idea. Concerning questions about optimal factorization of N, questions about
error analysis (fast FFT algorithms are also more accurate than naive methods)
etc., we refer to the given literature. If one counts a complex multiplication and
addition together as one complex operation, then the following reductions of the
computational effort can be achieved:
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k
If N = niny - - - ng, then an FFT does not require more than 2N )_ (n; — 1)
i=1
complex operations. If N is a power of two, then N log,(N) operations are
sufficient.
Also for calculations of discrete cosine transforms, there are fast algorithms. See
for example Rao and Hwang (1996). In numerical software, such as Matlab,
or computer algebra systems such as Mathematica or Maple, there are already
implemented powerful fast algorithms for DFT and DCT computations.
At the end of this short excursion into numerical mathematics, a few examples
are given below to illustrate and to encourage for deepening:

Examples

1. Let a signal f be given whose signal frequencies v are in the range 0 < v < 50
Hertz. Assume that it is superposed with random noise. When sampling over
a time interval [0, T[ with a sampling frequency v, = N/T > 100 Hz, for
example with T = 2 s and N = 256, an interpolation of the signal by a polygon
does not show which oscillations the signal is composed of (see Fig. 6.8).

Application of DFT and computation of the magnitude spectrum [¢i|, 0 <
k < N — 1 (right figure below), show “Peaks” for k = 60 and k = 90. From this
we conclude that the signal essentially is a superposition of two noisy oscillations
with frequencies vy = 60/T = 30 Hz and v, = 45 Hz, the first with amplitude
of about one, and the second with about 0.7 as amplitude. The symmetry of the
shown magnitude spectrum is a consequence of the alias effect. Looking at the
signal shape, the noise appears also to have amplitudes up to about one, which
were not detected by the DFT but can be explained by superposition effects of
numerous noise components with small amplitudes. In the example, in fact it was
used f(t) = cos(60m¢t) 4+ 0.7 sin(907r¢) and additive noise with random values
in the interval [—0.7, 0.7] (cf. Figs. 6.8 and 6.9).

The clear detection of the frequencies in the example is due to the fact that
they coincidentally agree with those computed in the DFT spectrum. Such luck
will be rare in real practice. At this point we do not go into lack of luck and
other practical problems but will focus on the discrete Fourier transform again
in a later Chapter (Sect. 12.6). There, we will discuss some aspects which are
important for applications in practice.

Fig. 6.8 Signal progression 2!
in 2s
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Fig. 6.9 DFT magnitude 05
spectrum
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Fig. 6.10 Original image of
G. S. Ohm

Fig. 6.11 Soft-focussed
Ohm, 90% of pixels set to
Z€ro

2. The next example shows the possibility of using Fourier methods for image data
compression. The first Fig. 6.10 is a scanned image of G. S. Ohm (1789-1854).
Each pixel of it was assigned to an integer gray value in the interval [0, 255].
These image data were stored in the associated grayscale matrix A.

This matrix, conceived as a discrete signal of gray values, was subjected to a
DFT (in two variables, see next example). Finally, all DFT coefficients, whose
magnitude was smaller than 2M - 1073, M being the maximum magnitude of
all occurring DFT coefficients, were set to zero. About 90% of all coefficients
of the example were thus replaced by zero. The second Fig.6.11 shows the
reconstruction with an inverse DFT applied to the modified coefficients.

Since the modified DFT coefficients contain many zeros, their storage with an
entropy encoding (e.g., Huffman encoding) requires significantly less space than
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the original data matrix A. The expense for this is a DFT, entropy encoding and
decoding, and an IDFT. The coefficients belonging to higher frequencies rapidly
become small and are set to zero with this kind of compression. Therefore, one
has less steep slopes in the reconstruction and thus a blurring effect, which we
can see in the right image.

The widely used JPEG algorithms for image data compression (JPEG stands
for Joint Photographic Experts Group) use the DCT II in a 2-dimensional variant,
which is presented in the following example. In JPEG compression, pixel blocks
of size 8 x 8 or 16 x 16 are transformed with the DCT and the results per block
are quantized. This is done so that the according DCT coefficients of such blocks
of a grayscale matrix, depending on their position in the coefficient matrix, are
divided by accordingly positioned values of a so-called luminance table and
rounded to integers. The values of the luminance table depend on the desired
compression ratio. In the following example such a luminance table is shown
and used.

Since the DCT coefficients for higher frequency components usually decrease
rapidly and the divisors of the table for such coefficients increase, one mostly
gets many zeros in the high frequencies as a result of quantization. These
quantized spectral data can be stored or transmitted in compressed form by
entropy encoding. When transmitting a JPEG image, the used encoding method
(e.g., Huffman table, not uniquely determined) is specified in the file header as
necessary information for decoding. At the viewer, the data stream is decoded
back into the DCT matrix and subjected to IDCT block by block. As a rule, the
IDCT data for the image must also be rendered again if there are values, which
do not belong to Ny N [0, 255].

In color images, the color information is quantized analogously with chromi-
nance tables. The modified quantization can lead to undesired artifacts in the
neighborhood of edges in combination with the Gibbs phenomenon, since the
IDCT after compression usually yields a trigonometric interpolation polynomial
different from that of the original DCT data. This can be quickly verified by
zooming in on the edges in a JPEG image. Current standards in image data,
audio and also video encoding can be found in Rao and Hwang (1996). Modern
and sometimes more powerful mathematical methods for signal compression will
be introduced in the final Sect. 14.2 about Wavelets. Such wavelet procedures—
see for example Taubman and Marcellin (2001)—are used with the newer JPEG
2000 standard or also in the file format DjVu.

6.9 DCT-2D

As announced in the example before, we first specify the 2-dimensional variant of
DCT II, which we use below. For an (M x N)-matrix A with components A,,,, the
DCT-2D of A is the (M x N)-matrix B with components B, forO < p < M — 1,
0 < g < N — 1, defined by
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M—-1N-1

DCT —2D: B, = a,aq Zo Zo Ay COS (71(2;11[/1&-1)17) cos (n(Z;z]—\l]—l)q)
m=U n=
M—-1N-1
IDCT —2D: Ay = Zo Zo atpoty B cOS (n(Zgz;[-l)p) cos (71(2;14\]—1)q) .
p=V q=

Thereby, the normalization factors are those of the numerics software Matlab given
by

. 1/v/M if p=0, " - 1/V/N ifqg=0,
P\ o itt<p<M—1, ' |JI/N if1<qg<N-1.

The DCT-2D is the concatenation of a DCT over the rows of the matrix A, followed
by a DCT over the columns of the preceding transformation result. The larger p + ¢,
the higher frequency components in the signal the coefficient B, is assigned to.
Detailed information about the geometrical aspects of the DCT-2D can be found for
example in the textbook of Briggs and Van Emden Henson (1995).

For our demonstration example, the word “Geheimnis” (German for “Secret”)
was initially stored as a suitably scaled black and white image. The values O for
black, 1 for white pixels were sequentially encoded into the DCT matrix of the
subsequent image so that one pixel value of information was stored per 8 x 8 block.
To identify the pixels, white pixels were encoded so that the relation B3y > Baj
was fulfilled. Where appropriate, these values were interchanged to achieve this
result. Accordingly, an information pixel was encoded and identified as black by
B3y < Byp. If both values were equal, the block was skipped.

The difference between the two values was increased by a threshold value
to achieve better stability against attacks by noise and data compression. The
coefficients B3y and B4; were chosen because they belong to the middle frequencies
in the block and are quantized equally according to the following luminance table
for JPEG. This lets expect a certain robustness against JPEG compression if both
values are scaled equally.

The example does not show a professional algorithm for watermark generation,
but it demonstrates in a simple way how the frequency domain can be used to
store information. Since a watermark constructed in this way is not stable against
geometric attacks such as scaling or rotation of the image, different methods are
used for professional purposes. One example is the spread spectrum method, in
which the information is spread over the entire spectrum. These methods originated
in radio transmission technology and were also used in military communications
since about 1950. As with images, digital watermarks can also be introduced into
audio and video data. Figs. 6.12, 6.13, and 6.14 illustrate the experiment.
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Fig. 6.12 8 x 8—luminance
table

16| 11{10|16| 24| 40| 51| 61
12|12|14|19| 26| 58| 60| 55
14(13]16|24| 40| 57| 69| 56
14| 17(22|29| 51| 87| 80| 62
18]|22(37|56| 68|109|103| 77
24|35|55|64| 81|104|113| 92
49(64|78|87|193|121|120(101
72192(95(98(112{100|103| 99

\]O\M#MNHO%

Fig. 6.13 Image with
watermark (197 KB)

Geheimnis
The hidden watermark

Geheimnis
The identified watermark

in the noisy and compressed
image with pixel errors,

but well recognizable

Fig. 6.14 JPEG compressed with additional noise (30 KB)

We see the luminance table and the result of the described example® in the
following images reconstructed from the modified DCT spectra:

There is extensive literature on the subject of digital watermarking and steganog-
raphy in the context of Digital Rights Management (DRM). Interested readers are
referred to the specialized literature on this subject. A reference is the textbook by
Cox et al. (2008). Also, by simply searching the Internet for the above-mentioned
keywords, you can very quickly find numerous sources.

3 Readers are encouraged to create their own analog examples using a DCT with appropriate
software.
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6.10

(Al6)

(A2)

(A3)

Exercises

For a non-recursive discrete filter with hold time T, real coefficients a;, and

—~ N )
27/ T-periodic frequency response h(w) = Y ak e~ /koT (cf. p. 116), let
k=0
the input values be given by x;y = cos(kwT) for k > 0, x; = 0 for k < 0.

Compute the output values y, forn > N.
Let be given the modified Dirichlet kernel

m
i 21
Wi (1) = Z ekt _ cos(maot) for wy = -

k=—m

Prove that for N = 2m nodes the T-periodic trigonometric interpolation
polynomial P in the theorem on p. 99 can also be written in the form

2m—1 kT
P(t) = m Z ft)Wy(t—t) = Pa(t), t = m k=0,...,2m—1).
k=0

For the function f(t) = cos(?), 0 < ¢t < m, carry out a DFT with N = 15
samples t, = nw/N,n =0, ..., N — 1. Verify the alias formula of p. 87 on

7 .
the DFT coefficients ¢y and ¢j. Why is > ¢ e/2"—with N-periodically
k=—17
extended ¢y—not odd? Set f(0) = 0, use it to repeat the DFT, and again
form the associated trigonometric interpolation polynomial. What do you

find?

(A4) Approximation Quality of Trigonometric Interpolation Polynomials.

(AS5)

(A6)

Let be given a continuous 27 -periodic function f : R — C with absolutely
summable Fourier coefficients c¢x, k € Z. For N = 2m let P, be the
interpolation polynomial of p. 99. Show that the following error estimate
holds true for all # € R:

1Py(t) = fO)1 <2 ekl

kI=N/2

The symbol Y " means that the summands with indices N/2 and — N /2

are to be multiplied by the factor 1/2.

Consider a signal whose signal frequencies v are in the range 0 < v < 80

Hz. The signal is analyzed with the DFT. The observation time 7 is 7 = 2

seconds. How large the number N of samples must be at least, in order to

avoid adverse alias effects in the spectral analysis?

(a) For the oscillation cos(2vt), v = 6 Hz, which values are nonzero in
the amplitude spectrum of a DFT with N = 128 points in the period
0 <t <4 seconds?
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(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

6 Discrete Fourier Transforms, First Applications

(b) For cos(2mvt), v = 100 Hz, let a DFT be given with N = 128 samples
from a time window of one second. Which coefficients ¢, 0 < k < 127,
in the DFT spectrum are nonzero and why?

For a real periodic signal f in the frequency band up to 600 Hz, a DFT

is given with N = 512 samples from a time window of 2 seconds. Let be

nonzero only the DFT coefficients Cog and 4. Which signal frequencies
can produce this DFT spectrum?

Signal amplitudes in the frequency band F =]2GHz, 2GHz + 1MHz[

are to be detected by a DFT. Let the frequency resolution be 1/T =

5 kHz. Determine m and the sampling frequency N/T, so that ' C

ImN/Q2T), (m + 1) N/(Q2T)[. Which DFT coefficients of a DFT, performed

with these values, belong to f(t) = sin(2wvt) with v = 2000150 kHz? (cf.

Example 3, p. 93)

A DFT is performed with the samples #, = n/8 4+ At,n = 0,...,7, and

At = 0.05 of the function f(t) = 6cos(2rwt) + 3sin(4nwt) — 4sin(6rwt) +

5cos(8mt). How can the DFT spectrum be corrected, only with knowledge

of the amplitude A = 6 of the “pilot carrier” cos(27t), so as to obtain the

spectrum of the real-valued function f? (Cf. Example 5, p. 94)

Show that the DFT of 1/N - (x,¥)o<n<nN—1 s the N-periodic convolution

of the DFT coefficients of (x;)o<ngn—1 and (yn)ogn<n—1-

Program the Clenshaw-Curtis method for numerical integration and test your

program on polynomials and in a comparison with the trapezoidal rule, using

1
as example the integral [ HLxdx = In(2).
0

Compare the relative errors with an increasing number of nodes.
Runge’s Example. Write a program to interpolate the function

F@) = 1/(1+25x%)

on [—1, 1] (example from Runge, 1901) with n equidistant nodes and with
the Chebyshev abscissae as nodes forn = 8§, n = 13, and n = 17.

Generate graphs of the results and discuss the quality of the polynomials
obtained as approximations to the function f on [—1, 1].
Show the orthogonality of the Chebyshev polynomials T; on [—1, 1] with
respect to the inner product (.,.),,. Calculate the alias relation for the
coefficients of the polynomials 7} when interpolating with the nodes x,, =
cos(nt/m), n = 0, ..., m. Test your result by interpolating the function
f = T11 + T13 — 2T»3 with seven such nodes with a DCT I as on p. 110.
Interpolation with Chebyshev polynomials on intervals other than [—1, 1].
Let the function f be given by f : [-3,7] — R,

FO=1ra =

Map the interval [—1, 1] with an affine mapping L to [—3, 7], and compute
with a DCT 1I the interpolation polynomial P of degree m = 12 for
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g(t) = f(L(t)), with the Chebyshev abscissae x, (n = 0, ..., m) as nodes.
Plot the function f, the interpolation polynomial P o L~' with nodes
t, = L(x,), and the interpolation error f — P o L™!. Use your program
of exercise A12.

(A15) Complex Chebyshev polynomials, design of Chebyshev lowpass filters.

(a)*

(b)*

(o)

If you are familiar with complex functions, then verify that for variable
z € C the n-th Chebyshev polynomial is 7, (cos(z)) = cos(nz). If
you are not sufficiently familiar with complex functions to solve (a)—(c),
please take (a)—(c) for granted and solve (d).
The Joukowsky transformation z = z(w) = (w + w~')/2 maps the
complement of the unit circle invertibly to C \ [—1, 1].

When the principal values

e (1/2\ (=D
‘/1_1/22_;(”) Z

T3 ()

n=0

are chosen for the roots, show that the inverse mapping is explicitly given
by

7+ zy/1—1/22 lz| > 1,
w(z) ={z+jv1—2z2  for |z] < 1,3(z) >0,
z— jv1—22 lzI < 1,3(z) <O.

Prove that T,,(z) = wn_,’_2w7n .
Using the approach

0(x) = H()H(—2) = 1/(1 + > T2 (z/(joe))),

find the poles of Q with negative real part. Set z/(jw.) = cos(x + jy),
and show that for ¢ > 0 and w, > 0 these poles are given by

Zk = we sin(xg) sinh(y) + jw cos(xg)cosh(y) (k=0,...,n—1),

2k + Hm 1 . <l>
Xy = ————, y=——arsinh|—|).
2n n g

Use (b), trigonometric addition theorems, and the relations of
complex trigonometric functions and complex hyperbolic functions:
cos(jz) = cosh(z) and sin(jz) = j sinh(z).
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(d) Write a program to solve the following problem. With the poles zj from
(©), k = 0,...,n — 1, the frequency response h(w) = H(jw) of a
Chebyshev lowpass filter of order n with

~ 1
)P = ——
1+ &’ THw/w)

is given by

The DC gain is 7’1\(0) = 1 for odd n and 71\(0) = 1/+/1+ &2 for even n.
With w./(2m) as cutoff frequency, the attenuation in dB (decibel) is

A(w) = 10log,o(1 + T (w/w,)).

Now, calculate a Chebyshev lowpass filter with lowest possible order
n according to the following specification:

Let the cutoff angular frequency w,. be given by w. = 27 - 1000 Hz;
let the stopband edge be w; = 277-2500 Hz. The maximum attenuation at
the passband edge w, shall be A,,,, = 0.2 dB, the minimum attenuation
at the stopband edge A,,;, = 40 dB.

First calculate ¢ and the necessary filter order n € N by substituting
the given attenuations at w, and ws in A(w). Then calculate the poles
with negative real part as in (c) and build the frequency response of the
filter.

Plot the amplitude response |7z\|, the phase response ®(w) =
arg(ﬁ(a))), the delay — @(w)/w, and the group delay D(w) =
—d® (w)/dw.

See also later in Sect. 11.3 the design of other analog filter types with
rational frequency responses—such as Butterworth lowpass filters—and
in Sect. 11.6 corresponding discrete filter variants.

(A16) Transistor in emitter circuit. Suppose the collector current i¢ (¢) is given by
lC(t) — el.l+0.75 sin(wot) -1 [InA] (wo — lrad/s).

Compute a DFT with sampling points ic(2wk/16), k = 0,...,15 and
estimate the DC gain, the RMS value, and the distortion factor (cf. p. 33).



Chapter 7 ®
Convergence of Fourier Series ke

Abstract This chapter is devoted to the proofs of the previously given theorems
on pointwise convergence of Fourier series. The theorems of Dirichlet and Fejér
with their implications are proven. The mitigation of the Gibbs phenomenon
by summation kernels is shown as well as the Parseval equation for piecewise
continuous periodic functions. As a summary of the acquired knowledge at that
point, mathematical results are discussed, which have historically led from classical
Fourier analysis and integration theory to the Lebesgue integral and distributions.
The theoretical foundations of distribution theory and its countless practical appli-
cations are developed in the following chapters.

In the last chapters we have learned about first examples and applications of Fourier
series. In this chapter the central statements of convergence in the theorems of
P. L. Dirichlet and L. Fejér from Sect. 3.2, and the Parseval equation are studied in
more detail. The proofs are presented in such a way that the emphasis is not so much
on their mathematical “justification character,” but rather that the reader learns a
good portion of arithmetic technique in dealing with trigonometric functions, sums,
and integrals.

The common basic principle in studying approximations fy to T-periodic
functions fxin the following sections is the representation of the approximations
in the form

T
1
In@) = F/f(S)KN(t —s)ds,
0

with suitable integral kernels K. From the properties of the function fxand the
convolution kernels Ky result the properties of the approximating functions fy.
With regard to convergence of the approximations we distinguish between pointwise
convergence, uniform convergence, and convergence in quadratic mean.
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130 7 Convergence of Fourier Series
7.1 The Theorem of Dirichlet

The subject of this section is the proof of Dirichlet’s theorem on pointwise
representation of piecewise continuously differentiable periodic functions by their
Fourier series (cf. S. 28). A detailed discussion of pointwise convergence of Fourier
series of more general functions, for example monotone functions and functions
of bounded variation, can be found for instance in Zygmund (2003). As a typical
example of such a function, which is not piecewise continuously differentiable,
only the famous Cantor function, also called devil’s staircase, may be mentioned
here. Further examples for Fourier series expansions of functions, which are not
piecewise continuously differentiable, are given in Exercise A6.

Theorem 7.1 The Fourier series of a piecewise continuously differentiable periodic
function f : R — C converges at each point txto (f (t+) + f(t-))/2.

Proof For the proof, assume that the function fxis T-periodic with 7 = 1 and
piecewise continuously differentiable. The partial sum of degree Nxof the Fourier
series of fxis denoted by fx. The proof of the theorem is carried out in four steps:

1. According to T = 1, we use the 1-periodic Dirichlet kernels Dy, given by

N sin(2N + 1)mt)
. ——— “for t¢7Z,
Dy(ny= Y e = sin(z7) or 1¢
k=—N 2N +1 for teZ,

and prove immediately

1 1/2 172
/DN(t)dtz / DN(t)dt=2/DN(t)dt=1.
0 -1/2 0

2. Dy and fxare 1-periodic. As already shown in 3.2 it holds

1

N 1
o= / Fls)e 2o ds 27K = / Dy (t = 5)f(s) ds

k==N7j 0
12 12
= / DN(s)f(r—s)ds=/wf(t—s)ds.
sin(rrs)

—1/2 —-1/2

3. We can write the last integral in the form:
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0 0

fnt) = / sin((2N + I)NS)M ds + f (t+) / Dy (s)ds
sin(7s)
—1/2 —1/2
I1(N,D)

1/2 1/2

+/s1n((2N+1)7r )w ds +f(t—)/DN(s)ds
sin(7rs)
0
L(N,1)

1
= E[f(H) + f)+ LN, 1) + L(N,1).

4. Since fxis piecewise continuously differentiable, the right- and left-sided
derivatives of fxat mexist, and thus also the limits (cf. Exercise A8):

ft=5)—f@n _ f/tH)

fa—s)—fa) _ fle)

lim - = and lim - =
s—0- sin(r s) b4 s—0+ sin(7rs) /4
. ft—s5)— fl) .
Therefore, both functions nGrs) can be continuously extended
sin(rs
from their integration intervals to s = O by these limits. Hence, by the

Riemann-Lebesgue Lemma in 4.5, p. 50, we eventually obtain Nlim Ii(N,t) =
—00
lim I (N, t) = 0 for every t.

1
Conclu510n The Fourier series of f converges everywhere to —[ f@+) + f@)].
If f has the mean value property, then f(t) = hm /f(s)DN(t — s)ds for

everyt € R.

7.2 The Theorem of Fejér, Convergence by Smoothing

Uniform Convergence of Fejér Means for Continuous Functions

After P. Du Bois-Reymond (1831-1889) had shown that there are periodic functions
fxwhose Fourier series diverge on a dense set in their domain of definition, L.
Fejér succeeded in 1904, only as late as 100 years after Fourier’s work, to show
the following theorem, already stated on p. 29:
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Fig. 7.1 The Fejér kernels 5 \ T L2
F4 and Fig Fy(t) — Fio(t) —
4t ] 10+ .
3t - 81 ]
2} 6r il
4 - -

1
0 2T |
0 -1

_1 1 | 1
-1 0 1 -1 0 1

Theorem 7.2 (Theorem of Fejér) Let f : R — C be a periodic continuous
function. Then the arithmetic means of the partial sums Sy of the Fourier series
of fxconverge uniformly to f.

Again, we assume 7 = 1 as period. Instead of the Dirichlet kernels D,, we use
for the proof of this result the Fejér kernels (see Fig. 7.1)

1
Fo(t) = ~(Do + ...+ Dy-1).

With period T =1 and ¢t € R \ Z we have forn € N:
—1

sin((2k 4+ 1)zt)
Fu(t) = Z

n= sin(7rt)

172
The F,, are even functions, and / D, (t)dt = 1 implies

172 -172 1/2

/ Fn(t)dt=2/Fn(t)dt= 1.

—1/2 0

With sin(x) = J(e/*) and with the formula for the sum of a finite geometric series,
we obtain (Exercise)

1 sinz(nm)
Fn(t) —]n sinz(nt)
n for teZ.

for teR\Z,
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1
Therefore, we find that all F,, > 0. The inequality F, () < — for all
nsin“(wt)
t € R\ Z shows that the function sequence (F),cN converges uniformly to zero in
each interval [4, 1/2],0 < 6 < 1/2.

Proof of Fejér’s Theorem After these remarks we now obtain for periodic continu-
ous functions fxwith period T = 1 and arbitrary t € R
n—1 n—1 1/2

1 1
LYs0-rw =13 [ Diose-sds- s

k=0_3

1/2

/ Fa)(f(t —$) — f(0))ds.

—1/2

The function g(s) = f(t —s) — f(¢) is continuous with g(0) = 0. Then for every
e > Othereisad €]0, 5], so that [g(s)| < ¢ for |s| < 6.

)
Hence, from the inequality \ sin“(n7ws) }

1
forall s €[4, E] we obtain

sinf(rs) | sin?(nd)

1n—l
|—Zsk(t>—f<z>|</Fn<s)|g(s>|ds+ / Fa)If(t —s) = f(O)lds
nk:O

Is| <8 8<sI<1/2
1/2
2 [ sin®(nms)
<e F,(s)ds +2 max |f(t)| - — Tds
0<r<1 n sin“(7rs)
|s|<d
2
<e+—— max |[f()].

nsin?(m8) 0<i<l

1
This yields the uniform convergence of the Fejér means —(So + ...+ Sy—1) to f,

n
since the right-hand side becomes arbitrarily small for n — oo independent of 7.
O

Convergence of Fejér Means for Piecewise Continuous
Functions

Theorem 7.3 For piecewise continuous periodic functions f : R — C, the Fejér
means converge to (f (to+) + f(to-))/2 at any point t.
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Proof Analogous to the proof of Dirichlet’s theorem, we write the Fejér averaging
in the form of a convolution integral. As period we assume again 7 = 1. At a point
to we have

172 0 0
/ Fo(s)f(to —s) ds= / Fu(s)(f (1o — s) — f(to+)) ds + f (t0+) Fy(s)ds
—1/2 —1/2 -1/2
11 (n,1p)
172 172
+ /Fn ($)(f(to — ) — f(t0-)) ds + f(t0-) / Fy(s)ds.
0 0
L (n,1)

Setting g(s) = f(to —s) — f(to+) in [—1/2,0[, we have liI(I)l g(s) = 0, and
s—>0—
therefore with an estimation as in the proof before lim I;(n, #y) = 0. Analogously
n—oo

follows lim I(n, ty) = 0, and thus the assertion. O
n—oo

An already discussed consequence of Fejér’s theorem was the approximation
theorem of Weierstrass. As further applications we now show the remaining
statements from Sect. 3.2 on pointwise convergence of Fourier series.

Convergence of Fourier Series of Piecewise Continuous
Functions

The theorem on pointwise convergence of the Fejér means has an important conse-
quence for Fourier series of piecewise continuous periodic functions f : R — C.

Theorem 7.4 If the Fourier series Sy of a piecewise continuous periodic function
converges at a point ty at all, then Sy (t9) = (f(to+) + f(t0-))/2. Moreover, if fxis
continuous at ty, then Sy (to) = f(1).

Proof The assertion follows directly from the fact that the Fejér means at 7y
converge to the limit (f(fo+) + f(t9-))/2, and from the fact that each convergent
sequence of numbers and its arithmetic means' converge to the same limit. O

! Arithmetic means in mathematical literature are also called Cesaro means.
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Completeness of the Trigonometric System

The following theorem is called the completeness theorem for the trigonometric
function system.

Theorem 7.5 A piecewise continuous periodic function f : R — C with the mean
value property, whose Fourier coefficients cy all vanish, is the zero function.

Proof 1f there were point 5 € R at which such a T-periodic function fxwere
continuous with f(#) # 0, then faxwould satisfy f(#) # O on a suitable interval
around #y. Then there were a T -periodic Fejér kernel F;, such that

T/2

1

T /f(t)F,,(to —1)dr #0.

-T/2
But this is a contradiction to the assumption: From ¢ = 0 for all k € Z we get
T/2
/ f(@)P(t)dt = O for each T-periodic trigonometric polynomial, thus also for

-T/2

F, (to — t). Therefore fxmust be zero under the conditions of the theorem. O

Applying the completeness theorem to the difference f — g of two piecewise
continuous periodic functions fxand g, we immediately obtain the following
theorem about uniqueness of Fourier series:

Theorem 7.6 Tiwo piecewise continuous periodic functions fxand gwvith the mean
value property and the same Fourier coefficients are equal.

Fourier Series of Piecewise Continuously Differentiable
Functions

Theorem 7.7 If a piecewise continuously differentiable periodic f : R — C is
continuous, then its Fourier series converges uniformly to f.

Proof If fxis T-periodic and satisfies the assumptions, then we have for the Fourier
coefficients ¢ of fxand c; of f

= jk— d = f for k ;ﬁ 0
Cp = c an Ck = c or .
k= T k ¢ Jj2nk k

Since for complex numbers a, b#we have 0 < (|a| — |b])> = |a|> + |b|> — 2a||b],
we obtain for k # 0 the estimate
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el < (T e
|l < = ——= + ¢ )
S 2 a2z 7

0]

1
From the convergence of Z a and from the Bessel inequality for f’ follows
= k=1
therefore that Z |cx| < o0, i.e., the Fourier series of fxconverges absolutely and

k=—00
uniformly to a continuous function g. According to the uniqueness theorem, then

g=1r. 0

Theorem 7.8 If a periodic piecewise continuously differentiable f : R — C has
discontinuities, the uniform convergence of the Fourier sequence Sy still follows on
any closed interval, which does not contain a discontinuity point of f.

Proof 1t suffices to consider T-periodic, piecewise continuously differentiable
functions fx with a single discontinuity at fy in [0, T]. We assume that fxis
continuous otherwise and possesses the mean value property f () = (f(to+) +
f(to-))2. We write fxin the form f(t) = g(¢t) + r(¢) with

1 2
g(t) = f@) — =Lf(to+) — f(t0)] S (—n(t - lo)) ,
b T
1 2
r(t) = —[fo+) — fto-)] S (—(t - to)) ,
T T

where S(2mt/T) is the T-periodic sawtooth function of p. 24. Then the Fourier
series of gauniformly converges to the continuous function g. The Fourier series of
rxconverges uniformly on each closed interval not containing 7y, as we have shown
in Sect. 3.1. From this follows the convergence of Sy = S, + S, as claimed. m]

Vanishing of the Gibbs Phenomenon in Fejér Means

+00
For periodic piecewise continuously differentiable functions f(z) = Z cy elkeot

k=—o00
we had seen in Sect. 3.2 that using partial sums to approximate fxcauses the Gibbs

phenomenon. Using such a partial sum

n

n
Su0) = Y el =% wn (ke et

k=—n k=—n

with
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o 1 for [|t|<n
w =
" 0 for |t|>n

corresponds to weighting the spectral values c; with the rectangular window
function w,. At all jump discontinuities of the real or imaginary part of f, there
is an overshoot of approximately 9% of the respective jump height. We now show
that the Fejér means of fxdo not exhibit the Gibbs phenomenon anymore. The Fejér
means

1

n n
|k| ik
E Se(t) = E 1- e/ ~wol
n+1 = k) ( n+1 c

k=—n

prevent the Gibbs phenomenon through weighting the spectrum with the triangle
window.
1—1t|/(n+1) for [t]<n+1
wp(t) =
0 for |t|>n—+1.
Proof 1t suffices to consider real-valued functions. We note that for any ¢ > 0, any

0 < § < 1/2, for 1-periodic Fejér kernels F; and 1-periodic, piecewise continuously
differentiable real-valued functions f, we have the inequalities

-4

12
—&< / Fn(s)f(t—s)ds—i—/ F.(s)f(t —s)ds < ¢,
§

—1/2

if n#s greater than a suitably chosen ng € N.
b—a

Now, ifm < f(t) < M fort € [a,b] and 0 < § < min{%, T],then to give

& > 0O there is a ng € N, so that we obtain forn > ng and ¢t € [a + 8, b — §] the
estimate

12 5
1 n
> s = /'Eﬁuwfu—wds</ﬁwﬂauv—mﬁm+s<A4+a
k=0 ~1,2 =5

because (r — s) € [a,b] for |s|] < §, thus f(t —s) < M and F,y1 > 0, and
P
/aﬂmm<L
76 l n
Analogously one obtains m — & < —— Z Si(t) fort € [a+68,b —38]. a
n+1 =
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Fig. 7.2 Disappearance of
the Gibbs phenomenon

aa+db—§ b

These inequalities show that the Fejér means can be kept in a specified tolerance
zone B = B(a, b, ¢, §) with arbitrarily small ¢ for sufficiently large n € N, even
in the neighborhood of discontinuities. Therefore, the Gibbs phenomenon cannot
occur. To illustrate this, consider the following Fig. 7.2 and again Fig. 3.11 on p. 35.

When partial sums of Fourier series are used for approximation and reconstruc-
tion of T'-periodic functions from spectral values c, the Gibbs phenomenon, more
generally speaking, the oscillatory behavior of the approximation plays an important
role. The preceding considerations show that the approximations can be smoothed
and kept within certain tolerance ranges if, for example, the Fejér means are used
for the approximation. The proofs also show that other weight functions can be used
instead of the spectral triangle window. A triangle window as a weighting function
in the spectrum corresponds to convolution with a Fejér kernel F}, in time domain.

In all theorems the Fejér kernels F; can be replaced by arbitrary kernels K,
if these convolution kernels, here related to 1-periodic functions, are nonnegative

1

continuous even functions with / K,(t)dt = 1,andif lim K,(¢#) = O uniformly
n—o0

in each interval [8, 1/2],0 < § <0 1/2. Such kernels are called summation kernels.
This finding is the starting point for the construction of other window functions
and related kernels, which—depending on the purpose of application—produce
more advantageous approximations than the Fejér means. Such advantages can be,
for example, steeper slopes at jump discontinuities, thereby also higher power of
the approximation, less smoothing—technically speaking a higher resolution—and
much more. See also the later Sects. 12.5 and 12.6 on windowed Fourier transforms.
The mentioned conditions on the sequence K, of convolution kernels can still be
weakened, so that it is not necessary to require K,, > 0. An example is the de la
Vallée Poussin kernel Vi, = 2Fy,41 — F, with the Fejér kernel F;,. For this and
other convolution kernels, refer to Walker (1988) and further references cited there.

7.3 The Parseval Equation

We first show that periodic convolutions of piecewise continuous T -periodic
functions f : R — C are continuous, and then we deduce the Parseval equation
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for such functions:

T
+00
. . 1 24 _ 2
If f has Fourier coefficients cy, then T |f(®)|~dt = Z lek]”.
0

k=—00

Continuity of Periodic Convolutions of Piecewise Continuous
Functions

It is sufficient to consider 2m-periodic functions fxand A, each with only one jump
discontinuity at fy and #; in [0, 2], respectively, and otherwise continuous. They
then have the form f = g1 +rjand h = g + 12,

1
f@) =g+ ;(f(fm) — fto-)S —10),

1
h(t) = g2(r) + ;(h(m) —h(11-))St — 1),

where g1 and g, are continuous on R and Sis the 2 -periodic sawtooth function.
The uniform continuity of g; and g, implies immediately the continuity of the
convolutions (g1*g2)2x, (g1%72)2x, and (g2%r1)25, by deductions like, for example,

2 27
| [+ 8 -9-ga0 s | < [ n©lleat +5-9) - g0 )lds
0 0

<2me sup |ri(s)].
0<s <2

The second term in the integrand of the right-hand side integral becomes for any s in
[0, 2] smaller than any ¢ > 0, if only § > 0 is chosen small enough. So it remains
to prove the continuity of the 2w -periodic convolution of two sawtooth functions
S () =S —19) and S;, (1) = S(t — 11), to, t1 € [0, 27 ]. In the equation

2 2
/S(x—to)S(t—t1 —x)dx:/S(u)S(t—to—t1 —u)du
0 0

we observe (S, * Sy, )2 (1) = (S * 8)25 (t —to — t1). Therefore, we have to show the
(r—1)/2 for 0 <1t <2m,

continuity of (S%5)2, . However, with S(¢) =
(=t —m)/2 for —2m<t<O,

we simply calculate for ¢ €]0, 27 [:
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t 2
1
(S*S)zn(t)zg— /(n—s)(n—t—i—s)ds—i—/(n—s)(—t—n—i—s)ds
b4
0 t
L, m n?

=——t"+ - —.

8 +4 12

The continuity of the 27 -periodic extension then results from (S * )2, (0+) =
(S * 8)r2m-).

The Parseval Equation for Piecewise Continuous Periodic
Functions

If fxis piecewise continuous on [0, '] with Fourier coefficients ¢y, k € Z, then the
function f(—t) possesses the Fourier coefficients ¢, k € Z, according to Sect. 4.1.

T
1 -
Hence, we have for the T-periodic convolution g(¢) = T / fw)fu—1t)ydu =
0

“+o00
> lexl* e/ 0 with wy = 27/ T (cf. p. 64).
k=—00
Now, the function g is continuous, and its Fourier series converges uniformly to
ghy the completeness theorem on p. 135. In particular, the Parseval equation holds.

k=—o00

1 r +00
O =7 [IrwPa= Yl
0

This also shows that the Fourier series of fxconverges to fxin quadratic mean

Remark As already remarked on p. 63, one can prove the continuity of the
convolution (f * h)r also for T-periodic functions fxand A, which are square-
Lebesgue-integrable on [0, T']. Hence, the Parseval equation and the convergence
of their Fourier series in quadratic mean follow also for such functions fxor A«cf.
Zygmund (2003) and Exercise A8).

7.4 Fourier Series for Functions of Several Variables

With Fourier series expansions one can also represent many functions of several
variables, which are defined on cubic domains Q#n R". One obtains quite analogous
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results as in the one-dimensional case. We restrict ourselves to some statements for
the case of two variables without proofs.

In general, the theory for Fourier series of functions with several variables is far
more complex and complicated than that for one-dimensional domains of definition.
Think for example of different geometrical shapes as domains of definition, which
are not axis parallel. If you are interested, you can find details of this field, e.g., in
Tolstov (1976), Stein and Weiss (1971), or Zygmund (2003).

Theorem 7.9 If f : Q — C is square-integrable on Q =] —m, w[x]—m, w[, then
Parseval’s equation

1 . +00
o [ [ reoPaa = 3 jan?
i “r - [, m=—00

g
1 T .
is valid with the Fourier coefficients cj,; = = // Fx, y)e /) e dy
+00
The Fourier series Z Cim ' T converges in quadratic mean to f, i.e.,

I, m=—00
for N1, Ny — oo simultaneously, the error

T
/ / n
-7

-7
becomes arbitrarily small. In that sense, fxhas a Fourier series expansion.

If fxis twice continuously differentiable with support supp(f) C Q, then the
Fourier series of fxconverges uniformly and represents fxpointwise.

2
dx dy

f,y) — Z Z Clm ej(lx+my)

[Ny [m|<N2

The support supp (f) is the closure of the set {(x, y) € Q| f(x, y) # 0} in R2.
It holds true the following extension of Fejér’s theorem:

Theorem 7.10 If f : QO — C is continuous in Q =] — n,w[x] — mw, w[, and
supp(f) C Q, then the Fejér means

1 N1 N>
M X,y) = S, X,
Nl,Nz( y) (N1+1)(N2+1) ]qz_()]{;) kl,kz( )’)

converge uniformly to f, when simultaneously Ny — oo and N, — o0.

Here, the partial sums S, «, (x, y) are defined by

Skt y) = Y Y el T

1<k Im| <o
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For the proof one uses the representation
b
1 4
My, N, (x, y) = —2/ S, v)Fy, Ny (x —u, y —v)dudv,
4 o
—7T

where Fy, n, is the product of the 27 -periodic Fejér kernels Fy, (x) and Fy, (y).
Then, the proof follows completely the line of the proof in the one-dimensional case
(cf. 7.2). In particular, we obtain the following variant of Weierstrass’ approximation
theorem:

Theorem 7.11 (Theorem of Weierstrass) If fxis continuous on Q =] — m, 7t[2
and supp(f) C Q, then there exists for each ¢ > 0 a polynomial P(x, y) such that
the following inequality is valid for all (x, y) € Q:

fx,y)—Plx,y)| <e.

Thus, the function fxcan be uniformly approximated by polynomials.

All theorems can be rephrased for rectangles other than Q+as above and are also
valid for more than two variables. As an example we consider a square-integrable
function fxon the rectangle Q =]0, L{[x]0, L[, which can be expanded into a
double sine series:

Theorem 7.12 If fxis square-integrable on Q =0, L1[x]0, L>[, then the series
(e.¢]
Z bpm sin nrx sin mry

n,m Ll Lz k]

n,m=1
Ly
4 /‘ Llf( i (nnx) . (mﬂy)d d
x,y)sin| — | sin| —— Jdxdy,
L1L20 0 Ly L

converges to fxin quadratic mean.

bn,m =

To give an idea for the theorem, without an exact proof, we expand f(x, y) for
fixed y into a sine series (cf. p. 43)

00 Ly
. [ nwx . 2 . (nmx
f(x,y)=r;bnsm (L—1> W]th bn:L—l/f(x’y)S]n <L_1>dx
B 0

If we consider b,, as a function of y, which in turn can be expanded into a sine series,
then
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Ly

o
. (mmy . 2 . (nmy
bn = Z bn,m sin <L_2) with bn,m = L_z /bn S (L_> dy s

m=1 0

and thereby

o0 o0
. nmwx . mi
fx,y) = nX_;mX_:l by.m Sin <L_1> sin <L_2y> ,

Ly
4 Ly nwx mmy
by oy = ,y)sin| — | sin{ —— Jdxdy.
o Lleo/ 0 S y)sm( Ly )Sm( L ) Y

Applications of Fourier series of several variables arise in linear partial differential
equations with constant coefficients in cubic domains. One can then try to solve such
equations with a separation of variables approach, analogous to the procedure for the
string vibration. For such problems the series expansions had just been introduced
by Bernoulli and Fourier. First applications were the solution of heat conduction
problems and also the treatment of vibrating membranes. Here, the eigensolutions
(cf. p. 5) lead to the trigonometric function system. We consider an example to
which we refer later on in Sect. 9.5 in more detail.

A Dirichlet Boundary Value Problem for a Rectangle Membrane

Let an elastic membrane be fixed at the boundary of the rectangle Q = [0, L] X
[0, L] in the plane. Load by a force, perpendicular to the plane, causes a dis-
placement of the membrane. Let the tension, which is exerted by the fastening, be
isotropic, so that it is described by a scalar kx(of physical dimension N/m). If fxis
the area density of the force, then small displacements uin equilibrium state are
described approximately by the differential equation

9%u 9%u

kA= —k (0
! (8x2+8y2

> = fin Q\90Q, u =0 ontheboundarydQ of Q.
This is called a Dirichlet boundary value problem. The functions

. (mrx) . (mrry)
=S| ——)Ssin
Un,m I L

nm\2 mim\2
are eigenfunctions of — A for the eigenvalues X, ,, = (—) + (—) , i.e., for

L L
all n, m € N holds
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— Aupm = Ay mUn,m-

If the force density fxis a linear combination of these eigenfunctions u,, p,,

N

fx,y)= Z % by m sin (me) sin (?) ,

n=1m=1

then the displacement uswith u(x, y) = 0 on the boundary 9 Q is given by

1 NoM bn,m . nmwx . mimy
u(x,y)=%22msm(T>sm(T),

n=1m=1

verified by inserting it into the differential equation.

Right-hand sides fxin the differential equation, which are of the form of a
trigonometric polynomial as above, are best understood as approximations for the
exact physical force action. The solution uxis then an approximation of the real
membrane displacement. For this, cf. exercise A7 at the end of this section and later
on Sect. 9.5, p. 253.

In order to obtain good approximations for different physical situations one
would like to have a solution theory for right-hand sides fxbeing as general
as possible. This is achievable with Fourier series expansions of fxand u. The
higher the order of the partial sums of these series expansions is, the better
approximations can be expected. For square -integrable fxon Q#with the Fourier
series representation

flx,y) = i by, m sin (%) sin (any> ,

n,m=1

we obtain by the approach

( ) 1 i bom . (nnx) . (mrry)
ulx,y) = - sin { —— ) sin
k = Anm L L

with term-by-term differentiation of the Fourier series of ux

[e.0]

—kAu=— Y i’”—*’”A (sin (%) sin (?)) = f(x, ).

n,m
n,m=1 ’

Thus u=is the desired solution. The method is elegant, but it requires a mathe-
matically exact reasoning: The Fourier series of fxdoes not converge pointwise in
general, but in quadratic mean to f, the term-by-term differentiation of the Fourier
series of uxis a questionable procedure (cf. Sect.4.3), and the question arises in
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which sense this series converges and takes on the zero boundary values. Satisfying
answers are provided by the distribution theory, in literature also called the theory
of generalized functions. Therefore, in the next chapter we work out some basics
of distribution theory and take up again the Dirichlet problem of the membrane in
Chap. 9.

A detailed discussion of the cited theorems about Fourier series of several
variables and their application to partial differential equations can be found, e.g., in
Shapiro (2019). Analogously to the just given example, questions of mathematical
physics often lead to function systems arising as eigensolutions, having similar
properties as the trigonometric system. Then, one can find solutions for such prob-
lems through replacing the trigonometric system by series expansions according to
the eigenfunction system. This more general concept, which has its roots in classical
Fourier analysis, is outlined in Chap. 14.

A Warning Example

As a warning against a purely formal approach, consider the following example:

Given is the differential equation y”(x) = x — /2 on [0, 7] with the boundary

conditions y®(0) = y® () = 0. We try to find a trigonometric series solution,
o

i.e., we assume y(x) = ao/2 + Z(ak cos(kx) + by sin(kx)). By differentiating
k=1
twice term by term, we obtain with the uniformly convergent Fourier cosine series

of x — /2 on the right-hand side

cos((2k + 1)x)

o] 4 ad
— Z(akkz) cos(kx) + by sin(kx)) = = Z k+ 1)

k=1 k=0

Comparing the coefficients yields: a; = 0 for even k, by = 0 for all k, and az;+1 =
4/( (2k + 1)*) for k € N. The coefficient ag can be arbitrary. We thus obtain

Z cos((2k + 1)x)

y(x) = 2k + 1)

4 L sin((2k + 1
This also satisfies the boundary conditions, since y(3) x)=— Z M
T 2k+1)

k=0
which is zero at the endpoints 0 and 7. However, with this formal procedure we did

not pay attention whether or not all operations made sense. Namely, the procedure
must involve a serious mistake, because the problem does not have a solution at all.
Actually, differentiation of y”(x) = x — /2 implies y® (x) = 1 for all x € [0, 7],
and thus the boundary conditions cannot be fulfilled by any solution. The point is
that the series given for y©® is the Fourier series of the sgnfunction. It is zero at

s
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x = 0and x = 7, while the limits from the left and right at those points are one. The
series itself is not any first derivative, and thus not a third derivative of any function
on the entire interval [0, 7r].

7.5 Reasons for the Transition to Distributions

A Reviewing Summary

We have seen that Fourier series are appropriate to solve wave and heat equations
and potential problems in suitable domains. They also permitted to describe time-
invariant linear systems in electrical engineering or mechanics for periodic inputs
or forces. At studying such examples, we have found an approach to frequency and
spectral concepts, which are fundamental for many fields of physics and technology.
We have learned the most important calculation rules in dealing with trigonometric
sums and series and have worked with the discrete Fourier transform. With DFT,
DCT, Chebyshev polynomials, interpolation, and Clenshaw-Curtis quadrature, we
have also made first steps in numerical applications, and we have studied some
essential convergence properties of Fourier series.

Most of these results can be applied to more general classes of functions than
piecewise continuous or continuously differentiable functions. For example, the
Parseval equation or the continuity of periodic convolutions can still be proven

T

for all T-periodic functions jfxwith / | f (1)|*dt < oo. The transition to such
0

more general functions, connected with the transition from the traditional Riemann
integral to the more modern Lebesgue integral, which is more flexible in decisive
points, and finally to distribution theory is not only a mathematical pastime. In fact it
goes back to the objections against Fourier’s approach in 1807, and to requirements,
which arose from real-world application problems and necessitate such a further
development of the mathematical tools. This can easily be explained by some
examples with the knowledge we have acquired so far.

Transition to Distributions and Lebesgue Integral

For example, let us choose initial conditions f(x) of the following forms for the
vibrating string problem to study a computationally straightforward mathematical
model for a plucked string. Then, we immediately recognize at D’ Alembert’s form
of the solution (cf. p. 74) that the formally calculated solution u(x, ) is by no means
a twice differentiable function. But what should it then mean, since we want to use
it in a second-order differential equation? (see Fig. 7.3 for simple initial conditions).
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Fig. 7.3 Non-differentiable f(x) or f(x)
initial conditions

We have also seen that term-by-term derivatives of the Fourier series of periodic
functions with jump discontinuities usually no longer converge. Nevertheless, the
partial sums of the Dirichlet kernels can be well understood as approximations of a
periodic impulse sequence (cf. p. 16). Couldn’t we then consider the corresponding
Fourier series as an ideal impulse sequence and also calculate mathematically
correct with it, although it diverges everywhere? Answers to such questions, and also
reliable methods of calculation, result from the theory of distributions. Moreover,
these methods permit much easier computations compared with classical differential
calculus.

In the treatment of stable time-invariant linear systems given by ordinary dif-
ferential equations, in Sect. 5.2 for periodic right-hand sides fxof such equations, it
was assumed that fxshould be continuous and piecewise continuously differentiable.
For many applications this is a very restrictive condition. An example would be a
periodic switch-on and switch-off process, described by a discontinuous rectangle
meandering function f. The reason for this restriction was the Riemann integral
used with the traditional notion of primitive functions.

The Bessel inequality and the Parseval equation have been shown without theory
effort only for piecewise continuous periodic functions. The Parseval equation for
functions fxfrom L2([0, T']) (cf. S. 62) removes this restriction and opens up
practicable application of Fourier series in the study of linear systems (cf. also the
remark on p. 66).

In these generalizations, the Riemann integral is replaced by the Lebesgue
integral. The Lebesgue integral completes the set of integrable functions in a similar
way as the real numbers complete the set of rational numbers. There are examples
where a sequence (f,),en Of Riemann integrable functions on [a, b] C R for
n — oo converges to a function fxwhich is no longer Riemann integrable. In
particular, then it does not hold

b

b
nlgrgo/fn(t)dt =/nlirgo fu(®)dr.

a

V. Volterra (1860-1940) gave an example of a differentiable function fxon [0, 1]
whose derivative f’is bounded but not Riemannian integrable. In particular, it does
not hold

1
/f/(t)dt = f() = f(0).
0
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With the Riemann integral in the case of functions of several variables, the
interchange of the order of integration and the equality

d b b d
/(/ f(x,y)dx)dy=/</c f(m)dy)dx

in general is only true if, besides the existence of the integrals

b d
/f(x,y)dx and /f(x,y)dy,

it is required that fxis bounded. The interchangeability of the integration order is
therefore not ensured for improper Riemann integrals without additional conditions.
Moreover, the existence of the improper Riemann integral of a function fxis not
equivalent to the existence of the corresponding integral of the function | f].

Now, a practitioner wants to work on his actual problem without having to worry
about convergence problems all the time. In fact, he would like to differentiate
and integrate series term by term, convolve, interchange limit processes in integrals
and series—and usually does so without too much concern. Why such questionable
procedures, nevertheless, and often just because of this, produce meaningful results
will be discussed in the next chapter on distribution theory.

From now on we use the integration theory, established in 1902 by H. Lebesgue
(1875-1941), which is already taught today in beginners’ lectures and which is
more efficient with respect to interchange of integrals with limits and therefore
computationally simpler than the Riemann integral.

For application-oriented readers, there will be no additional difficulties in the
following chapters compared to the usually acquired integral calculus. Mathemat-
ically interested readers will find the used theorems from integration theory with
corresponding literature references in Appendix B.

7.6 Exercises

n—1 -2
t
(A1) Prove that Y sin((2k + D)) = s (nt)
= sin(rt)

7-[ .
t
sin(t) dr

(A2) Compute approximately by Taylor series expansion Si(7) = /
0
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(A3)

(Ad)

(AS5)

(A6)*

(A7)

Compute the gradient of the Fejér means at the point 7y = O for the sawtooth
function S(¢) = (m —1)/2in 10, 2x[, S(t + 2kmw) = S(¢), k € Z. Compare
the corresponding gradients of the partial sums of the Fourier series of .
T/2
1

Show that the approximations T / f(t —5)K,(s)ds converge uniformly

-T/2
to fxfor continuous T -periodic functions fxand T-periodic summation
kernels K, which were introduced on p. 138.
Show that the Fourier series of the 27 -periodic function

o — {—1 fort €] — 7, 0],
+1 fort €]0, 7],

has strictly positive partial sums in ]O, [, and strictly negative partial sums
in ] — 7, O[. Consider for sufficiently large n € N the Fejér means and the
tolerance region around the graph of f, where they can be restricted to.

A Fourier Series Representation of an Unbounded Periodic Function.

(a) Show that the Fourier series of a 2w -periodic function, which is abso-
lutely integrable on [0, 2], converges to f(fg) provided fxis differen-

tiable at 7.
t
(b) Show that f(f) = In|2sin <§)
cos(nt)

, t # 2km, k € Z, is absolutely

integrable on [0, 27 ].
o0

(¢) Show that f(r) = — Z

n=1
t
2 cos (—)
2

Hint: Examine the proof of Dirichlet’s theorem on p. 130 and use S(0+) =
7 /2 for the sawtooth function Sx(cf. p.. 26).

Let a square Q = [0, L]* be given, at the boundary of which a loaded elastic
membrane is fixed. The side length is L = 1 m, the tension K = 2 N/m. The
area density of the external force is constantly f(x, y) = 1 N/m?.

Calculate an approximation of the displacement u(x, y) of the membrane in
the equilibrium state, i.e., solve —kAu = f in Q, u = 0 on the boundary of
Q, replacing the function fxby the partial sum

Z by m sin (nnx> sin (mrry)
o L L

for t # 2km, k € Z, and fxfrom (b).

o0
t
(d) Show In =Y (! COSI) vt £ 2k + Dy k € Z.
n

n=1
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(A8)

7 Convergence of Fourier Series

of its Fourier series expansion. What is the calculated displacement at the
point with coordinates x = y = L/2? Generate a graphical representation
of this approximate solution and compare it with the figure on p. 258.

Show that the periodic convolution of f, g € L2[—71, 7], is continuous. Use
Holder’s inequality (cf. Appendix B) and limy¢ || f(. + h) — f()]2 = 0.
Implication: Parseval’s equation in L*[—m, ]! Elementary proofs of the
given assertions can be found in Zygmund (2003).



Chapter 8 ®
Fundamentals of Distribution Theory Qe

Abstract The fundamentals of distribution theory are developed. The Dirac
impulse is introduced motivated with a circuit that causes a derivation of an input
signal. Starting from this example, the space of distributions is defined and examples
of its elements are given. Such elements are, for example, all locally integrable
functions, the principal value, and other pseudofunctions like rational functions or
1/1tl. The calculus of distributions is developed to the extent as necessary in the
further text. This includes generalized derivatives and convolution of distributions.
The results are generalized for multidimensional parameters and test functions
over the complex scalar field. Examples for every topic and exercises complete the
chapter.

8.1 Characterizing Functions by Their Means

In basic mathematics or physics lectures we have learned to describe, for example,
oscillations or voltages, current, etc., by functions f(z), t € R, and to calculate
with them. The idea associated with such a mathematical model is that the values
of physical quantities of interest, for a time parameter ¢, are known exactly at any
time.

But this is an idealized approach. In real practice, physical quantities are known
mainly from measurements. If, for example, f(¢) = v(t) = x(¢) is the velocity of a
train, then it is common to estimate the instantaneous velocity v(#g) at a time 7y by
the average velocity in a certain time interval [y — ¢, o + €]:

+o0
1
v~ [ v0e0d = Gt +e) - x(o - ).
-0
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1
with ¢, (1) = % for |t — ty] < &, o (t) = 0 for |t — tg] > €. With ¢ = 1/n follows

+00
v(to)ZnILHOlo/v(t)(m/n(t)dt-
—00

The instantaneous velocity is a (ideal) limit of mean values, and in practice a
velocity is never pointwise accessible at all. More generally, an ideal measurement
of the value f(f9) of a continuous function f at a time f9 can be described
schematically by Fig. 8.1.

However, a realistic measuring device, e.g., an electrical circuit, will show a
rise and fall output during this sampling. A real measurement will therefore never

+00
exactly yield the sampled value f (), but a weighted average / f(@®)(t)dt of the
—0oQ

function f with a weight function ¢ characteristic for the measuring device. This is
schematically shown in Fig. 8.2:

However, mathematically we can show that any continuous function f can also

+00

be reconstructed pointwise by its weighted means / f(®)p(¢)dr with sufficiently

—00
many weight functions ¢.

f Measured value f ()
— | Sampling system ——

Fig. 8.1 Schematic sampling

Measuring device with

+00
f ft) = | £O(0)a
weight function ¢ -

Fig. 8.2 Schematic measurement
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Pointwise Reconstruction of Continuous Functions by Means

We consider the following smooth weight function (see Figs. 8.3 and 8.4):

Le—l/(1=1hH)
o) = c-e for |t| <1
0 for |t]>1,

+00
where the constant ¢ is chosen so that / e)dt = 1.

—o0
With this infinitely often differentiable function ¢, we define for #p € R and
neN

Pio.n (1) = ne(n(t — 10)).

+00
1
We then obtain ¢y, ,(t) = 0 for |t — 79| > — and / @rp,n(t)dt = 1foralln € N.
n

—0oQ
(¢1y,n concentrates for increasing n more and more around #y.)

0.5 T

o(t)/c
0
| L
—1 0 1
Fig. 8.3 A smooth weight function, called Sobolev’s mollifier
T T T

3L $tg,n=10(t)/c

0 to— 15 to to+ 15

Fig. 8.4 A scaled version of Sobolev’s mollifier
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For a continuous function f, we therefore observe that

to+1/n

+00
| [ 10puatrt = | =| [ 0 = faonpnaoa
—00 to—1/n
to+1/n
< s 1fO- Sl [ gnadt =30
lt—tol<1/n 01/ e

—
=1

Thus, the function value of f at any point ty can be recovered from the weighted

+00
means / S @)y, n()de:

+00
flto) = lim_ / F (1.0 (0)d1.

The term “mean” is appropriate according to the mean value theorem of integral
+00

calculus, since / SO @yn()dt = f(1,) for a certain point 1, close to 1y with
—0o0
distance |y — t,| < 1/n.

Attentive readers notice the mathematically same procedure as in the represen-
tation of continuous periodic functions by limits of their Fejér means. The Fejér
kernels as weight functions have been replaced here only by the smoothing kernels
@1y,n (cf. Chap. 7).

Summary We normally obtain information on a physical function f by measure-

ments, i.e., the object f is determined by certain weighted mean values of f. Instead

of giving physical functions f(¢), ¢t € R, point by point, we can describe them by

their means: Each weight function ¢ from a suitable vector space D is mapped to
+00

the mean value / S (@®)e(¢)de. If the set D of weight functions ¢ is rich enough,

—00
then we can find continuous functions f also pointwise by the linear mapping

+00
Tr:D— R, Tr(p) = [ f()e)dr.

This is one of the basic ideas of distribution theory. In the following section we
introduce a suitable, i.e., a sufficiently large, set of infinitely often differentiable
weight functions. Instead of weight functions we speak of test functions. All
functions are assumed to be real-valued until further notice.
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8.2 The Space of Test Functions

We consider functions ¢ : R — R which are arbitrarily often differentiable and
zero outside a bounded interval [a, b] (depending on ¢). The support supp(p) of ¢
is the closure of the set { # € R | ¢(¢) # 0 }. A bounded support of ¢ is compact,
i.e., a closed and bounded set in R.

Definition The set D of all functions ¢ having a compact support is called the space
of test functions.

We immediately see that D is a vector space over R, i.e., A¢1 € D and ¢ +¢7 €
D for any ¢1, ¢ € D, . € R. The space D contains very many functions: Examples
are the functions ¢(¢) and ¢, , (1) = ne(n( — tp)) used in the last section; the
support supp(¢y,,») of ¢y, » is the closed interval [#g —1/n, to + 1/n]. Also products
of these functions with arbitrary, infinitely often differentiable functions generate
again test functions in D.

Convergence of Test Functions

Two weight functions ¢; and ¢, in D are only “slightly different,” if besides ¢
and ¢ also all their derivatives (pik) and (pék), k e N, differ only slightly. The
experience shows that approximately the same measuring devices, i.e., those with

only slightly different weight functions ¢; and ¢, at measurement of f, yield
+00 +00

only slightly different measured values / f(@®)p1(¢)dt and / f(®)pa(t)dr. This

—0oQ —0oQ
observation finds its mathematical equivalent in a continuity requirement for the

+00
mapping Tr(¢) = / f(®)e(t)dt. For this we need an appropriate definition of
—00

convergence in D, which expresses what “only slightly different” test functions are.

Definition A sequence (¢,),cN of test functions converges against ¢ in D if there
is a bounded interval containing the supports of all ¢, and ¢, and if furthermore the

@, converges uniformly to ¢, and all derivatives of .’ converge uniformly to o®,
k € N, in other words if for all n € N and a suitable > 0 hold true

on(t) =0 and @) =0 forl|t|>r,

and if for all k£ € Ny

sup | (1) — P ()| — 0.
IER n—o0
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We then denote ¢ = D-lim ¢, to clearly distinguish this convergence definition
n—od

from other types of convergence.

e~ /=) for lt] < 1
0 for [t >1
differentiable and zero for || > 1. The support of ¢ is the interval [—1, 1]. This
is valid also for all derivatives ¢®).

Example The function ¢(t) = is infinitely often

The sequence ¢, = — ¢ converges in D to the null function: D-lim ¢, = 0.
n n—oo

Since all derivatives ¢ are bounded, it follows

1
o (1) = = p® (1) —> 0 uniformly.
n n—o0

. e /=) for It <n
In contrast, the sequence ¥, (1) = ¢ (L) = and all

0 for [t| > n

<
n

the derivatives w,ﬁ") likewise converge uniformly to zero, but this sequence does not
converge in D, because there is no bounded interval containing jointly the supports
of all the functions .

The distribution theory involves the study of linear, continuous mappings
on the vector space D of test functions, thus the study of physical objects by
means of weighted averages. This theory goes back to P. Dirac (1902-1984) and
was developed about 1935 by S. L. Sobolev (1908-1989), in the years 1945—
1950 by L. Schwartz (1915-2002) and others. It makes possible, for example, a
mathematical model for impulses and a differentiability notion also for functions
with discontinuities.

8.3 The Dirac Impulse

Impulses in Electrical Engineering

In electrical engineering, there are circuits that have a differentiating effect
(Fig. 8.5):

An ideal operational amplifier in the above circuit yields for the currents I, =
I, = 0 and for the voltages U, = U),. From Kirchhoff’s law for the currents and
voltages, we have the following nodal equations:

U, - U, du
Ky: 4 "t _c—22L =0,
R dr
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Fig. 8.5 A circuit that R
differentiates the input
voltage U, to output
voltage U, K
U fn S—
K" .
Il Ji '
p
C
Ue R |:J —_ C Up U a

AW -1y Uy

K> : =0.
: dr R
With U, = U, we obtain by equating the left sides
du,
U, =RC T

The circuit realizes a (approximately ideal) differentiator.
As input U, (t) we now choose a DC voltage Uy beginning at t = 0:

0 for <0
1 for ¢>0.

Ue(t) = Ups(t), s(t) =

U,(t) is not differentiable at + = 0. This voltage function is again a simplified
dU.(1)

model with an ideal switch, which raises the problem how U,(t) = RC is

to be understood. We approach the answer by considering the step function U,(¢)
as a limit of a sequence of smooth (more realistic) voltage functions U, (¢) with
increasingly steep slopes:

U,(t) = lim U,(t) for teR.
n—>0oo
As a model, we could start with the smooth function

e /0=) for |f] <1

v = {o for |1] > 1

and build smooth voltage functions U, () (see Fig. 8.6)

0 for kt <0
Uity =3Uy-e-y(nkt —1/n)) for 0<kt <1/n
Uo for kt > 1/n
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[
Up(t) —
Us(t) =—
) / -
0
| | |
0 0.3 0.5 1

Fig. 8.6 Elements U;, U3 of a sequence of smooth voltages converging to Ups (t)

T
RCU;(t) —
RCU4(t) —
Uy —
0
| | |
0 0.3 0.5 1

Fig. 8.7 The smooth output voltages RCU;, RCUj of the circuit

(e = e! is Euler’s number, kz physically dimensionless with the value of t).

We would expect that the output voltages RCUy f»(t) = RCU; (¢), associated
with inputs Uy, (¢), approximate for increasing n € N the response U, (t) of the
differentiator to the step function input U, (r). We illustrate the functions RC U, ()
for R=1£,C = 1FinFig.8.7:

For fixed n € N and input U,(¢), we thus find as the differentiator’s output
the voltage surge RCUy f,(t) = RCU, (t), approximating a voltage impulse for
increasing n. We always have

+o00
/ RCUy f,(t)dt = RC(U,,(1/n) — U, (0)) = RCUj.
—0o0
On the other hand, since f,(t) = U, (t)/Up = 0 for kr < 0 and kt > 1/n, the

following holds true in the sense of pointwise convergence, since we get kt > 1/n
for every ¢t > 0 with sufficiently large n:

lim f,(t) =0 forall t € R.
n— oo

If we would use in the idealized limit case U,(t) = lim RCUjyf,(t), then we
n— o0

would have U,(t) = O for each t, whereas interchanging the limiting process with
integration we would find:
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+o0 +oo +o00

/Ua(t)dt:/ lim RCUyf,(t)dt = lim /RCUof,,(t)dt:RCUo.
n—0oo n—oo

—00 —00 —00

Such a function U, (t) cannot exist in classical sense. Mathematically, the situation
is as follows: Given is a sequence of infinitely often differentiable functions f;, ()
such that

lim f,(t) =0forallt € Rand / fa(®)dt =1 foralln € N.
n—od

Definition of §-Impulses

There is no classical function 8 (t) so that pointwise 6(¢) = hm Jan (@), fu(®) as
+00

above, and / S(r)dt = hm / fu(H)dt = 1.
—0o0
Although 6(¢) as a functlon of ¢+ € R cannot be defined, it is however quite
+00

reasonable, to build the limit of the integrals / fn()@(t)dt for n — oo and each

—0o0
test function ¢. Therefore, we do not define the §-impulse pointwise for ¢ € R, but
by integral values with test functions ¢ € D. The functions f, in our example are

given by f,(t) = U, (t)/ Up.
Definition The §-impulse is defined by the mapping

¢ €D —d(p) = lim / Jn(De(r)dr.

In many cases the notation §(¢) = lim f,(¢) is used in literature and §(p) is
n—oQ

denoted by an integral symbol:

+00 +o00
5(p) = / 8(D)p(n)dt = lim / Fa®p (@)t

The included argument ¢ in the notation &(¢) for the §-impulse only serves as a
reference to the parameter of the right side and does not mean that function values
can be assigned at individual points ¢. The integral on the left side is not an integral
in the common sense, but merely a symbol, whose meaning is determined by the
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right side. If one writes symbolically §(¢) = nlingo [ (1), then the above corresponds
formally to an interchange of the limit with the integration. An integral by definition
is also the result of a limiting process. This interchange of limit processes leads
to contradictions in the sense of classical functions. §(¢) is not a function of 7 in
common sense but becomes a generalized function or synonymously a distribution.
This distribution is also called Dirac distribution, Dirac impulse, or briefly §-
impulse.

We also use the mentioned notations and learn how to work correctly with
generalized functions.

Evaluation of Dirac Impulses, § as Sampling Functional

Despite the still common notation §(¢), this generalized function itself has no value
at any single point t. The use of §(¢) is always understood in the sense that only

applying

+00

5(¢) = / 5(1p()dt

—00

with a test function ¢ yields a numerical value. We want to calculate this value and
show that it results in

“+o00

8(p) = /3(t)</)(t)dt=<ﬁ(0)-

—00

We had in our example f,(¢t) = U, (t)/Up with

0 for kt <0
Up(t) = Uy -e-y(nkt —1/n)) for 0<kt <1/n
Uy for kt > 1/n

and

V) = e~ /0= for 1] <1
0 for |t > 1.
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For every n € N, we have f,, > 0; f, is infinitely often differentiable with support

1/n

+o0
supp(f) = [0, 1/n], and / fa(®)dt = fn(t)dt = 1. For ¢ € D now follows
0
—00

1/n

+00
| / Fue®dt = O] < sup o) - 9(0)] / fa)dt —> 0.
—o0 0

0<1<1/n

The assertion is thus already shown:

400 +00
| / 81¢(ndr — 9(0)] = | lim / frp @) dt = 9(O)] =0,

If now & (¢ — o) denotes the §-impulse shifted by #g, defined for ¢ € D through

+00 0
[ a6 =wewar = tim [ £~ wewa.

it holds true correspondingly that

+00 +00
/B(I—to)w(t)dt= /8(t)¢(t+to)dt=<p(to)-

Such a shifted impulse appears as output at our (ideal) differentiating circuit, if the
input voltage Ups(¢) is shifted to Ups (¢ — tp).

The introduction of § by the above chosen sequence f;, shows that we obtain not
only for test functions, but for arbitrary continuous functions f : R — R and every
to € R the outcome

+oo

/ 5t — 10) £ (1)t = f(10).

—00

Result Applying §-impulses is an appropriate mathematical model in describing
pointwise evaluation or sampling processes of continuous functions. We also say
that §(t) is a sampling functional.
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Dirac Distributions as Generalized Density Functions

In physics (generalized) §-functions are often used to specify discrete distributions,
n

for example of masses or charges. One uses for example o(x) = Z m;8(x — x;)
i=1

as generalized mass density to denote n point masses m; at the points x; (on the real

axis). Then, the same formulas can be used for calculations with continuous and

discrete distributions. For example, the center of gravity S of the n point masses m;

in x; fulfills with that notation

+00 +00 n

[ xo(x)dx [ x Y mis(x —x;)dx
S = —00 _—oo  i=]

+o00 +00 n

[ o(x)dx [ Y mis(x — xi)dx

—00 —o0 i=1

n +00 n

Yomi [ x8(x —xp)dx Y mx;

i=1 —oo i=1

n

Xn: f 8(x — x;)dx Zmi

i=1 i=l1

Remark Comparing Appendix B, we recognize that integrals of the form

+00 n
/ f®e() dx = " m; f(x;)
S i=1

define the discrete measure m, which gives the mass m(I) = Z m; to an interval
x;el
I in R. Thereby, m (1) measures the mass distributed in /. Often also

n
dm = o(x)dx = Zmi(S(x —x;)dx
i=1

is denoted as description of the measure m with generalized density p. The
introduced term “distribution” is deduced from this aspect.

The 3-Impulse as Derivative of the Unit Step Function

For our example with the simplified input voltage U, () = Ups(¢), the distribution
RCUps(t) means the (ideal) impulse, which appears at the time t = 0 as output of
the treated differentiator with the impulse strength RC Uy (Fig. 8.8):
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Fig. 8.8 Sch i
dilligferentiat((\;rematlc UO S (t) d RCU 0 1) (t)
—P> RC T g
AUos(t) RCE
a RCUpo(t
Uo > 0d(t)
>t t
0 0

Fig. 8.9 Graphical representation of an impulse with strength RC Uy

Therefore §(t) can be seen as the generalized derivative of the unit step function.
We can illustrate §(¢) by an arrow in Fig. 8.9, whose height corresponds to the
impulse strength.

Remark If Uy is a voltage in V, and s(¢) is a physically dimensionless function of
time ¢ in seconds, then §(¢) can be given the physical unit 1/s. The impulse strength
then has the unit Vs, and the impulse RCUy§(¢), appearing as output of our ideal
differentiator, has consistently again the voltage unit V.

Summary We recognize that the map

+00
gD 8(p) = / 5(Ne(t) di = 9(0)

—0o0

is a linear continuous operator from the space D of test functions into the reals.
Thus, our first distribution §(¢) is an example of the concept outlined in Sect. 8.1
of describing physical quantities—in this case an impulse—by mean values. The
impulse 6(¢) cannot be directly measured at any time, but averaging with weight
functions ¢ € D provides numerical values. As some readers probably already
know from basic lectures, it is possible to describe linear time-invariant systems in a
simple way by means of its impulse response. In this context, the Dirac distribution
can be interpreted as a right-hand side and possibly as a solution part of linear
ordinary differential equations with constant coefficients. We will discuss this in
more examples later.

These few remarks alone indicate a variety of possible applications. In the
following sections the concept of distributions and their use will be explained in
more detail.
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Note From now on in all subsequent text, a function f is called integrable, if it is
Lebesgue -integrable; in particular, then | f| is integrable. If the improper Riemann
integrals exist on R or on an open or half-open non-empty interval for measurable
f and | f|, then f is also Lebesgue-integrable there and its Riemann and Lesbesgue
integrals are equal (cf. Appendix B for more details).

8.4 Distributions
Definition of Distributions

Quite analogous to consider the §-impulse as a linear mapping from the vector
space D of test functions to the real numbers, we define distributions in general.
Distributions are also called synonymously generalized functions.

Definition A distribution 7 is a linear continnous map 7 : D — R, i.e., fora, b in
R, ¢1, 2 € D and ¢ = D-lim ¢, in D hold true: T (ap; +byr) = aT (p1) +bT (¢2)
n—oo

and T'(p) = lim T (g,). The set of all distributions is denoted by D’.
n—oQ
Remarks

1. It is immediately seen from the definition that D’ is a real vector space.
2. For the value T (¢) of a distribution 7" with a given test function ¢, in literature
also the following notations are found:

+00

T(p) =(T,p) =(T(1), (1)) = / T(t)p(r)dr.

—00

We will use them as well. The motivation for these notations are based on the
subsequent theorem and the following examples of distributions. We write 7 (¢)
instead of T, if we want to indicate the variable of the underlying parameter
space, even if T (¢) is not to be understood in the sense of a function value at a
point 7.

3. For concretely given linear mappings 7 : D — R, it is usually easy to show
the required continuity. There are also no physical linear mappings 7 : D — R
known, which are not continuous on D. Readers interested in the topological
structure of D and D’ are referred to the books of Schwartz (1957) or Rudin
(1991).

The §-distribution can be represented as a limit of a sequence of infinitely many
differentiable functions f; as we had seen before. The following is likewise true in
general:
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Theorem 8.1 For each distribution T there is a sequence ( f,)neN of infinitely often
differentiable functions, so that for each test function ¢ € D holds

+00
T(p) = lim / fuDe)dr.

The functions f, can be chosen so that they have bounded support, i.e., that they are
test functions.
Notation We write T = D'-limf, and call T the distributional limit of f,, or the
n— o0

weak limit of them, in other words, the f, are weakly convergent to T.

A distribution 7T is thus the limit of a sequence of classical functions (fy),eN.
In general such a limit is not a limit in the sense of pointwise convergence of the
function sequence, as we have already seen for the § impulse. However, according

to the above theorem: The weighted means of f, with a test function ¢ converge to
a real number for n — oo. This number T (¢) can be obtained in arbitrarily good

approximation by an integral [ f;,(#)@(¢)ds with an approximating function f, for

the distribution 7, if only n is sufficiently large. We prove this fact later (p. 201) by
theorems on convolutions and turn to examples first.

Basic Examples of Distributions

All functions in this and the next section are assumed to be real-valued. The
extension of definitions and examples to the case of complex-valued functions and
distributions is given in Sect. 8.6:

1. The impulse § : D — R is a distribution in the sense of the definition above.
With c1, 3 € R, ¢, and ¢, in D for n € N, ¢ = D-lim ¢, we have
n—od

(8, c191 + c202) = c191(0) + c202(0) = 1 (3, 1) + c2(3, ¢2) ,
lim (8, ¢u) = lim ¢,(0) = ¢(0) = (5, D-lim g,).
n—oo n—0oo n—0oo
Therefore, § is linear and continuous on D. The same holds true for a shift of §
by #p to 6(t — tg).

2. Every locally integrable function f (i.e., f and |f| are integrable on every
bounded interval) can be considered as a distribution Ty by

+00

Tr(p) = (f.9) = / fe®dt (¢ €D).

—0o0
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This also motivates the notation, mentioned in the previous remark, for distribu-

tions in general. The definition shows immediately that T is linear on D.

If ¢ = D-limg, and [a, b] an interval containing the supports of all ¢, and g,
n—oo

then we obtain

ITr(on) — Tr(@)| < sup |@n(t) — ()] / |f(#)|dr —> 0.
tefa,b] @] n—>00

Therefore, the continuity of 7 on D follows by the uniform convergence of the
@n to @ on [a, b]. Thus, with f a distribution is given through

+00
Tf(¢)=/f(t)<0(t)dt-

For example, the function In(|¢]) can be considered as a distribution. The aspect,
to consider locally integrable functions now also as distributions, corresponds
exactly to the concept, presented in Sect. 8.1, that a function can be represented
by its mean values with weight functions ¢ from D. Thus, we already know a
very large set of distributions.

Distributions which are such classical, locally integrable functions are called
regular. Distributions which are not locally integrable functions, e.g., the §-
distribution, are called singular. For regular distributions Tf it is common to
write again only f instead of 77, and to specify their values for ¢ € D by the
common alternative notations

+00
Tr(p) =Ty, 0) = {f.0) = / fDe@)dr.

Two functions f and g on R are equal if and only if f(r) = g(¢) holds true
for all ¢+ in R. Equivalently, two distributions 7" and G are equal if and only if
T(¢) = G(p) for all test functions ¢ € D. For two regular distributions 7y and
T, and any test function ¢ all integral values T (¢) and T, (¢) are equal, if f and
g differ, e.g., only at finitely many points, in general at most on a null set (cf.
Appendix B). In such a case we have Ty = Ty, i.e., these both distributions are
identified.
3. Principal Values, Pseudofunctions, Regularization of Divergent Integrals.

In addition to regular distributions there are, besides the § distribution, many
singular distributions. Typical examples arise with divergent integrals of func-
tions with singularities such as rational functions. Rational functions and their
Fourier transforms play a major role in linear systems theory and circuit design
(for applications cf. Chap. 11). We therefore consider such examples of singular
distributions:
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(a) The Cauchy Principal Value. Starting point is the function f () = 1/t, ¢ #0,
&€
which is not locally integrable on R. The improper integral / f@)dt,e >0,

—&
is divergent. On the other hand, for a > 0 there exists the limit

—& +a
1il})1+|:/f(t)dt+/f(t)dt:| =0.

The Cauchy principal value vp(f) of f is defined by

—& +0o0
Vp(f)(¢)=€1_i)rg+[/f(t)so(t)dt+/f(t)w(t)dt}-

To prove that this is a distribution, we observe that we have for ¢ € D with
supp(¢) C [—a,al,a > 0,

(/) = 11m+|: / GURLIUI /go(tm

—a —a

Jr/fp(O)d +/<p(t);<p(0)dt}_

& &

By the mean value theorem |¢ () — ¢(0)| < [t| max_q<;<q ¢’ (1)], the limits
of the two integrals at the left and right exist for ¢ — 0, ¢ > 0. The
two integrals between add up to zero. From this it follows that vp(f)(p)
is defined for all ¢ € D.

Linearity of vp(f) on D follows immediately; its continuity on D is implied
by the last inequality: It suffices to prove continuity for 'Zn);}lolgl on — 0O,

by virtue of linearity. The continuity of vp(f) is thus seen by the estimate
Ivp(f)(¢n)| < 2a max_q<i<a l@;, (1)| for supp(e,) C [—a,al,n € N.

The principal value vp(f) is a singular distribution (valeur principale, in
English literature also denoted by pv(f) for principal value). 1t is also
called a regularization of the divergent integral of 1/t. For ¢ € D with
0 ¢ supp(p), vp(f)(p) is simply the (convergent) integral of f(¢)p(?)
over R:

vp(f)(p) = / @dr:/wdt

t
—00 0
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(b)

(©)
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Analogously, the principal values vp(f) are defined for other functions with

singularities like f(t) = tan(f) or f(t) = cot(t), provided the involved

integrals are convergent (cf. pp. 213 and 299).

The Pseudofunctions pf(t+~"), m € N. For the functions ¢t~ with m > 2 the
(0.¢]

integrals /t_m<(p(t)+(—l)’”gp(—t)) dr are in general divergent for & — 0,

&

the principal values as in a) therefore do not exist.

In order to compensate the singularity at + = 0, one can subtract in the
regularization from each test function ¢ its Taylor polynomial 7;,—1¢ of
degree m — 1 about the singularity + = 0 and substitute for ¢ the Taylor
remainder R,,¢ = ¢ — T,,—1¢. The divergent part of the integral is thereby
thrown away. The resulting distribution is called a pseudofunction and is
denoted by pf(r=™).

According to Hadamard (1932), this is the finite part (partie finie) of the
divergent integral. The pseudofunction pf(z=™) is thus deﬁned forp € D,

<o<k>(0> y
> 1, with the Taylor remainder R, ¢(t) = ¢(t) — Z , by
k=0
o
pf(t™™) (@) = /fm (Rmca(t) + (—l)mR;ngo(—t))dt
0

By Taylor’s formula we have |R,,¢(1)| < |f7|l max{|p™ (1)| : t € supp(p)}.

The improper integral pf(t =" )(¢) is therefore convergent for all ¢ € D.
Linearity and continuity of pf(t =) on D follow immediately. For m = 1
we have pf(r~!) = vp(tr~!). An advantage of this regularization according
to Hadamard is that the considered Taylor polynomial about # = 0 vanishes
for ¢ € D with 0 ¢ supp(¢). Then R,,¢ = ¢ and pf( ~"")(¢) coincides with
the convergent integral of 1 =" ¢(¢):

tm

+o0 00
—D"o(—
pf(t ™) (@) = / w(t)d _/w(t)+( )" o( t)dt 0 ¢ supp(0)).

—00 0

o
1) —2¢(0 —t
As an explicit example, we have pf(t_z)(go) = / v () (piz) o )dt
0
The Pseudofunctions pf(t;;™), pf(t_™), and pf(|t|™™) for m € N.
For 1™ = s(t)t™™, s(¢) the unit step function (Heaviside function), ¢ € D

and R, the Taylor remainder as before, we first consider
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00 1 00

oo ., (m—1)
/memw(t)dt=/f’”Rmso(t)dt+/f’"Rm_lw(t)dr—/ Oy,
1 (m =1t

3 & 1

where Rop(t) = ¢(t). The first two integrals of the right-hand side are
convergent for all ¢ € D with ¢ — 0. The third integral of the right-hand
side is divergent.

A possibility for a regularization of 7, is therefore to replace this divergent
part by zero, and to define the pseudofunction pf(r;™) by:

1

pf(t ") (@) = /mem</>(l)dt-|r/l 17" Ry—1p(1)dt
0

7 (m—1)
—m 0 e
= /[ (Rm_lgo(l) — mf ls(l - t))dl.
0

Linearity and continuity on D are easily seen and left to the reader.
Analogously we can define the pseudofunctions pf(¢~™) and pf(|z|~™) with
tZ" = s(=) ™

o]

(m=1) 0
pftZ")(¢) = /t"”((—l)mme(—tH )
0

— M s —t))dt

pf(Jt]™") = pf(t ™) 4+ (=" pf(t=™).
From this we get pf(r =) = pf(z;"") + pf(z_"™"), and for even m € N we also
obtain pf([t|™") = pf(r™™).

Regularizations as above are extensions of bounded linear functionals on the
subspace of test functions with a support not containing a singularity like r = 0
in the examples. Therefore, such extensions are not uniquely determined. Think
of a linear functional T of the form T (x) = ajx; + apx, for a vector x =
(x1,x2) € R? c R3. Even in the finite-dimensional case you have infinitely
many possible extensions of T to a functional on R3. There is extensive literature
on regularizations of divergent integrals, in particular for the case of several
variables in physics. For more it is referred, e.g., to Schwartz (1957), Gel’fand
et al. (1964), Horvath (1966), or Zemanian (2010).

4. For a measure m on R with a density function g, often denoted by dm = o(x) dx,
a distribution

+00
T () z/wdmz/ p(x)o(x)dx (p eD)

—00



170 8 Fundamentals of Distribution Theory

is defined. Generally, any measure m (cf. Appendix B) defines also a distribution
by T(p) = / odm (¢ € D). Distributions therefore are generalizations of

functions and of measures as well.
The measure m above, with an integrable density function o, corresponds to
n

the regular distribution 7}, and the discrete measure m = Zmié(x — x;) (cf.
i=1
p. 162) is identified with the singular distribution S

S(e) = (D _mid(x — xi), p(x)) = /wd’rﬁ =Y mip(x).

i=1 i=1

Remark In application problems also expressions of the form 7 (¢) must be evalu-
ated, where ¢ is not necessarily a test function from D. However, given distributions
T can often be defined as continuous linear functionals on a larger class of functions
than D. The space D is a set of functions on which all such linear functionals T
operate together. For example, the Dirac distribution §(p) can be defined for all
¢ which are continuous around zero; regular distributions 7 can be extended to
all ¢, for which the product fg is integrable. The pseudofunctions pf(z;.™) can be
applied to all sufficiently fast decaying, arbitrarily often differentiable functions ¢,
etc. Restricting the functionals 7' to the common domain D, the distribution theory
provides a calculus that can be used for all such functionals T'.

In later chapters about the Fourier transform we will take up this remark, and
work also with another common test function space which is larger than D (cf.
Chap. 10, p. 288).

Summary Besides the classical concept of functions, it seems reasonable to the
engineer or scientist understanding weighted averages from measurements of an
object T as a distribution. The object of interest is the distribution 7' with its
properties. Its values T (¢) on test functions are numerical values, which are single
weighted means from single measurements of 7'.

An engineer can, as in the preceding example 2, straightforwardly consider
locally integrable functions f as the corresponding distributions 7. He or she
knows from experience that a periodic rectangular function f in practice is realized
approximately by a finite superposition of harmonic oscillations. Thereby, the
ideal rectangular function f is to be regarded as a distribution, namely as the
distributional limit of the infinitely often differentiable partial sums of the Fourier
series of f. The approximation can be so close that, e.g., power differences
in comparison to the ideal function f (these are also integral means) become
arbitrarily small; and calculating with f as a simple model is much easier than
calculating with a Fourier expansion or a possibly more realistic smooth function as
in our differentiator example from the beginning, which is complicated to describe
analytically.
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Analogously, we can imagine every distribution as such a limit of classical
functions, limit in the sense of existence of limits for weighted means and not
necessarily pointwise. Often enough in practice only such averages of physical
quantities are of interest. Attentive reading of technical literature shows that in many
cases it is calculated “distributionally,” without this being explicitly noted.

The advantages of this concept regarding differentiation and other mathematical
limit processes will become apparent in the following sections, where calculating
with distributions will be explained.

8.5 Calculating with Distributions

Distributions are characterized by the fact that you can much easier compute
with than with conventional functions. For this it is necessary to introduce some
operations in D’. For the derivative of a differentiable function f, we use the
notation f’. For the following introduced generalized derivative of a distribution
T (1), we use the notation 7 (7), later again also T'(z).

Differentiation of Distributions

Distributions can be differentiated as often as you like without any restrictions.
To see this we consider a distribution T = D’-lim f,, all f, arbitrarily often
n—oo

differentiable, and ¢ € D with support supp(¢) C [a, b]. Then it follows through
integration by parts that the following limit exists:

+o00 b
ng&/JHMMMhﬂg&[ﬁmwﬂﬁ—/ﬁwwﬁmq
—00 a

=0

You also have
+00 +00
lim / fr®e()dt = — lim / f®e' @)dt = =T (¢').
n—oo n—oo
—00 —00

Therefore, the derivative T of a distribution T can be introduced as follows:

Definition The derivative 7 of a distribution 7 = D’-lim f, is defined by
n—od

T = D'-lim f.

n—oo
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For ¢ € D we have

T(p) = —T@).

For regular distributions Ty we also write again f instead of Tf Linearity and
continuity of 7 on D are easily proven. For ¢ = D-lim¢,, and a, b € R it holds

m— o0

true that
lim T(gn) = — lim T(g,) =-T(p) =T(p)
m—0o0 m—0o0
T(ag1 + b)) = =T (ag| + bgy) = aT (p1) + bT (¢2).

Higher derivatives of order k are analogously defined by
*) — D' 1im £O
r = 2t 0.
Applying to ¢ € D, this means for the k-th derivative of T
7O () = (=1 T (™).
Example For the step function

0 fort <O,
o(t) =134 fort =0,
1 fort >0

(considered as a regular distribution) and arbitrary ¢ € D, we obtain with the
notations T, = o and T, = &

+00

Ty 9) = (6,9) = (0, ¢) = — / () di = (0) = (5. ¢).
0

6 (p) and 8(¢) thus yield for any ¢ € D the same value; we therefore have as result
the equation & = 8 in D', also denoted by 6 (t) = 8(¢), if we still want to indicate
the initial function variable ¢.

Thus, we can now differentiate a discontinuous step function. This has not been
possible within the framework of classical analysis. Correspondingly, we have for a
translation ¢ (t — tg) = 6(t — 1p).

0forr <0

1 fort >0
integrals of o (t) or s(¢), i.e., o(t) and s(¢) are the same distribution: 7, = T,

and we have the equation § = § in D’. This is also found symbolically denoted by
13

/ 8(r)dr = s(¢) (Fig. 8.10).

—00

Changing o(¢t) att = 0 to s(t) = { does not have an effect on
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AS(t) dt

0 0

Fig. 8.10 Derivative of a unit step

We easily verify the following facts:

1. D' is a vector space.
2. For T € D’ and infinitely often differentiable functions f, the product f - T is a
distribution, defined for ¢ € Dby (f - T, @) = (T, f - ¢).

Further Rules for Derivatives
The derivative is linear, and the product rule is valid for products with infinitely
often differentiable functions:

(CT)(k) — CT(k), (S + T)(k) =s® 4 T<k),

k

nO =3, (’;) Fong e

n=0

fork e Ng,c € R, S, T € D and infinitely often differentiable functions f.
To confirm these relations, we observe for ¢ € D and k = 1:
(V. g) = —c(T.¢') = (cT. 9).
(S+T)V.p) = ~(8.¢/) = (T.¢') = (S.9) + (T, 9)
(ST, 9) = =(fT, ¢') = ~(T, f¢') = —(T, f¢' + f'o) + (T, f'p)
= (T, fo) +(T. f'o) = (fT + f'T. ¢).
For derivatives of higher order £ > 1, we then obtain the rules by induction.
Understanding now locally integrable functions as distributions, we can differ-
entiate them without any restriction, even if they are discontinuous. To indicate

differentiation in this distributional sense, one speaks of generalized derivatives.
For a regular distribution 7'y belonging to a differentiable function f, we have
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—+00 “+o00
(Tr,0) =(f, 9) = — / f(Oe' (Hdt = / Fe@dt = (f', @) = Ty, ¢).

This means that for differentiable f the classical notion of a derivative and the
notion of the generalized derivative are equivalent in terms of integrating derivatives
with test functions.

Remark Note that a multiplication T - G in D’ of distributions T and G is not
defined in general. For example, the locally integrable function f(r) = 1//]¢] is
a regular distribution; on the other hand f2(t) = 1/|t| is not locally integrable,
and the product f2 can only be interpreted as a distribution by the regularization
pf(|t|_1). Also not defined in D’ are expressions like §(¢) - S(I), 82(1), or f(@®)s@)
for functions f which are not infinitely often differentiable. However, it should be
noted that products like s(¢)5(¢) or 82(¢) can be explained on an extended class of
generalized functions containing D’. Such an extension of the distribution theory
has fundamental importance in studying nonlinear equations between generalized
functions. For this it is referred to Oberguggenberger (1992) and further references
cited there.

Further Examples

1. For infinitely often differentiable functions f, the following important relation is
true:

f@®§ —10) = f(t0)d(t — o).

Again we have to show that the equation is true applying both sides to an arbitrary
test function ¢ € D:

(f®)8( —19), (1)) = (8(t —19), f()p(t))
= f(to)p(to) = {f(to)d(t — 1), p(1)).

A remarkable consequence of this relation is that the equation t7'(r) = 1in D’
has the solutions 7' (t) = vp(1/t) + k&(¢) with arbitrary constants k, by virtue
of kt§(t) = 0. In the following example 8 we show that there are no further
solutions.

2. For f(t) = |t| we get

—1fort <0
f(@) =sgn(t) ={0 forr=0
1 fort > 0.
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f(t)

175

>

Fig. 8.11 A function with a kink and its generalized derivative

Namely, for ¢ € D we obtain through integration by parts

+o0
(o) —Umvz—/nWmmz

0

—00

Ilustratively in Fig. 8.11

+o00
— / <p(t)dt+/ p()dr =
0

0 +00
/ to' (H)dt — / 1o’ ()dt
+o00

/ sgn(t)e(1)dr = (sgn, @).

—00

We thus can differentiate functions with “kinks” considering them as distribu-
tions. The examples demonstrate the following:

Rule for Generalized Derivatives. If a function f(t) has a kink at 1o, a jump
at t1, and is otherwise differentiable, the generalized derivative f(t) results in a
Jump from f'(ty-) to f'(to+) at ty and in a §-impulse of strength f (t1+) — f(t1-)

at 1.
3. Let f be given by
0 for t<0
at for 0<t <1y
1) =
F® % for t=t
0 for t > tp.

f(t) = atlo(t) — o(t — 19)], considered as a distribution (see Fig. 8.12), yields

f(t) =alo@t) — ot — t9)] +at

=alo(t)—o(t—1t)]+a-

[6(t) —o(t —10)]
0-6() —atgd(t — tp).
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f(t) A

atg a

> >

_ato 41

Fig. 8.12 A function with a kink and a jump and its generalized derivative

Therefore we have f(t) = a[o (1) — o (t — to)] — atod(t — 19).
4. With f(¢) =t we have for m € N and ¢ € D by the product rule for derivatives

(8, 9) = (=16, (f9)™) = (=1)"mgp""~D(0), thus
fa<m> = —ms™m,
5. The Derivative of In(|t|). We show that the derivative of T (t) = In(|t]) is the

principal value (cf. p. 167). Through integration by parts, it follows for ¢ € D
with support supp(¢) C [—a, al,a > 0,

oo ()=t [ [ 200 [ 20]

—a

hm [(w( g) — (&) In(e) + (p(a) — p(—a)) In(a)
=0

- / In(jt])¢’ (1) dr — / In(t e’ () dr].

—a
By the mean value theorem, we have p(—&) — ¢(s) = 2e¢'(x), x € [—¢, €]
suitable; thus we obtain lir{)l (p(—¢) — ¢(e)) In(e) = 0. Since In(J¢]) is locally
e—0+
integrable, it turns out the result

a +00

1 .
(vp (;) L) = — / In(l¢)¢' (1) di = — / In(1)¢' (1) dr = (T, ).

—a —00
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The distribution 7 () = In(|z]) is regular, and its derivative T(t) =vp(l/t)isa
singular distribution.

6. Derivatives of the Pseudofunctions pf(t7™) and pf(t_™), m € N.
We compute the generalized derivative of pf(z,"), denoting it by pf(z;™)".

m—1 gD(k) (0) tk

At first we observe that the derivative of R,,,¢(t) = ¢(t) — Z 0 ,p €D,
k=0 :
is
/ / "™ ©O)
(Rne(®)) = Ruo (1) + ——1 (¢ €D).
(m — 1!

(m) . oo L
Ryo(t) — (pT!(O)t’" = Ry+1¢(t) is therefore a primitive of R,;¢’(¢). This primi-
tive with the constant K = —¢(0) permits integration by parts of the following
improper integrals. Using integration by parts, we compute with some patience
b

b
for ¢ € D (cf. p. 168 and use /u(t)v/(t)dt) = uv|la7 —/ u'(t)v(t)dt choosing
a

u@) =t—m) ‘

1 00

pf (1) (9) = —pf(t7™) (@) = —/f’”me’(t)dt—/t*’”Rm_m/(t)dt.
0 1

With (%) limg_ o4 (67" Rut19(¢)) = 0, we obtain for any ¢ € D:

1

1
- pf(t;’”xsz/)=—(r"Rm+1<o<t) - / —mt "R, L o(r)dt
0

[e.¢]

+ t7T"Rnp@)

0
— / —mt_(”’+1)Rm<p(t)dt>
1

1

o0

1
/mt_(m+l)Rm+1g0(t)dt - /mt_(m+l)Rm(p(t)dt.
1

_ "0
by m!

"™ ©O) (=D
T om!

Observing (8(’") (1), (1)), we have found the result:

/ — -
pf (17™) = pf <—mt+m 1) + %8("”0).
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Completely analogous we also obtain the following generalized derivatives:

pf (1="™)'=pt (—mt:m_l) - ﬁS(m)(t),

m!
pf(t_m)lzpf( mt " 1>+pf< e 1) =pf (—mt_m_1> ,

m
o (117" =pt (=) (= 1pt (=) LD g
m!

7. The Equation t"T(t) = 0in D'.
In subsequent chapters (Chaps. 10 and 11) related to calculating Fourier trans-
forms, we have to solve equations of the form " T (r) = u(t) with u(¢) = 1,
u(t) = s(t), or u(t) = sgn(z). To find their general solutions in D’ we first
determine the general solution of the homogeneous equation:

Theorem 8.2 The general solution of t"T (t) = 0in D’ for n € N is given by

n—1

T = Z ci8®
k=0

with arbitrary constants ¢y, k =0,...n — 1.

Proof From example 1 on p. 174 it follows t"6®)(r) = 0 for 0 < k < n; thus
n—1
T = Z cx8® is a solution of t"T(t) = O for arbitrary constants c;. We now
k=0
show that conversely any solution of this equation in D’ is a linear combination
of the distributions §®), k =0...n — 1:
Let T fulfill " T (¢) = 0 for n € N. By Taylor’s formula, we have for ¢ € D :

-1

(k)
o(1) = Z ()" +1"0(1)

=0

1
/(1 — )" L™ (xt)dx.

The function o(t) is 0inﬁnitely often differentiable (differentiation under the
integral is possible). Now let « be a function in D so that «(#) = 1 in an open
interval U around zero. We define with the Taylor polynomial 7;,,_1¢ of ¢ with
degreeupton — 1

1
with o(¢) = =D

1
V() =2 (@) —aO)Th19(1).
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Then both v (¢) and " (¢) are again test functions in D, since ¥ coincides with
o in U. Since v (¢) is in particular infinitely often differentiable at + = 0, we get
for arbitrary ¢ € D

(T, ) =(T,aTy—19) + (T, 1"V¥).

The last addend is zero, due to t"T = 0. With (8<k), Q) = (—l)kgo(k) (0) and the

(T, t*a)

constants ¢ = (— l)k now follows the claimed assertion for 7 :

n—1 k) 0 n—1
T0) =3 T ey = 3 ls®, ).
k=0

k!
k=0

8. The Equation t"T® = 1 in D’
From the preceding results now follows for n € N:

Theorem 8.3 The equation t"T (t) = 1 has in D’ the general solution

n—1

T(0) =pf™") + ) exd® @)
k=0

with arbitrary constants cy.
Correspondingly we obtain:

Theorem 8.4 The equation t"T (t) = s(t) has in D' the general solution

n—1

T(t) =pft") + Y as®@).
k=0

The equation t" T (t) = s(—t) has in D’ the general solution

n—1

T(6) = pt=") + ) exd® ).
k=0
The equation t"T (t) = sgn(t) has in D’ the general solution

n—1
T(t) = pf(e;") — pft=") + > cks® (0).
k=0
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With the pseudofunctions pf(r") we have got to know first examples for regu-
larizations of functions with singularities. Historically, the work of J. Hadamard
on regularizations of divergent integrals, which appear in solutions of hyperbolic
partial differential equations, contributed significantly to the development of the
distribution theory. Readers who want to learn more about this are referred to the
references Gel’fand et al. (1964) or Ortner and Wagner (2015).

Primitives of Distributions

The goal of this section is to show that the differential equation T = G has a solution
T € D for every G € D' and that two solutions differ by at most a constant c. We

call each such solution a primitive or synonymously an indefinite integral of G.
+00

First we observe that the integral / ¢'(t)dt = 0 for all test functions ¢ € D.

—0oQ0
+oo t
Conversely, it follows for all ¢ € D with / Y (t)dr = 0 that p(r) = / ¥ (x)dx
—00 —00

belongs to D and is a primitive of ¥. Therefore it holds true

+00
Do={¢ :9peD)={yeD: /%(t)dt:O}.

+o00
For the following two proofs, let o be a test function in D so that / a(t)dr =1,

—00
~+00
and for ¢ € Dset P = ¢ — al(p) with I(¢) = / ¢(t)dt. Then Py € Dy and
—00

Pe® = ¢® forall k € N.

Theorem 8.5 For T € D/, the equation T = 0 is true if and only if T = ¢ with a
constant c.

Proof Evidently, T = 0 for T = ¢, ¢ constant. Conversely assume 7" = 0. Then

we have (T, ) = 0 for all Y € Dy. Since ¢(t) = Po(t) + a(t)I(p), it follows
+00

with ¢ = (T, ) and (T, Pp) = O that (T, ¢) = (T, xl(¢)) = / c ¢(t)dt, hence

—00

T =c. O
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Theorem 8.6 Every distribution G has a primitive T € D', and every distribution
Swith S = G fulfills S = T + ¢ with a constant c.

Proof For two primitives 7 and S of G holds T — § = 0,50 T — § = ¢ with a

constant ¢ according to the previous theorem. To determine a distribution 7 with
t

T = G, we define Fo(t) = / Po(x)dx for ¢ € D. Then F¢ is a primitive of P,

—0o0
+00
and we observe that (F¢)’ € Dy and Fg € D, since Pg € D and / Po(t)dt =0
t

for sufficiently large ¢.
We define for a given distribution G

(T, ) =—(G, Fo).

T is linear and also continuous on D : Let ¢,, be a sequence in D with D-lim ¢, = 0.
n—oo

Due to Pp® = ¢® and lim I(gp,gk)) = 0forall k € N, we get D-lim Pg, = 0.
n—od n— o0

Now, let [a, b] be an interval containing the supports of o and of all Pg,. Then
[a, b] contains also all supp(F¢,), n € N, and we have the estimate

+o00
sup (0] < [ 1Pu(0idt < (b = ) sup Py, ).
teR teR
—00
This implies Fg, — O uniformly. Furthermore we have for k > 1 : (Fg,)® =
(P(p,,)(k_l) and (P(p,,)(k_l) — 0 uniformly for n — oo. Thus, D-lim F¢,, = 0 and
n—>oo

eventually nlgglo (T, pp) = — nll)ngo (G, Fg,) = 0. Therefore, T is continuous on D,

i.e., itis a distribution. The distribution T is a primitive of G: In fact, with F¢' = ¢
we have accomplished

(T, ) = —(T,¢') = (G, F¢') = (G, ¢). q
An important consequence of the two theorems is the conclusion that a homoge-
neous linear differential equation, whose coefficients are constant or infinitely often
differentiable functions, considered as an equation in D’, has no further solutions in
D’ than the known classical solutions (Exercise A20).

Convergence of Sequences of Distributions

Assume two approximately equal physical quantities are represented by distribu-
tions 77 and T,. Experience shows that, when measuring with the same weight
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function ¢ € D, the values of (T, ¢) and (7>, ¢) are approximately the same. This
experience corresponds to the notion of convergence for distributions.

Definition A sequence (7},),cn of distributions in D’ converges to a distribution
T € D,if 11m ( w, @) = (T, ¢) holds true for all ¢ € D. We then denote this by
T=DD hmT .

n—>oo
Remark It can be shown that for every sequence T,, € D', whose limits lim (7}, ¢)
n—o0

exist for every ¢ € D, there is indeed a linear continuous functional 7 on D defined
by (T, @) = lim (T,, ). A proof for this completeness property of D’ can be
n—oo

found, e.g., in Schwartz (1957), Zemanian (2010), or Vladimirov (2002).
Examples

1. For an arbitrary integrable function f, define f,,(t) = nf(nt),n € N.For¢ € D,
we then get by substituting x = nt

400 +00 400
/fn(t)fp(t)dt= /nf(nt)w(t)dt=/f(x)fﬂ(X/n)dx.

+00
If / f(@®)dt = 1, then we get by | f(x)e(x/n)| < |f(x)| maxyer |@(x)| with

1nterchange of limiting n — oo and the integration (possible by the dominated
convergence theorem of Lebesgue, cf. p. 496 in Appendix B)

+00 +00
nliygo/fn(t)w(t)dt=/f(x)nl_i)rgofp(X/n)dx=<p(0)=<5,<p>~

Therefore D’-lim f,, = §. Such a sequence of functions is called a §-sequence.
n— o0

The previously used notation is thus compatible with the defined notion of
convergence. In particular, all approximating functions f,, themselves can
be considered as distributions. As concrete examples, consider the functions
fO) =1t +e/2)—st—e/2) or f(t) = n<++,2> s(f) the unit step
function. These functions are often used to introduce the §-distribution as a limit
of function sequences in the sense of the above defined convergence in D’ (cf.
p. 22 and p. 152). There are also é-sequences constructed from non-integrable
functions as is seen in the following examples.

2. We consider the functions f,(t) = nsin(nt)s(t), s(¢) the unit step function,
n € N. Intuitively it is not obvious whether the sequence (f;),eN converges in
any sense. However, for ¢ € D we get with integration by parts:
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+00 400 S +00
/fn(t)go(t)dt = /n sin(nt)p(t)dt = — cos(nt)p(t) —i—/cos(nt)(p/(t)dt
-0 0 0 0

+00

1
=¢(0) + [ - sin(nt)g’ (1)

—% / sin(nt)go”(t)dt:| )
0
0

=0

+00 +00
By‘ [ sin(nt)go”(t)dt‘ < [ 1¢"(®)]dr < oo follows
0 0

+00
Jim [ fi0ewd =40,

i.e., we obtain the result: D’-lim f,, = 6.
n—0oo

On the other hand, the sequence g, () = n cos(nt)s(t) yields D'-lim g,, = 0.
n—>oo

3. For the functions %, n e N, ¢ € D, we prove

“+o00

lim / SO | dr = (0).

n— 00 Tt
—0o0

The functions sin(nt)/t are continuously extended to t = 0 with respective value
n. The integrals converge, since ¢ has a bounded support. Substituting x = nt,
we obtain

400 +o0o
/ s1n(nt)¢(t)dt _ / sm(x)(p()_C) dr.
Tt TX n

Substituting now x = (n + %) t, we consider

+(n+d)m . |
i sin((n + 1) 1)
In — / SIH(X)¢ (f) dx = / ﬁ(p ((1 + 1/(2’1)) l) dr
X n Tt
_('H‘%)JT -7
+7 ) 5
= /Dn(f)smt(/tz/ )<P((1+1/(2n))t)dt

-7
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with the 2 -periodic Dirichlet kernel

| L sin((n + %)t)
D,(t) = — Z ekt — ) 2w sin(t/2)
2w
k=—n 5= (2n + 1) for te2nZ.

for t¢2nZ,

+
For all n € N it holds / D, (t)dt = 1, and for piecewise continuously differen-

-
+7 |
tiable functions f : [—m, m] — C, we have /Dn(t)f(t)dt :;OE(f(O—) +
n
-

f(04)), by virtue of Dirichlet’s theorem. We thus obtain I, —> ¢(0), i.e.,
n—oo

in(nt
Dtim 30 .
n—>0oo
1 i i 1 i
. t .
From — /e*/“” dw = sin(nf) we get D'-lim — /e*f‘“’ do = 8(1).
2 n—o0o 27

—-n —-n
In the subsequent Chap. 10, this relation will show us that the constant function
f = 1 has 2§ as Fourier transform (cf. p. 292).

We note that the approximation fi(t) = 100/((1 + 10000z2)) from the
previous example 1 corresponds most closely to the usual idea of an impulse
function, whereas function sequences like in examples 2 and 3 have little
in common with the idea that a §-sequence converges to infinity at ¢t =
0 and to zero otherwise. Consider the following Fig.8.13 with illustrations
of fi1(t) =100/((1 4 10000:%)), f>(r) = 100sin(100¢)s(r), and f3(t) =

sin(100¢) /(rt).
However, comparing the sampling properties of fi, f> and f3, for example
. . 2 .

with the function ¢(z) = e~ /0= for |1| < 1, zero otherwise, shows that

35
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f1 as impulse approximation  fo as impulse approximation  f3 as impulse approximation

Fig. 8.13 Three different functions as impulse approximations
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the functions f> and f3 give by far better approximations for the sample (8, ¢)
than the more impulse-like appearing function fi: For ¢(0) = 1/e =~ 0.36788,
numerical calculation of the integrals with a computer algebra system yields
(fe, @), k=1, 2,3, as follows:

(fi,0) ~ 036293, (f, 0) ~ 0.36807, (f3, ) ~ 0.36788.

n

4. We consider the distributions 7;, = Z 8(t —k),n € N. For every ¢ € D exists

k=—n
n n +o0
1im (7,1, ¢) =n£“éokz (8t~ k). 9) =nlggok2 v (k) =kZ oK),
=—n =—n =—00

because the series at the right is indeed a finite sum, due to the bounded support
of ¢. Therefore, by

400 n
J— P — /_ 1 —_
T_kZ 3(t —k) =D'lim Z 8t —k)
=—00

k=—n

a distribution is defined. Linearity and continuity on D are immediately seen.
The series T = Y 7>° __ 8(t — k) is convergent in D’ with T = D'-lim T},.

n—o0
5. For T,, T € D' with T = D'-lim T}, we get T = D’'-lim T},, because we have for
n—0o0o n—>0oo

peD

(Ty, @) = (T, —¢') —> (T, —¢') = (T, ¢).

n—o0

Analogously we obtain for distribution series:

+00 +00
If > T,=T, then Y T,=T.

n=—00 n=-—00

Result Every distribution series, which converges in D', can be differentiated
without any restriction. Differentiation can be carried out term by term.

Such a result is extremely practical and not achievable in classical analysis.
It means that differentiation, with the introduced notion of convergence, is a
continuous operation on the vector space D’ of the distributions.
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Coordinate Transformations for Distributions

+00
Substituting r = ax + b, a # 0 in an integral of the form / f(ax + b)p(x)dx,

—00

¢ € D, f alocally integrable function, yields that
+00 +00
1 t—»b
flax + b)p(x)dx = f(t)mgp — dr.
—0o0 —0o0

For non-regular distributions 7" we define analogously the transformed distribution
T4 with a transform A(¢) = at + b, a # 0,and ¢ € D by

(Ta, @) = (T, (A" ]go AT,

and use also the notation (T (at + b), ¢(t)) = ﬁ<T(t), © (%) >
Here, ¢ o A~! is the composition of the two mappings A~! and ¢.

Example For a # 0 we have:

1 b
d(at+b)=—54§ <t+ —> ,
la| a

because for ¢ € D

1 t—b 1 —b
(8(at +b), (1)) = —<8(t), @ <—> > =—¢ <—> .
| a

la lal” \ a

By the above definition, we can describe some symmetry properties for distribu-
tions in the same way as for functions:

T iseven,if T(t) = T(—t),i.e.,if T = T4 with A(¢t) = —t.
Tisodd,if T(t) = =T (—t),i.e.,if T = —T4 with A(t) = —t.

T is periodic with period p > 0, if T(t + p) = T(¢), i.e.,if T = T4 with
A(t) =t + p.

For example, §(¢) is an even distribution. Classical Fourier series can be
regarded as periodic distributions. A consequence of the introduced transformations
is for example that in case of symmetries, translations or frequency changes of
Fourier series can be computed in the usual way, even if these represent non-
regular distributions. Such examples will be discussed in the next chapter (cf.
Sect.9.1).
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It can be shown that in the sense of the introduced rules for the derivative T of a
distribution 7" holds

. T@+h)—T(
T = lim M (Exercise).
h—0 h

For the derivative of a distribution S(¢) = T (at + b), a # 0, we then have again the
t—>b

chain rule: S'(t) = aT(at + b), because with the chain rule for ¢( ) € D we

) a
obtain

. , 1 ,(t—=D
(30, ¢(0) = ~(T(at +b),¢' ) = ——(T(). ¢ (—)}
la| a

. —b .
= 1w, <—t ) ) = (ah @t + ), p(0).
a

lal

In the following section we also introduce coordinate transformations more gener-
ally for distributions on multidimensional parameter sets.

8.6 Test Functions and Distributions with Several Variables

All discussed terms can be applied to functions with several variables. Readers
who have experience with functions of several variables will quickly recognize the
analogies. We sketch here only a few corresponding basic notions and work out a
more familiar way of dealing with them in the following section on convolutions
and in the next chapter with application examples of distributions.

Before we define test functions and distributions for multidimensional parameter
sets, it is useful to introduce a compact notation for partial differential operators.

For a multi-index k = (ky, ..., k,) € Njj and x € R" one defines
k| = ki +ka + ...k, and x¥ = x['xs2 ... xkn.

Then, the partial differential operators 9;, al."f, and 8% are defined for 1 < i < n,
ki € N, and a multi-index k by

ki ki+ko+...4ky

b= = a_k und 9% = 8,(—,( =05 ... gk,

0x; ax;' axy' ... 9xy"

The space of test functions D(§2) for a domain £2 C R” is the set of all those

functions ¢ : §£2 — R, which are arbitrarily differentiable and have a bounded

support supp(¢) in £2. The support of ¢ in R” is the closure of the set of all points
x € R”, where ¢(x) # 0.
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A sequence (¢;,)men converges in D(£2) to the zero function, if and only if there
is a compact, i.e., a closed and bounded subset of £2, which contains all the supports
of the ¢,, and if all derivatives of the ¢,, converge uniformly to zero, i.e., if for
arbitrary k = (k1, ..., kp) € Ng holds:

sup‘akwm(x)‘ — 0.
XE.Q m—00

Now, we define the vector space D' (§2) of distributions on §2 by
D'(2) ={T : D(2) — R | T linear and continuous} .

A characterization of continuity for linear functionals on D by estimates of (T, )|,
¢ € D, is shown at the end of the section.

Partial derivatives 3T of distributions T € D'(£2) for a multi-index k are
defined by

(KT, o) = (=T, k).

The order of differentiations for distributions can always be chosen arbitrarily.
According to the well-known theorem Schwarz, in general this is not the case for
classical functions.

Convergence in D'(£2) is defined as before: For T, T,, € D'(£2) it holds

T =D'-limT,, if lim (T, ¢) = (T, ¢) for all ¢ € D(2).
m-—00 m-—00

All terms can be defined analogously for complex-valued test functions and
distributions. A distribution T has the form T = Ty + jT, with T}, T, € D'(£2).
Application to a complex-valued test function ¢ = ¢ + j@2, @1, 92 € D(£2), is
defined by

(T, 9) = (T1, 1) = (T2, 92)) + j (T1, 2) + (T2, ¢1)) .

Thus from now on, we can use complex-valued test functions and distributions with
the scalar field C.

For coordinate transformations A and distributions 7 on R”, one defines the
distribution T4 by generalization of the substitution rule for integrals (cf. p. 497).
The inverse transformation A~! is assumed to be an infinitely often differentiable
bijective mapping, whose Jacobian determinant det dA™!' # 0 in R” (cf. p. 497).
For T € D'(R") and a test function ¢ € D(R") the distribution T4 € D'(R") is
defined by

(Ta, @) = (T, |det A 9o ALY
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With that definition we can formulate symmetry properties, for example rotational
invariance, for distributions and can make coordinate transformations. For example,
adistribution 7" on R" is rotationally invariant, if for all orthogonal (n x n)-matrices
A with det A = 1 we have T4 = T. For those matrices A hold A=l = A*, A*
the transposed matrix and det A~ = 1. For any test function ¢ and rotationally
invariant 7 we obtain (T4, @)= (T (x), 9(A~'x))=(T, ¢). More examples can be
found in the following sections.

Examples

1. The function h(x) = ﬁ =2+ y2+25)72 for x = (x,y,2) is locally
integrable in R3, since the integrals

27w R
/ h(x)dA3 (x) = / / / r sin(0) dr d6 d¢
O<e<[|x|<R 00 ¢

converge for e — 0to 2w R? (dA3(x) = dx dy dz denotes the differential volume
element on R3). Thus, the function % can be considered as a regular distribution
on R3.

2. Generalized §-functions with three variables, defined for ¢ in D(R?) and X in
R3 by (8(x — Xp), (X)) = ¢(Xp), can be used as generalized density functions,
for example to describe spatially discrete distributions. For example, o(x) =

n

Z qi6(x — X;) can be a generalized density function for n electric charges ¢; at
i=1

the points x; € R?. The distribution o can be extended to a discrete measure in R
(see remark on p. 162). Conversely, each measure m in R? defines a distribution

T by (T, p) = /go dm, ¢ € D(R3) (cf. Appendix B).

3. With ¢ € D(R3), R > 0, with the usual surface measure do on a sphere of
radius R around zero (cf. Appendix B) and a smooth density function o there,

a distribution 7 is defined by the surface integral (T, ¢) = / og@do. That

|x|=R
distribution is also denoted by 7'(x) = 0(x)5(|x| — R).

Characterization of Continuity of Distributions

The following theorem describes continuity of linear functionals on D(£2) by
estimates of (T, ¢)| for ¢ € D(£2). There, |¢|, for an integer p > 0 is the
maximum norm

lel, = max{|o* ()| : x € 2, k| < p}
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of ¢ in the space of p-times continuously differentiable functions with compact
support in the domain £2.

Theorem 8.7 A linear functional T on D(82) is continuous if and only if for every
compact set K C 2 there are a constant C > 0 and an integer p > 0 such that for
every test function ¢ with support in K the following estimation applies:

KT, ¢} < Clolp-

Proof

(a) Let T € D/(£2) and a compact set K C £2 be given. To prove the necessity of
the given condition, we assume that it is wrong. Then for each natural number
p there is a test function ¢, with support in K such that

KT, op)l > pleplp-

The functions ¥, = ¢, /(pleplp) have their support in K and converge to zero
in D(82) for p — o0, since for each fixed k € Njj and all p > |k| and x € £2

1059, )| < 1¥plp = 1
p

is fulfilled. It then follows from the continuity of T that for p — oo the numbers
[(T, ¥p)| also converge to zero. This contradicts the conclusion (T, ¥p)| > 1
for all p according to the assumption made above.

(b) For every null sequence ¢, in D(§2) there is a compact set K C £2 that contains
all supports of ¢,,, and the following holds mlew lgmlp = 0 even for all p €

Np. From the given condition for a linear functional T on D(£2) it therefore
follows lim,, 0o (T, ¢m) = 0, i.e., the continuity of 7. m]

8.7 Tensor Product and Convolution

The aim of this section is the introduction of convolutions for distributions.
Therewith the next chapter provides a basic solution procedure for inhomogeneous
linear differential equations with constant coefficients. This central result, which
allows the calculation of particular solutions of such equations, requires some
preparations. Convolutions are also a fundamental theoretical tool for linear systems
theory and its applications. We will go into this in more detail in Chap. 11.



8.7 Tensor Product and Convolution 191
The Tensor Product of Distributions

For locally integrable functions f and g on R the function

f®glk,y)=f(x)gQ)

is a locally integrable function on R%. Then by f ® g a distribution on the test
functions ¢ in D(R x R) is defined by

(f®g.¢) = / / F8@(x, ) dydr.
R R

With regard to applications of distributions, we transfer all the following consider-
ations immediately to functions with several variables. In the following we denote
with X = R", Y = R", Z = R? and with dA?(z) the differential volume element
in R?. For locally integrable functions f on X, g on Y, and a test function ¢ in
D(X x Y), aregular distribution f ® g € D'(X x Y) is defined by

(f®g 0 =/ FXegex,y)dr" (y) dA" (x) = (f(x), (g(¥), (X, ¥))).

XY

The distribution f ® g is called the tensor product of f and g. The factor f only
affects the parameters from X, and the factor g affects the parameters from Y.
Instead of f ® g, we also write f(x) ® g(y), if we want to specify the integration
variables for better orientation. Exchanging the order of integration corresponds to
the permutation of the tensor product, i.e., the following holds: f(x) ® g(y) =

gy) ® f(®.

Definition For two distributions 7 € D'(X) and G € D’'(Y) the tensor product
T ® G is defined analogously with ¢ € D(X x Y) by

(Tx) @ G(y), px,y)) = (T(x), (G(y), (X, ¥))).

The definition is meaningful because for every fixed x € X the function ¢x(y) =
@ (x,y) belongs to D(Y), and the function 1 (x) = (G, ¢x) can be shown to be a test
function in D(X). The tensor product is linear and continuous on D(X x Y), i.e.,
T ®G is a distribution from D' (X x Y). At this point and in the following statements
about convolutions we refrain from very technical, detailed proofs and focus on the
essential aspects for the applications. Interested readers will find a more detailed
presentation of the contents of this and the following section on convolutions with
proofs in Schwartz (1957), Vladimirov (2002), or Zemanian (2010).
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For test functions ¢ € D(X x Y) of the special form ¢(X,y) = ¢1(X)@2(y) with
¢1 € D(X) and ¢ € D(Y) it follows from the definition of the tensor product

(Tx) ® G(y), p(x,y)) = (T(X), p1 )G (Y), p2(y))
=(G(y) ® T(x), p(x,y)).

With the theorem of Weierstrass (cf. p. 142) it can be shown that every test function
¢ can be approximated by linear combinations of the special form

> oL ® e (y)
k=1

in D(X x Y). From the linearity and the continuity of T ® G the commutativity of
the tensor product on whole D(X x Y) follows:

Tx)®G(y) =Gy ®T(x).

In an analogous way, one also obtains the associativity of the tensor product of
distributions 7', G, and H on X, Y, and Z respectively:

Tx®GY)®H@=TXQGY)®H(E =TX &Gy ® H(2).

Examples

1. The 8-distribution 8(x) = 8(x, v, z) in R3 for x = (x, y, z) is simply the tensor
product §(x) ® 5§(y) ® 8(z). Because for ¢ € D(R3) it holds

(8(x,y,2),0(x,y,2)) = (8(x), (8(y), (§(2), (x,y,2))))

= (8(x), (6(»), ¢(x,y,0))) = (8(x), (x,0,0)) = (0, 0,0).

2. If g is locally integrable on Y, then for ¢ € D(X x Y)

(6(x) ®@g(¥), p(x,y)) = (g(y) ® §(x), p(X, y))

= /g(y)w(ﬂ, y)dA" (y) .

Y

3. A mass or charge density o(z) on a thin rod of the length 2/, which is idealized
by the (degenerate) interval {0} x {0} x [—/, /] in R3, is described with the help
of the unit step function s(z) by the tensor product

3(x)®8(Y) ®0@Isz+1) —s(z—D].
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The Support of a Distribution

In the following, we will describe what is meant by the support of a distribution. The
support of a continuous function f contains all points at which f does not vanish.
Since for distributions 7 it does not make sense to speak of values at individual
points, we say T vanishes on an open set A, T = 0in A, if (T, ¢) = 0 for all test
functions ¢ with supp(¢) C A. For example, 6(x) = 0 on any open set A that does
not contain the zero point.

Conversely, a point x is an essential point for T, if for every open neighborhood
U of x there is a test function ¢ with supp(¢) C U and (T, ¢) # 0. For example,
the zero point is the only essential point for §(x).

Definition The support supp(7') of a distribution T is the closed set of all essential
points for T.

The support supp(T') of a distribution T is therefore the smallest closed set on
whose complement it holds 7 = 0.

Examples

1. For regular distributions 7y with continuous f, supp(7y) = supp(f). The
support of locally integrable functions f is defined as the support of the
distribution 7's. The support of §(x—xp) is the set {Xp}, the support of § (|x|—R) is
the spherical surface |x| = R, and the support of §(x) @5 (y) ®[s(z+1) —s(z—1)]
is the set {0} x {0} x [, ] in R3.

2. For a distribution T and a test function @, (T, @) is only dependent on the values
of ¢ on the support of T. Namely, if ¢ is changed outside of a neighborhood
U of supp(T) so that again a test function i is obtained, then ¥ = ¢ + h
with a test function /4 that vanishes on U. Because (T, h) = 0, it follows that

(T, ¢) =(T. 9o+ h)=(T, ).

The Convolution of Distributions

The convolution f * g of two integrable functions f and g on R” is defined by

(f *&)(x) = /f(X =Ygy dA"(y).
By the theorem of Fubini-Tonelli (cf. Appendix B), the convolution f * g is again
an integrable function (Exercise Al4, Chap.9). If one looks at it as a regular

distribution, then for each test function ¢ it follows with the substitution rule for
integrals

(f*xg 0) = //f(x—y)g(y)<p(X) dr" (y) dA" (x)

=//f(X)g(y)<o(X+y) dr" (y) dA" (x) .
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With the help of the tensor product f(x) ® g(y), the convolution of f and g can
then be described by the formula

(f*8,90)=(f®)®gY¥),ex+y) = (fX), (&) ex+y)).

With the reflection ¢(x) = ¢(—x) of ¢ one equivalently obtains

(fx8.9)=(f.&*0).

As usual, the regular distribution 7'y, is identified with the function f * g:
Treg = f*g.

Definition For two arbitrary, not necessarily regular distributions 7 and G, the
convolution 7 * G is defined by the same approach:

(TG, ) =(TX) ®GY), p(x+y)) = (T(x),(G(y), p(x+¥))).

With the reflection f((p) = (T, ¢) = (T(x), p(—x)) of T, the convolution can
also be written as above by

(T *G,9) = (T, G * ).

However, it should be noted in the definition that ¢ (x 4 y) generally does not
have a bounded support. The defining formula therefore usually only makes sense
under additional assumptions. If the convolution T * G of two distributions exists,
then T * G is again a distribution, and from the commutativity of the tensor product
the commutativity of the convolution follows: 7« G = G % T.

The following theorem specifies conditions under which the convolution of
distributions exists. Afterward the most important properties for calculations with
convolutions are summarized. Some facts used in previous chapters about con-
volutions of classical functions are collected in Appendix B. Further statements
about convolutions that are needed in connection with the Fourier transform are
discussed in Chap. 10. For detailed proofs it is again referred to Zemanian (1995) or
Vladimirov (2002).

Sufficient Conditions for the Existence of Convolutions

Theorem 8.8 (Existence of Convolutions) The convolution T * G of two distribu-
tions T and G on R" is meaningfully defined for all ¢ € D(R™) by (T * G, ¢) =
(T(x) ® G(y), ¢(x+y)) under each of the following conditions:
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1. T or G has a bounded support.
2. The supports of T and G are both contained in a “quadrant”

Q(:F :{X: (-x13-'~’-xn)|xi >C,l. = 1,...,”}
or both in one “quadrant”
0 ={x=(x1,...,x)xi <c,i=1,...,n},

c in R suitable.

Thus, in the one-dimensional case n = 1, T x G exists if the supports of T and G
are bounded on the same side. This is the case, for example, if supp(T) C [0, oo[
and supp(G) C [0, ool.

Proof In the first case, for example, let G have a bounded support. Then the
infinitely often differentiable function ¢ (x) = (G(y), ¢(x +y)) disappears, if |x]| is
so large such that the supports supp (G) and supp (¢x), ¢x(¥) = ¢(x+Yy) no longer
intersect. So ¥ in that case is a test function, and 7 can be applied to i, i.e., the
convolution T * G is possible (see Exercise 14).

For the second condition, we consider the illustrative case n = 1 and distributions
T and G with supports in [0, co[. For growing x the support of ¢, shifts to the
left, so that at some point supp (¢x) N supp (G) = ¥, i.e., the support of ¥ (x) =
(G(y), (x +y)) is bounded to the right. Consequently, the intersection supp (7) N
supp () is bounded. If one chooses a test function « to be constantly « = 1 on this
intersection,then the test function oy coincides with i on the support of 7. The
convolution 7" * G exists and it holds:

(T G, ) =(T,ay).

These arguments can be applied under the “quadrant conditions” from Point 2 also
to the multidimensional case. O

Further theorems on the existence of convolutions, their properties, and detailed
proofs can be found in Schwartz (1957) and Vladimirov (2002). Before we come to
examples of convolutions, some basic properties of convolutions are listed below.

Properties of Convolutions

1. Distributivity of Convolutions. If the convolution of a distribution 7" with two
distributions G and S exists, then the convolution is distributive, i.e., the
following applies for any constants « and

T % (@G + BS) = a(T * G) + B(T % S).

The following applies supp(aG + BS) C supp(G) U supp(S).
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2. Commutativity, associativity of convolutions Since tensor products are commuta-
tive, this also applies to convolutions. If three distributions 7', G, and S fulfill the
quadrant condition with a common quadrant Q¢ or Q¢ or at least two of them
have a bounded support, then the convolution is associative, i.e., the following
holds

T+ (G*S)=(T=x*xG)*S.

3. Convolution with the Dirac distribution. For all distributions 7 there exists 7 % §
and for each test function ¢ it holds

(T8, 9) =(TX), (6(¥), px+y))) = (T(X), 9(x)).

From the definition of convolution and commutativity, it follows that § acts like
the one in multiplication:

Tx«5=6xT =T.

4. Differentiation and translation of convolutions. If the convolution T x G exists,
for a differential operator 9; = % and the derivative 9; (T % G) of the convolution
it holds

0i(T*G)=T=x0;G =0T xG.
We exemplarily show the first equation: For each test function ¢ it holds
(0i(T % G), @) =(T * G, =0i9) = (T(x), (3; G(¥), ¢(x +y))) = (T *9;G, 9).

Specifically, for all distributions 7' we have that 9;(§ * T') = 9;(T x6) = 9;T.
In an analogous way, for a shift A(x) = x + a and the translation (7 % G)4 of
the convolution (cf. p. 186), we obtain (T «* G)4 = Ta*G =T * G4.

This follows with (T * G)4 = (T * G) * §4 from the commutativity and
associativity of convolutions. Therefore, when differentiating and translating a
convolution product, one can arbitrarily choose among the factors.

5. Convolution with infinitely often differentiable functions. For every distribution T
and every test function g, the convolution T *g is an infinitely often differentiable
function. It holds (T xg)(x) = (T (y), g(x—Y)). The same applies if g is infinitely
often differentiable and has no bounded support but 7' has a bounded support. As
derivative 9; (T * g) of the convolution T * g for 9; = d/9dx;, we obtain T * 9; ¢
(see Point 4 and Exercise A14).

6. The support of convolutions. For the support of a convolution T * G, the relation
supp(T % G) C supp(T) +supp(G) = {x+y|x € supp(T), y € supp(G)} holds
true.
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7. Convergence of convolutions. For distributions G and T = 72’ lim T it
— 00
holds

T+ G =7D-lim (T} * G),
k— 00

if one of the following conditions is fulfilled:

(a) There is a bounded set that contains all supports of the 7.

(b) The support of G is bounded.

(c) The supports of all T and the support of G lie together in a “quadrant” Q¢
or Q¢ for suitable ¢ € R (cf. p. 195).

The proof is obtained analogously as in Theorem 8.8 by the imposed support
conditions (Exercise).

Examples of Convolutions

1. According to Property 4, for any distributions 7 and G whose convolution exists,
itholds T(t —a)* G(t —b) = T (t) * G(t — (a + b)). For example, the following
relations apply to the Dirac distribution 6 () and the unit step function s (¢):

8(t —a)x8(t —b) =8(t — (a+ D)),
S(t—a)*s(t—b)=56(t)*s(t—(a+Db)) =st—(a+D)).

2. For integrable functions f(¢#) and the unit step function s(¢) it is useful to
remember

+00
t
(f*S)(t)Z/f(u)S(t—u)dMZ/ S u)du,

1
t
((fS)*S)(t)=/f(u)S(u)du=S(t)/O S ) du.

The convolution s * r, of the unit step function with the rectangular function r,,
defined by r,,(t) = s(t) — s(t — n), results in (s * r,,)(¢) = min(z, n)s(t). With

D'-limr, = s, it follows
n—oo

(s xs5)(t) = ts().
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3. The convolution as a continuous superposition. The potential U vanishing at
infinity of a spatially bounded charge distribution with the density function g is
given by the Poisson formula (see later Sect. 9.4) (supp (¢) C B, B bounded in
R3):

1 o(y)

= da3(y).
4dmreg [x —y| )
B

U(x)

The potential U is the convolution of o with the regular distribution m. It
is thus obtained by continuous superposition of the influences of all spatially
distributed charges.

4. If the convolution T*G of two distributions 7 and G on R exists, then for any
" k
linear differential operator L = Z Ck—7> with constant coefficients ¢ the
k=0

equation L(T xG) = LT xG = T * LG holds true. The same applies for several
variables and corresponding partial differential operators. These equations follow
immediately from Property 4 due to the linearity of convolutions. They represent
a distributional analog of the interchange of differentiation and integration, which
is not possible with classical functions without further assumptions.

5. The support of a convolution 7 * G is often enlarged compared to the supports of
T and G. As a simple example consider the indicator function f = 1{_1 1} of the
interval [—1, 1]. It has the value one in [—1, 1] and zero otherwise. It is a regular
distribution with supp(f) = [—1, 1] and

+00 1
(f* )= / 1[71,1](X)1[71,1](t—X)dx=/1[71,1](t—x)dx.
—00 —1

With 1[—; (¢ — x) = I[—1,000(f — X) — Ij1oo[(t — X) = lj—o,r+11(x) —
l}—o0,i—1[(x) one immediately computes

0 fort<-2
t+2for —2 <t<0
2—tfor0<tr<2

0 for t > 2.

1

+1
(f*f)(t):/l]—oo,t+1](x)dx—/1 oo, r—17(x) dx =

-1

Therefore, supp(f * f) = supp(f) + supp(f) = [-2, 2].
From Property 6 it follows that for bounded supports of 7 and G, supp(T * G)
is also bounded. For distributions 7 and G on R, whose support lie in [0, col, the
support of T * G is also contained in [0, oo[.

6. Convolutions of impulse sequences. The discrete convolution plays a central
role in discrete signal processing, the basics of which we explain in Chap. 11.
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There, discrete time signals are modeled by an impulse sequence of the form
+o00

x = Z Xidk. We use xidr to denote impulses 8 = §(t — ka) of the
k=—00
strength x; at time ka, where 1/a > 0 is the sampling frequency, with which

the discrete system operates. For discrete linear filters with the impulse response
+00

h = Z hidy and discrete input signals x the convolution relation y = x % h

k=—o00

then applies to the output signals y (cf. Chap. 11 later).

The convolution of the impulse response / of the filter with the allowed input
signals x must be possible for this relationship to make sense. We calculate the
discrete convolution for two special filters, which we will return to in Chap. 11.
In the first case, we assume that & has a bounded support, and in the second case,

that the supports of 4 and x are bounded below. Then the convolution y = & * x
+00

exists in each case, and we show that y is of the form y = Z Ym&m, Where

m=—0Q0

+o00 +o0
Ym= Y hiXmx= Y hwoixx.
k=—o00 k=—00

(a) In the case hy = O for |[k| > M and suitable M € N, it follows from the
distributivity of the convolution with the index transformation k +n = m

+00
hxx = Z Iy Sk *<Z xn8n>
kesupp(h) n=-—00
+o0 +0o0
= Z Z XphiSyn = Z Z Xm—khidm
n=—00 kesupp(h) m=—00 kesupp(h)

and thus the representation of y,, claimed above.

“+00

Example Letx = Y x,8,andh = Y ;__, =S with support {—2, —1,0, 1}
n=—0oo
+00
be given. For example, to obtain y_» in x x h = Z YmOm, write the mirrored

=—00

sequence of &y over the sequence of coefficients x,, so that A is above the x_;
associated with §_5. Then multiply all overlapping coefficients and add them
together.
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So y_j is calculated in the example as follows:

.0 hy ho h_1h_,0 0 0 ...
X4 X_3X_2X_1X) X1 X2X3...

0
Yoo =x_3h1 +x_2ho +x_1h_1 + x0h_3.

Note that the convolution y = h * x usually has a larger support than the
convolution factors involved, even if 2 and x have finite supports.

(b) In the second example, we assume that 1 = Z hidr and x = Z Xn0n
k=kg n=ng
have bounded below supports. Then the following equations hold for any
test function ¢

+00
(h.g) =) hgka) and (x.¢) Zw(na)

k=kg n=ng

and both sums have only finitely many nonzero summands due to the bounded
support of ¢. Therefore it follows from

(h*x, ) Z i (Z xag((n +k>a>)

k=ko n=ngo
by exchanging the summation order and index transformation m = n + k

+00 400

(hxx,¢) Z Z hixne((n + k)a)

n=ng k=ko

+00 +00

= Z thxm—k @(ma).

m=ko+no \k=kg

+00
In this case, too, the coefficient y,, of y = h % x = Z YmOm 18 given by the

m=—0o0
following convolution formula (with i = 0 for k < ko, x, = 0 for n < ng)

+00 +00
Z hixm—i = Z Rk Xk

k=—o00 k=—00
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The coefficient y,, is zero if m < ko +ng, and the series for y,, is de facto a finite
sum. Further examples and concrete applications of discrete convolutions will
be elaborated in Sect. 10.5 and in the already mentioned Chap. 11 about linear
filters.

Approximations of Distributions by Smooth Functions

The above properties of convolutions include the theorem that every distribution T

of D'(R") is the D’-limit of a sequence of smooth functions f;, which can even be

chosen as test functions. It is also said that D is dense in D’. To see this, choose a

sequence of test functions ¢ with Zz’ -lim ¢, = &, as we did with the introduction
— 00

of the §-distribution. Such a sequence is called a smoothing sequence. You can start

from any test function ¢ with / @(x) dA"(x) = 1, and define

Pk (x) = k" (kx)

(cf. Ex. 1, p. 182). Then according to the previously mentioned Properties 3 and 7,
it holds (p. 196)

D-Aim (T +@p) =T x5 =T.
k— 00

The sequence of the ¢y is called smoothing sequence, because the convolutions
T * ¢y are infinitely often differentiable functions according to Property 5 of p. 196.

Now choose an arbitrary test function g with g(x) = 1 in a neighborhood of zero,
and define for k € N the function gz (x) = g(x/k). For an arbitrary test function v
and sufficiently large k is then gx(x) = 1 for all x € supp(y), and thus

Jm (g (T * gr). ) = (T, ).

The functions f; = gx (T * @) are the sought test functions for the approximation
of T: Zz’ -lim f; = T. Therefore it holds:
— 00

Theorem 8.9 Each distribution T is the D’'-times of a sequence of test functions.

Remark For specific given functions or distributions, it can be quite difficult to
“calculate” convolutions. As an important tool we will get to know the Fourier trans-
form in Chap. 10. In practical, numerical applications, convolutions of functions are
often approximately calculated using the discrete Fourier transform.
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The Spaces £’ and D', Continuity of Convolution Operators

To conclude this section, an aspect of property 7 of p. 197 on the convergence of
convolutions will be emphasized. For this purpose, we introduce two new vector
spaces of distributions and define convergence terms for sequences in these spaces,
which we will come back to later in the application examples in Chap. 11.

Definition

1. £ denotes the space of distributions 7 € D’(R) with compact support. A
sequence T, converges in £’ to a distribution 7 if T = D’-lim T, and all T,
n—o00

and T have their supports in a common compact set K .

2. With D, we denote the space of all distributions 7" € D’(R) whose supports lie
in the interval [r, oo[ for r € R. A sequence of distributions 7,, converges to a
distribution T in D, if T = D’-lim T, and all T,, and T have their support in

n—oo
[r, ool
The space Dy = U D, is called the space of causal distributions. A sequence of
reR
distributions T;, converges in D}, toward a distribution 7 if 7 = D’-lim T}, and,

n— o0
additionally, all supports of the 7;, and T for a suitable » € R lie in the interval

[, oo[. Causal distributions are also called right-sided distributions.

These definitions can also be applied to the case of multidimensional parameter
sets in an obvious way. We restrict ourselves to the one-dimensional case and again
briefly note only D’ for D’ (R) below.

If we now consider for a distribution G the convolution operator Lg(T) = GxT
for distributions 7 in spaces that always allow the convolutions G * T, then
the properties of convolutions from No. 7 of p. 197 are continuity statements
for such convolution operators. We will refer to the following statements in
Chap. 11:

Theorem 8.10 For a distribution G, the convolution operator Lg : Z — A defined
by Lg(T) = G * T is a linear translation-invariant continuous operator in the
following cases:

1. Z2=¢8,A=D,and G € D'.
2.Z=D' =Aand G € ¢&'.
3. Z=Dir =Aand G € Dj.
The translation invariance means that the convolution operators L for transla-

tions A of the parameter set (on D’ defined by AT = Ty), can be interchanged with
the translation, i.e., if forall T € Z and Lg(T) = G % T it holds:

LG(AT) = A(LG(T)) = (G * T)a.
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The theorem is only a reformulation of No. 4 and No. 7 on p. 197, if the convergence
notions introduced above for £ and D), are taken into account. In Chap. 11 we
address the question, which translation-invariant linear operators L : Z — A can
be represented as convolution operators for certain given distribution spaces Z and
A. There are also examples of convolution operators that are not continuous and
examples of continuous translation-invariant operators, which are not convolution
operators (p. 327 and p. 355). Preliminarily, we already formulate a fundamental
result here, which goes back to Schwartz (1957). There one can also find the proof.

Theorem 8.11 (Theorem of L. Schwartz) Every continuous translation-invariant
linear operator L from &' to D' is interchangeable with convolutions between
elements of £ and can be represented as a convolution with h = LS§, i.e., L(T) =
LE*T)=L@)*T=hxTforalT €&

A detailed discussion of variants of this theorem for operators also on distribution
spaces other than &£ can be found in Zemanian (2010) and Albrecht and Neumann
(1979).

8.8 Exercises

(A1) Which of the following functionals on D are distributions?

+o00 +o00
T(<p)=—/<p/(t)dt, G(‘P)Zfln&é“ﬂ(f)» H(p) = / lp()|dt,
0 —00

R(p) = o), S(@) =Y _¢®(0), Ulp) = Y 9*¢(0) forp € DR"),
k=0 lkI<p

(p € N).

(A2) Calculate #8(¢), t25(r) and 15(z), 125(z).

(A3) Prove 1 pf(r=2) = pf(r™ 1), 1pf(t1%) = pfh), 18 (1) = —ms™ V(1)
form € N.

(A4) Show that the principal value vp(r~!) can be represented in the form
vp(z’l) = T(t)+ f(¢), where T is a distribution with bounded support and
f(¢) is a square-integrable function.

+00

(AS5)* Show: For every ¢ € D it holds hm / o) —— P dt = vp(t~ 1)((p)

i.e., the regular distributions 7 (t) = converge for ¢ — 0 to the

l
12+ &2
principal value vp(z~1).
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(A6)* Show thatfor —1 < A < 0by

e @]

T(p) = pf(rl ™ H(p) = / A (p(t) — p(0))dr
0

a singular distribution is defined which regularizes the derivative of ti =
t*s(1), i.e., the generalized derivative of the regular distribution t}r is T (cf.
p. 168). As usual, s(¢) is the unit step function.

/
Example: <t;1/2) = _%pf (t;3/2> _

(A7) What is the generalized second derivative f of

T

7

. b4 b4
F(0) = (sin(t) + )l () — st = )]+ ((t = E)2 +a+ s(r —
s(t) the unit step function, « > 07?
(A8)* Show with the use of the transformation rules and.the notion of convergence
for distributions that the generalized derivative 7'(¢) of a distribution 7 (¢)

reads as:
. T+ A1) —T(t
T(t) = lim @+ an ().
At—0 At
+00
. . sin(nt)
(A9) (a) Show for the improper integral dr=1.
—0oQ
1 +n )
(b) Show for the 2 -periodic Dirichlet-Kernels D, (t) = 7 Z e/* and
b4
k=—n

piecewise continuously differentiable f that

+
1
/Dn(t)f(t)dt”jgo 5 (FO=) + £ (O0+)).

(A10) Check that > ;2 k sin(kz) converges in D', and calculate

o0 2

1 /0= for ] < 1
<stin(kt),<p(t——)> for @) =1{° orlrf <
P 2 0 otherwise.

(A11) Calculate for the Dirac distribution §(¢), the unit step function s(¢), an
integrable function f(¢), and real numbers a and b the convolutions
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§5(t —a) xs(t —b), 8(t—a)*8(t—b), st —a)x* f(1),
s(t —a) * s(t — b), and the convolution s(z) * [In(z 4+ 1)s(z + 1)].

(A12) For Gaussian functions of the form G7'(x) = o\}ﬂ e~ (=m?/20%) with

(A13)
(A14)*
(A15)
(A16)*
(A17)

(A18)
(A19)

(A20)*

(A21)*

m € R and o > 0, verify that the convolution again results in a Gaussian
function:

mi my __ mitmo
G'xG? =G S
Note: To do this, write the exponent of the integrand in the convolution
integral Go' % G7*(x) in the form u? + v* with v = (x — (m; +
m2))/~/a2 + 12 and substitute the integration variable with u.
Remark The relationship Go' % G72 = G™™2_ plays an important

Vo412

role in probability theory. G7 is the probability density of the so-called
(m, o) normal distribution with expected value m and standard deviation
o . The standard deviation of the sum of n independently measured values of
(m, o)-normally distributed random variables is then aﬁ , and that of the
arithmetic mean of the measured values is therefore o'/4/n. Averaging from
several measured values thus reduces the variance, and the arithmetic mean
of the measured values provides a useful estimate of the expected value m.

For integrable functions f and g, prove supp (f *xg) C supp(f) +
supp ().

Prove that the convolution T *¢ of a distribution T € D’ with a test function
¢ € D is an infinitely often differentiable function.

Show that the support of the derivative T of a distribution T € D'(R) is
contained in the support of 7.

Give an example with three distributions whose convolution is not associa-
tive.

What is the general solution of the equation ¢ T () = G(¢) for G € D’ with
0 ¢ supp(G) ?

Specify a distribution T for n € N with supp(7T) = {0} and t"T'(¢) # 0.
The space D/, of all distributions with support in ]Ra' is a convolution
algebra.

Determine the convolution inverses 7' with 7' %« G = § for the distributions
G =38,G = § — as and the unit step G(t) = s(t) in D/, (R).

Show that every distribution 7 € D', has exactly one indefinite integral
S e D; and that § = s * T holds (s is the unit step function).

Show that a homogeneous linear differential equation of n-th order

Zak(t)x(k)(t) =0

k=0
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with infinitely often differentiable coefficients ai (), taken as equation in
D', does not have any further solutions than the regular classical solutions
inD'.

Show that this also applies to a homogeneous first-order system

x'(t) = AX(@)

with a componentwise infinitely often differentiable matrix A.



Chapter 9 ®
Application Examples for Distributions ke

Abstract The chapter is devoted to practice applications of distributions in various
fields. This includes generalized Fourier series, fundamental solutions for linear
differential equations with constant coefficients in a myriad of applications. Linear
circuits and input-output relations by convolution of input signals with the impulse
or step response form general examples. For 3D problems, the fundamental solution
for the potential equation is calculated and applied in examples. Furthermore, as one
of the most important practice applications, the method of finite elements (FEM) is
treated, and its solution in a suitable Sobolev space by the Lax-Milgram theorem
is shown and applied in examples, e.g., the Poisson boundary value problem. The
problem of the vibrating string from the beginning in Chap. 1 is now solved in the
sense of distributions, i.e., weak solutions are obtained as in the FEM problems.

9.1 Periodic Distributions are Generalized Fourier Series

For p > 0, a distribution T of D’ is called p-periodic, if for all k € Z it holds in the
sense of translations for distributions:

T+ p)=T(@).
For ¢ € D and k € 7Z, it then follows

(Tt +kp), @) =(T@), 9t —kp)) = (T, ¢).

Fourier Series as Distributions

+00
Theorem 9.1 Every trigonometric series Z cre/¥, whose coefficients cy are
k=—00
polynomially bounded, i.e., |k|™"|cy| Ikl—) 0 for suitable n € N, converges in the
—> 00

distributional sense to a 2w -periodic distribution T.
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+00
Proof For polynomially bounded coefficients, the series Z ( 'le)" e/ is uni-
J
k=—00
k50

formly convergent for sufficiently large n € N and thus represents a continuous,
27 -periodic function f. With the n-th generalized derivative f™ of f, it then
follows

+00 '
T =Y adf =+ 0.
k=—00
Since for ¢ € D and k € Z, it always

+00 +00

/ e/* o (r)dr = / e/* ot — 2m)dr
—00 —00
holds, T is a 2w -periodic distribution. m]

An analogous statement also applies to other periods p # 2m. If a classical
Fourier series is to converge pointwise almost everywhere or in the quadratic
mean, its Fourier coefficients ¢y must necessarily form a zero sequence. In the
distributional sense, however, convergence is even achieved if the c¢; only do not
grow too fast. All these series now considered as distributions, to which we refer as
generalized Fourier series, may also be differentiated term by term, which is not the
case in classical analysis (cf. Sect. 4.3).

Example (Periodic Impulse Sequences) The 27 -periodic Dirichlet kernels

D, (1) = Zn: elk

k=—n

converge for no t € R pointwise. For increasing n these functions oscillate on R
more and more (cf. p. 14). However, we now obtain convergence for n — oo in the
distribution sense:

Theorem 9.2 The Dirichlet kernels converge in the distributional sense toward the
periodic distribution

+00 +00
T(t) = Z e/t =27 Z 8(t — 27k).

k=—00 k=—00

Proof 1t holds
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Fig. 9.1 The periodic S(t)
sawtooth function 7r/ | )

I I

T T > t

AR
—7/2
Fig. 9.2 The derivative of S(t)
the sawtooth
S S
“or 0 o in >t
—1/2

p d sin(kt)
/ 1 _ Jjkt __ —
73 limD,, (t) = k_E_ e/t =1+ 2];_1 cos(kt) =1+ 2dt kg_l P

and

i sin(kt) {(n —1)/2 for 0<t<2m

for t=0
k=1

represents the sawtooth function S(t), S(¢t + 2km) = S(¢) (Fig.9.1).
Distributional (term by term) differentiation yields (Fig. 9.2)

[ee] 400
Zcos(kt)=—%+n Z 8(t — 27k).

k=1 k=—00

So one obtains for the Dirichlet kernels D,, (¢):

Dy(t) = Z e/’“—1+22cos(kt) —> 27 Z 8(t — 27k).

k=—n k=—00

This confirms the heuristic impression we had already gained from the Dirichlet
kernels (cf. p. 14 and p. 50): The Dirichlet kernels converge to a periodic impulse
sequence. This impulse sequence is a singular distribution. O

Theorem 9.3 For p-periodic impulse sequences (p > 0, wg = 2m/p) apply
accordingly

+o00 +o00 +00

Z B(I—kp)zé Z elkot and Z S(t—kp) = Z Jjkawq ekt

k=—o00 k=—o00 k=—o00 k—foo
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Periodic Distributions Are Generalized Fourier Series

We now show that periodic distributions can always be represented by generalized
Fourier series and that their Fourier coefficients ¢y for |k| — oo do not grow faster
than a power of |k|. We only consider 2 -periodic distributions. The reformulation
for other period lengths may serve as an exercise for the reader. A standard proof of
this result uses a so-called partition of unity. We construct such a partition:

We choose any even test function ¢ > 0 with ¢(¢) > 1/2 in [—7m, 7] and

support supp(p) C] — 2w, 2r[. Therewith, we define the 27 -periodic, infinitely
+o0

often differentiable function @ (¢) = Z @(t + 2km). The periodicity is obvious,

k=—00
the smoothness follows from the fact that the above series has only finitely many

nonzero summands in each bounded interval, all of which are infinitely often
differentiable. It always holds @(¢) > 1/2. We introduce the following functions:

+00
h(t) =@(t)/@(t) e Dand H(t) = Y h(t + 2kx).

k=—o00

Then H(t) = 1 for all t € R and 2(0) = 1. The representation of H is called a
partition of unity by means of a test function h. To illustrate these functions and to
understand the calculation afterward, consider the following graphs, for which we
choose as a concrete example ¢ as follows (see Figs. 9.3 and 9.4):

With ¢ (1) = e=/0=1) for |¢] < 1, ¥ (t) = 0 otherwise, we define ¢ by

1//(%) for —co <t < —1/4
p) =11 for —1/4<t<1/4
W (%) for1/4 <t < 4o0.

The image on the right shows h(t + 27), h(t), h(t — 2r) and the sum H = 1 on the interval
[—2m, 27 ]. The support of ¢ and & is [—5.5].

One verifies that the Fourier coefficients f; of a 2r-periodic function f that is
jkt.

integrable on [0, 2] are given by applying f to the test function h(t) €™

Fig. 9.3 12
ot +2m), (1), p(t —27), 1.0
0.8
0.6
0.4
0.2
0.0
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Fig. 9.4 Generated partition 1.2
of unity 1.0
0.8
0.6
0.4
0.2
0.0

too 2(k+1)m

+00
(f@ @y e M) = / Fhye Mdr= 3" / F@Ohye* di

k=—0co oix

+o0 2r 27
=y /f(x)h(x +2km)e I dx = FOOH () e /™ dx = 27 fi.
k=—00 0 0

Because 4 has a bounded support, the resulting series are de facto finite sums
and may be interchanged with the integral. This relationship is independent of the
specific choice we have made for & and thus H, and applies to any analogous
partition of unity. If we replace f with a 2z -periodic distribution T, the quantity
(T(t), h(t) e‘jk’) is also independent of the choice of 4, since any such T can
be represented with the help of a smoothing sequence (f,),en as on p. 201 as a
distributional limit of regular and again 2 -periodic distributions such as f. From
this it follows that the Fourier coefficients f;' of f, defined with any & as above
always have the same limit (T'(¢), h(t) eIkt y/(2m) for n — oo. This expression
can therefore be used to define the Fourier coefficients of periodic distributions in
general. Therewith, we obtain the desired theorem on the representation of periodic
distributions as generalized Fourier series.

Definition The Fourier coefficients c; of a 2 -periodic distribution 7" are—with h

1 .
constructed as above—for k € Z the complex numbers ¢y = 5 T(t), h(t) e*Jkt)-

5=
T
Theorem 9.4 Every 2m-periodic distribution T has the representation

+00
T@) = Z crelk

k=—00

with the Fourier coefficients cy given in the definition. The Fourier coefficients cy
are polynomially bounded, i.e., there exists a constant C and a natural number n
such that for all k € 7.\ {0} the inequality |cx| < C|k|" holds.
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Proof

(a) According to the previous example, we have

1 +o00 ) +00
Eh(t) k;@ /M xT (1) = h(t) k;wa(t — 2k7) * T(2).

Due to supp(h) C]—2x, 27[ and #(0) = 1, we obtain the representation for 7
+00
T(t) =T()*h(@)5(t) = h(t) Z S8(t — 2km) % T(1).
k=—00

(b) Because for every f, E(s) = h(t — s) gives a partition of unity H as above as
well, ¢; can also be calculated with 4 instead of /. Thus, it holds that

T@t) x h(t) /X = (T(s), h(s) /X9y = 27y e/ .

(c) From (a) and (b), the desired representation of T as a generalized Fourier series

follows:
1 +o0 1 +o00 +o00
_ - Jjkt _ "~ jkt _ Jkt
T()=T (@) % Z-h(1) Yooe = 3 (h(t)e *T(t)>_ 3 el
k=—00 k=—00 k=—00

The second equation uses the convergence of convolutions (cf. p. 197), since
h eD.

(d) If I is an open interval containing the support of &, then according to the
characterization of the continuity of 7 on p. 190, there exists a K > 0 and
n € Ny, such that for all ¢ € D with support in I, the inequality (T, ¢)| < K
holds. Specifically, for k # 0 with Leibniz rule for derivatives of /() e/ up
to order n, we obtain (for ||2||,, see p. 189)

2ler] = (T @), () e /)| < KA e M |, < 2" K|, k™.
Thus, the Fourier coefficients cj are polynomially bounded.

O

From the theorem, it particularly follows that two generalized Fourier series
+00 +00

T(@) = Z cre/* and S(1) = Z di e/ are equal if and only if ¢, = d

k=—00 k=—00
for all k € Z, i.e., comparison of coefficients is possible.
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Remark Also for distributions over a multidimensional parameter space, which
are 2w -periodic in each variable, analogous representations as generalized Fourier
series can be shown. Proofs can be found in Schwartz (1957) or Vladimirov (2002).

Example (Generalized Fourier Series of the Tangent Function) With

X cos(2kt)

T@) = — ln|ZCos(t)|—Z(—1) p

k=1

for t # 2k + 1)n/2, k € Z (Exercise 6 of Chap.7), differentiatiqn yields the
generalized Fourier series for the regularized tangent function Ty, = T considered
as a periodic distribution. It represents as a weak limit the principal value vp(tan(z)).

Tian(t) =vp(tan()) =2 Y "(=1)**'sin(2k), (Tun, ¢) = —(T , ¢') for ¢ € D.
k=1

Remark Regularizations of functions with singularities, such as the tangent, are
generally not possible in only one way. Therefore, it should be noted that the
abovementioned distribution 7' as a regularization of the tangent is the uniquely
determined so-called canonical regularization in the sense of Gel’fand et al. (1964),
Vol. L.

The calculation rules for Fourier series treated in Sects. 4.1-4.3 apply to gener-
alized Fourier series as well due to the transformation rules for distributions. For

+00
example, a translation of the p-periodic impulse sequence Z 8(t — kp) to the
right by 79 > O results in k=—00

“+00
> 8t —10) —kp) = Z e/nt=0) (wy =27/ p).

k=—o00 k——oo

Two p-periodic distributions generally cannot be convolved in the way defined in
Sect. 8.7. None of the conditions for the supports given there are met. However, the
p-periodic convolution (7" * §), of

+00 _ +00 )
T(t) = Z cp ekt and  S(1) = Z dy e/keot (wo =27/ p),
k=—00 k=—00

can be introduced analogously as in Sect.5.2, p. 63 by (T * §),t) =
+00

Z crdy e/ If, for instance, T = f®™ and § = g are generalized

k=—00
derivatives of order n and m, respectively, of two continuous p-periodic functions

f and g (cf. p. 208), then (T * S), = (f * g)f,,ner), i.e., the p-periodic convolution
of T and § is the generalized derivative of order n +m of (f * g).
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Application in Asymptotically Stable Differential Equations as in Sect. 5.2
Therewith, the long-term behavior of the solutions of asymptotically stable ordinary
linear differential equations with constant coefficients under periodic excitations can
be described, as on p. 66, by the periodic transfer function. Continuity assumptions,
as required there, can be dispensed with if periodic input signals, transfer functions,
and output signals are considered as periodic distributions with generalized Fourier
series representations. In particular, all Fourier series, regarded as distributions
T, can always be differentiated term by term, and the result then represents the
generalized derivative 7.

The Impulse Method for Calculating Fourier Coefficients

Understanding Fourier series as distributions can be used, for example, to calcu-
late the Fourier coefficients for “ simple” piecewise continuously differentiable
functions not through integration, but through differentiation and comparison of
coefficients with series that represent impulse sequences with known coefficients.
We exemplarily show this with the following example:

We choose, for instance, f(f) = cos(wpt) for 0 < ¢t < % wy = 27”,
f(t+k2) = f(t), k € Z (Fig.9.5).
For 0 <1 < £ it holds
) = 28(t) — wp sin(wot)
f(t) = 28(t) — f cos(wot) = 28(1) — i f(£). 9.1)

On the other hand, f can be represented as a Fourier series, and term-by-term
differentiation yields

+00
=Y e

k=—00

+00

f@y=—= 3" Qkap)’cp e/ . 9.2)

k=—00

Fig. 9.5 The p/2-periodic

— cos 1 | | F(&) —
f(t) = cos(wot) O{\ [\ ,\

0 p/2 P 3p/2
t-Axis
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By periodic extension on R, it follows from (9.1) and (9.2) by substituting the
Fourier series of f into (9.1):

+00 +0o0 ) +00 )
2 Z 8(f — k%) — w(Z) k_ZOO Ci erk(UOf - _ Z (kao)ch eJkaOt ] 9.3)

k=—00 k=—00

+00 4 +00
With the series representation 2 Z §(t — kﬁ) = — Z J2kwg el 2kt pe
k=—00 2 p k=—00
immediately obtains from (9.3) the sought Fourier coefficients cy by a comparison
of coefficients:

4 - 2jkwg 4 - 2jkwg 4k
2 (@} — (2kawo) ek ck = / 3 = 5 .

p p(l = 2)Hwy  jr((2k)7—=1)

Thus, f has the representation
+00
4k ;
£ = . e]2ka)0t )
o EOO JjT(@2 =1

If the series is written so that only positive k appears,

s 2k 4 2k .
1) = — _ T eJZkoot _ — j2kawot ’
1® jnkg;((Zk)z—le @7 —1°

one obtains with n = 2k the series representation with sine functions

4 0| 4 (2sinQwot)  4sin(4wot)
fO=-% — 151“(”600!):;( s +)

9.2 Linear Differential Equations with Constant Coefficients

Fundamental Solutions

Consider a differential equation with constant coefficients ay

Au(t) = f@t), A= gakﬁ (n >0, a, #0).



216 9 Application Examples for Distributions

A well-known example is the equation for the displacement « of a spring pendulum:

k% 4 Due = K
m@()-F E()-F u(t) = K(1).

The coefficients denote the mass m of the pendulum, the damping coefficient k, and
the spring constant D. The external force acting on the pendulum is K (¢).
The differential operator A in this example is

A @ k d D
= mdt2 + a + D.
Every student is familiar with other equations of this type, whether from mechanics,
electricity, or other fields of application. In agreement with typical examples, we
denote the variable ¢ as a time parameter. For a continuous perturbation f () and
vanishing initial values, the solution is regular and uniquely determined, and for a
time translation of the right-hand side to f (t+7p), the corresponding shifted solution
u of Au = f gives the solution v(¢) = u(t +tg) of Av(t) = f(t + o). The equation
then describes a so-called time-invariant linear system.
The central importance of convolutions lies in the following method for finding
particular solutions of such differential equations, which we now regard as equations
between distributions.

Fundamental Solution Method First, one determines a fundamental solution g,
i.e., a distribution g € D', such that

Ag = 6.

If f is a distribution for which the convolution g * f exists, then one obtains a
distributional particular solution u of the equation Au = f throughu = g *x f.

Then A(g % f) = Agx f =8 x f = f. The convolution g *x f certainly exists
if f has a bounded support (is “bounded in time”), or if the supports of g and f are
both semi-bounded in the same direction, for example, if they lie in [0, ool.

Remarks

1. From the theorem on indefinite integrals of distributions (see p. 181), it follows
that the homogeneous differential equation Au = 0 has no additional distribu-
tional solutions besides the classical infinitely often differentiable solutions. This
is immediately plausible because any solution u on the left side of the equation
Au = 0 is differentiated by A, so it must be an infinitely often differentiable
function as the right side.

2. Inthe case of initial value problems, one usually requires additional conditions to
ensure that the solution u of Au = f can be discussed in terms of initial values.
We will address this later (p. 220).
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3. The fundamental solution g introduced above is in general not a solution in the
physical sense for technical-physical equations because the physical unit of g
typically does not match the dimension of such a solution. The distribution g
should be understood as a functional whose convolution # = g * f with a right-
hand side f yields a solution to the equation Au = f. The solution u = g % f
then possesses the correct physical dimension along with f and the coefficients
of the equation. The same applies to the impulse response introduced below. See
also the subsequent examples in the next section.

The Causal Fundamental Solution

If the differential equation Au = f describes a physical system, then the solutions
u are possible system responses to the excitation of the system mathematically
modeled by f. Each particular solution u# depends not only on f but also on the
initial conditions of the system. We now assume that the system is in a resting
state without energy up to an initial time fy, i.e., all initial values are zero, and we
consider an excitation f from this time fg, i.e., supp (f) C [fo, oo[. Assuming the
causality of the system, the system response cannot be present before the excitation.
Therefore, we seek a solution u of Au = f whose support is also contained in
[to, oo[. If such a causal solution exists, then it is uniquely determined; because for
any other causal solution i, we have A(u — i) = 0, and u — i vanishes for t < fg.
Due to the uniqueness of this solution of the homogeneous equation, # — & must then
be the zero function. To not violate the causality principle, no nontrivial solutions
of the homogeneous equation can be added to u.

We call a distribution causal, if its support is contained in a half-axis [z, oco[.
We now show that there is exactly one causal fundamental solution g € D'. Its
support lies in [0, co[, and it is the response of the system described by Au = f to
an input impulse at time t = 0. The convolution g * f with the causal fundamental
solution then exists for every right-hand side f € D’ whose support is bounded to
the left, and results in the sought causal solution of Au = f due to supp (g * f) C

supp (g) + supp (f).

Theorem 9.5 (Causal Fundamental Solutions) The causal fundamental solution
g is given by g(t) = v(t)s(t). The support of g is contained in [0, co[. Here, s(t) is
the unit step function and v(t) is the solution of the homogeneous equation Au = 0
of n-th order that satisfies the following initial conditions:

Forn=1: v(0) = 1/ay,

forn>2: v0OO)=0fork=0,....,n—2, v D) =1/a,.

One can therefore determine g using the zeros of the characteristic polynomial.

Proof Forn = 1, e—dot/ai s(t)/ay is the sought fundamental solution. For n > 2
and for k = 1, ..., n, it holds based on the initial condition with an arbitrary test
function ¢
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()P, @) = (W05 + &V, ).

For k = 1 this is immediately evident, for 1 < k < n — 1, it results by induction
and the initial condition

()®D gy = —((ws)®, @) = —(WPs 4 &5, o)
= —(®s, ¢y = EDs 1005, ).

Therewith, it then follows from applying the initial condition again with Av =0

(Ag, ¢) <Zak(vs)( ) >=<<Zakv(k)>s+5,<p>= (6, @).

k=0

The uniqueness of the causal fundamental solution has already been established
above. O

Example The differential equation u® + i = 0 has the characteristic polynomial
P)) = A3 + A with the zeros A =0, A = j,and A3 = —j. Thus, the general
solution is u(t) = ¢y + ¢ sin(t) + ¢3 cos(¢) with parameters c1, 2, ¢3 from R. From
the initial condition follows the particular solution v(¢) = 1 — cos(¢) and the causal
fundamental solution

g(t) = s(t) — cos(t)s(?).

Remark If v(7)s(?) is the causal fundamental solution of Au = f, then the function
— v(t)s(—t) is also a fundamental solution. By convex combinations of v(z)s(z)
and —v(7)s(—1t), one obtains infinitely many noncausal fundamental solutions. The
causal fundamental solution g is also called the Green’s function after G. Green
(1793-1841).

Impulse Response, Step Response of Time-Invariant Linear
Systems

Many causal, time-invariant linear systems in technical applications are described
by differential equations of the form

Aju = A f,

where A1 and A, are two linear differential operators with constant coefficients.
Derivatives also appear on the right-hand side. We continue to use fp = 0 as the
initial time for disturbances f and understand a distribution f with supp(f) C
[0, oo[ as the input quantity, and the uniquely determined distributional solution u
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with supp(u) C [0, oo[ as the sought output quantity of the linear system. The
second example in the next section is of this type. If g is the causal fundamental
solution of Ajg = §, then one obtains the causal impulse response h of the system
Aju = A f through

h=g*As =Ang.

For then A1h = A1(g * Ax8) = A1g * A28 = & % Apd = Az8. The support of
h is contained in [0, oo[. Since the impulse response 4 can be convolved with any
distribution f whose support is bounded below, the following relationship exists
between such input quantities f, the impulse response %, and the system response
u:

Af(h* f)=Athx f =A% f =8% Aof = Asf.

Theorem 9.6 The causal solution u for an excitation f with supp (f) C [0, oo is
obtained by the convolution h x f of f with the causal impulse response h:

u=nhxf.

The support of u is contained in [0, col.

Because of this relationship, the impulse response 4 is used in system theory
to characterize the transfer behavior of causal, time-invariant linear systems of the
form Aju = A;f. This characterization of the transfer behavior applies more
generally also to causal time-invariant linear systems that cannot be described
by differential equations (for example, delay elements or integrators in electrical
engineering). We will return to the basics of linear system theory in more detail in

Chap. 11.
Easier to measure than the impulse response / is usually the causal step response
a, i.e., the reaction to the unit step function s. From Aja = Ajs, however, it

immediately follows Aja = Ays = AjS.

The impulse response h is obtained by differentiating the step response a, so
causal, time-invariant linear systems Aiu = Ay f can be characterized equally
well by their step response a.

Explication of the Convolution Physically realizable, time-invariant linear sys-
tems of the form Au = x are causal (circuits, controllers, etc.). The system response
to a regular excitation x(tr) with x(t) = 0 for t < O at time ¢ > 0 is given by the
convolution integral

t

u(t) = /x(r)h(t —1)dr.

0
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The convolution u(z) is therefore a continuous superposition of values of the
excitation x, namely of values with which the excitation began at all (x(t) for t = 0)
over the entire course of time of the “ signal” x up to the ““ present” 7.

The strength with which the values x (t) enter this superposition is controlled by
the factors A (t —t). The present value x(¢) is weighted with the factor 2 (0), the most
distant value x(0) with the factor 4(¢). One could therefore say that the impulse
response h contains the “physical memory” of the system (an electrical circuit, a
controller, etc.): The entire time course from O to ¢ enters the system response % * x
at time ¢ through the superposition of signal values x(7), 0 < v < ¢, with the
weights h(t — 7). In the weights i(+ — 7) lies the information about the strength
with which past events in the system due to its construction still affect the present.

Compare this in particular with the computation of the impulse response %(z)
from the general solution of the homogeneous system (see p. 217). From this, one
can clearly see how the eigensolutions and the decay behavior in transient processes
and thus how the roots of the characteristic polynomial uniquely determine the
impulse response h(t) up to a factor. If we also consider that typical impulse
responses of asymptotically stable, causal time-invariant systems described by linear
differential equations usually tend to zero very fast for t+ — oo, then we recognize
that in the superposition A * x values of x(t) typically have stronger weight the
closer 7 is to the “ present” ¢, and that the weights h(# — t) decrease all the more
rapidly the further one goes with T — 0 into the “ past”” When % has a bounded
support, then the convolution x * & is a weighted moving average of x.

Linear Initial Value Problems of n-th Order with Constant
Coefficients

We continue to consider equations with constant coefficients of the form

P(D)u = Q(D)f

n
for D = d/dt, polynomials P(1) = » aA*(n > 0, a, # 0), and Q(1) =

k=0
m
Z bk)\k.
k=0

The notation P (D) of the differential operator means

n dk
P(D) = Zak@.
k=0
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For equations P(D)u = Q(D)f on D/, it is not clear what initial values mean
for distributional right-hand sides without additional conditions. For example, the
equation 1 = § has the general solution u = 8 + ¢ with arbitrary constants ¢, but an
initial value #(0) = a does not make sense.

We want to explain how an initial value problem should be understood in the
following. For this purpose, we assume that the differential equation describes a
transmission system that transforms a given time-dependent input signal f into
a corresponding output signal u. In order for the differential equation of this
output signal u to have a unique solution, further conditions need to be formulated
regarding the nature of the system and the type of the input signal f.

To this end, we assume that our system is causal, i.e., a disturbance of the system
at rest by an excitation with support in [#9, co[ generates a system response with
support in [fy, oo[. We assume that the right-hand side f can be decomposed as
f = fr + fg with f, € C"(R) and f, € D/ . Here, C"(R) denotes the space of
m-times continuously differentiable functions on R, and Dﬁr denotes the space of
distributions with support in [0, oo[. We choose the initial time 7o = 0 and prescribe

initial conditions of the form u® (0—) = Ilim u(k)(t) =c,fork=0,...,n—1.
t—0,1<0

Thus, the initial state of the system at time #y = 0 originates from the past < 0 of
the system. In order for the left-sided limits ¢, to exist, regularity conditions on the
right-hand side f in a left-sided neighborhood of 7y are necessary. For simplicity,
we use signals f that are m-times continuously differentiable for ¢ < 0. This is
sufficiently general for all applications covered in the following chapters. We now
extend the classical definition of initial value problems for the specified framework
as follows.

Definition A causal initial value problem for the equation P(D)u = Q(D) f on D’
with f = f, + fg, fr € C"(R), fy € D/, is to find a distribution u € D’, such
that:

1. The distribution u solves the equation P(D)u= Q(D) f on D’
2. The distribution u for t < 0 coincides with the classical solution z of P(D)u =
Q(D) f,, which satisfies zX) (0) = ¢y, for the k-th derivatives z®), k=0, ..., n—1.

Comment A distribution 7" and a locally integrable function f coincide on an open
set G if and only if (T, ¢) = (f, ¢) for all test functions ¢ with supp(¢) C G.

Examples

1. For initial conditions ii(0—) = u(0—) = u(0—) = 0, the differential equation
u® 4+ = §in D has the unique causal solution u(¢) = (1 —cos(¢))s(¢) with the
unit step function s. The noncausal solution w(t) = u(t) + cos(¢) — 1 satisfies
w(0+) = w(0+) = w(0+) = 0 and w(0—) = —1 (cf. p. 218). Condition 2
in the above definition yields the uniquely determined, causal solution u as the
system output signal for initial conditions from the signal’s past r < 0.
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Fig. 9.6 Circuit that realizes |C
[

|
a first-order highpass filter © ‘. ©
Uc(t
Ue(t)i c@ Rl | o
o o

2. Impact Forces in Mechanics. For the linear motion x (¢) of an initially force-free
particle of mass m, let x(0—) = xg, x(0—) = vg. At time t = 0, an impact force
(e.g., by a hammer blow) acts, which is mathematically modeled by Z§ with the
Dirac distribution §. The constant Z represents the change in momentum in Ns.
The equation of motion for the desired solution x reads

mi=28, x(0-)=x9, x(0-)=vo.

3. Schematic Highpass Filter. We consider the following RC circuit—neglecting
induction (see Fig. 9.6):
Let U.(t) = Up— Ups(¢) be the input voltage, and let U, () be the output voltage
to be determined. At time #y = 0, the capacitor is charged with Uc (0—) = Up.
The output voltage at time fg is then U,(0—) = 0. Using Kirchhoff’s laws and
Ohm’s law, the problem can be described by the initial value problem

. 1 .
Ua+RUa= e, Us(0—)=0.

For U,(t) = Uy — Ups(t) = Ups(—t), the right-hand side becomes Ue = —Upé.

There exists exactly one classical solution z of the equation P(D)u = Q(D) f»
for given values z(0) = cg, z(0) = ¢1, ..., zZ"=Y0) = ¢,_;. Fort < 0, the
solution u of P(D)u = Q(D) f coincides with z. A sudden disturbance occurring
at time #p = 0 such as an impulse or its derivatives can cause a sudden change in the
function u which describes the temporal evolution of the system state. The temporal
evolution from f is determined by the final state that the system has reached in the
past up to time 7o, and by the effect of the disturbance f; from the initial time #,.
Due to the already proven results, we obtain the following result about the solution
of the stated initial value problem:

Theorem 9.7 The causal initial value problem for the equation P(D)u = Q(D) f
in D' with f = f + fo, fr € C"(R), f, € D, with given initial values cy,
k=0,...,n—1, has the unique solution

u=g* QD) fy+z.

Here, g is the causal fundamental solution of P(D)u = 6, g * Q(D) f; is the
convolution of g with the distribution Q(D) f,, and z is the classical solution of
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the equation P(D)u = Q(D) f, which satisfies the conditions 7®0) = ¢x. Then
u®0-) =cptk <n—1).

Proof Since the difference of two solutions solves the homogeneous equation
with vanishing initial conditions, the solution is unique and independent of the
representation of the superposition f = f, + f;. The convolution of the causal
fundamental solution g with Q(D) f, is the unique solution for the input signal f;
with support in [0, oo[ with vanishing initial conditions. Due to linearity and the
regularity conditions on f;, the unique solution z of P(D)u = Q(D) f; is added, so
that the required initial conditions for the overall solution u are satisfied. O

Example Consider f(t) = 3s(¢) — 1. The differential equation

=33 sy
a T
with initial value u(0—) = —5/2. Its causal fundamental solution is g(t) =

e 2 s().
The solution on R is then u(¢) = g * (96 4+ 15s5)(¢) — % = <% e —}—%) s(t) — %
We will solve the previous examples following the next section.

Initial Value Problems on Half-Lines, Suppression of the Past

In initial value problems, one is often only interested in the evolution of a system
for t > 1y, where the system state at time # is given. With the system description
by the equation P(D)u = Q(D)f, we often consider disturbances from #y under
“suppression of the past” only for the half-line # > ¢y and do not ask how the initial
values in a real system could have come about. Mathematically, we can assume
that they have been imposed on the present system by a suitable solution z of the
homogeneous differential equation. We set o = 0 and look for a distribution T,
which has its support in [0, oo[ and for ¢+ > 0 and sufficiently smooth f agrees with
the classical solution of the initial value problem. The following statement holds:

Theorem 9.8 (Initial Value Problems)

1. For f € D!, the distribution T, defined by T = g * Q(D) f + zs, is the unique
causal solution of the distributional equation

n k—1
P(Dyu=QD)f+Y ar | cps®'=P

k=1 p=0

n
Here, P(\) = Z akkk, g is the causal fundamental solution of P(D)u = 4§, s is

k=0
the unit step function, and z is the classical solution of the homogeneous equation
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P(D)u = 0, which satisfies the initial conditions D0 =c, k=0,....n—1.
The solution is the convolution of g with the right side of the above differential
equation.

2. For f € C™(R) with supportin [0, 00, T = g *x Q(D) f + zs is regular and for
t > 0 agrees with the classical solution u of the initial value problem with the
initial values u®(0—) = cx, k=0,...,n— 1.

Proof The differential equation has a unique solution in D', . Substituting T into
the equation shows the assertion, as fork =1,...,n — 1

k—1
(zs)® = z®s + Z cp8k=1=p),
p=0

For f € C™(R) with support in [0, col, the classical solution of the initial value
problemis u = g x Q(D) f + z. It agrees for ¢ > 0 with the regular distribution 7.
O

Example The solution of the initial value problem from the preceding Example 9.2

Z
on page 222 is x(t) = —ts(t)+vot+xp. Itis continuous, but as a result of the impact
force at 7 = 0 it shows an abrupt change in velocity. The solution of the initial value
problem in D/, i.e., the modified differential equation mii = Z§ + m(xo8 + vyd)
Z
“with the past excluded” from ¢t = Qis T(¢) = —ts(t) +vots(t) +xos(¢), thus T =
m

xs (see Figs.9.7 and 9.8).
The images show x(¢) and 7' (¢) form = 1kg, xo = 2m, vp = 0.4m/s, Z = 5Ns.
The third example from page 222 will be dealt with in the next section.

Fig. 9.7 Solution x(¢) of
Example 9.2, p. 222

o N B O o

Fig. 9.8 Solution T'(¢) in D/,

S N bk O o

-1.0 -05 00 0.5 1.0
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Remarks

1. The differential equation in the first part of the last theorem for initial value
problems in D/, is modified compared to P(D)u = Q(D) f and goes back to
Zemanian (2010), Schwartz (1957), and Shilov (1968). This equation directly
includes the initial values, and their influence precisely yields the effect of the
initial state on the solution for # > 0. It does not matter how the initial state was
“really” achieved (cf. also Example 9.2 in the next section). An advantage of this
formulation for problems where only the solution from #y = 0 is of interest is the
following: The initial value problem is formulated in the convolution algebra
D', and with the modified equation one can then solve such problems with
distributional right-hand sides also with the Laplace transform often used by
engineers, which operates precisely in D/,. See Schwartz (1966) or Zemanian
(2010) for this. Under suitable additional conditions, which are often fulfilled
in practical applications, the Fourier transform can also be used to solve the
problem. We will address this in Sect. 12.7.

2. In a similar way, initial value problems in half-spaces for partial differential
equations with distributional right-hand sides can be treated. Interested readers
are referred to Schwartz (1957), Shilov (1968), or Triebel (1986).

3. The proofs of the last two theorems show that only sufficient smoothness of the
right-hand side in a left-sided neighborhood of #y) = 0 is necessary to obtain
the results. One can then also calculate the solution of the initial value problem
for the half-line r < 0 with the help of the parameter transformation t — —¢
similarly to the last theorem and also use the right-sided Laplace transform for
this. For further details, refer to the previously cited literature.

Theorem 9.9 Fort < 0, the solution of the initial value problem with given initial
values u®(0—) = ¢, (k = 0,...,n — 1) is the reflection u(t) = y(—t) of the
solution y € D', of

n k—1
P(=D)y = (Q(=D) f)s + Y _(=D¥ar | Y (=1)Pcps=1=p)
k=1 p:O

Here, f,(t) = fr(=1), f = fr + fg are as in the theorem on p. 222.

Proof Consider the causal fundamental solution g = vs ason p. 217, ¥(¢) = v(—1t),
and the solution z of P(D)u = 0 with initial values z®¥)(0) = c;. Then — Vs is the
causal fundamental solution of the reflected equation P(—D)y = & in D/.. The
convolution of — vUs with the right-hand side of the reflected equation

n k-1
P(=D)y = (Q(=D) f)s + Y _(=Dfax | D (=1)Pe,s®1=r

k=1 p=0
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yields the reflection y € D/ of the solution u of our initial value problem for
t < 0. Due to the regularity properties of v and f;, the continuous convolutions

— Nk
(—Es * (Q(—D)f,)s) vanish for k = 0,...,n — 1 and t — 0+, while the
convolution of (—vs)® with the singular term on the right-hand side matches

Zs)®, ie., converges to 7K (0) = (—1)%c; as r — 0+. The reflection u of y
then yields the required initial values ¢y = u®(0—),k =0,...,n — 1. O

Example As illustration, consider the equation ii + u = f with initial conditions
u(0—=)=0,u(0—)=1,and f(t) =s@t+ 1) —s@) + ().

The causal fundamental solution is g(r) = v(¢)s(t) = sin(¢)s(¢). The initial
value problem for r > 0 in DQF with f(t) = —s(t) +5(@) is X +x = §. It has the
unique causal solution x () = cos(?)s(¢). For < 0, we proceed as in the theorem
shown above:

With f.(t) = s(—t + 1), P(L) = A2+ 1, Q(A) = A, and — Us = g, one solves the
equation P(—D)y(t) = §(t — 1) — §(z) as in the previous remark in D/, and obtains

y(t) = —sin(t)s(t) + sin(z — 1)s(t — 1).

Thus, we have u(r) = x(¢) + y(¢) as the overall solution, which satisfies the initial
conditions u(0—) = 0 and u(0—) = 1:

u(t) = cos(t)s(t) + sin(t)s(—t) — sin(t + 1)s(—t — 1) forr € R.

Causal Linear First-Order Systems with Constant Coefficients

We still consider initial value problems on the half-line + > 0 for linear first-order
systems of the form

X=AX+F

with a constant (n x n)-matrix A and vector distributions X and F. The components
of F are assumed to have support in [0, co[. We use the following notation:

Definition For (n x n) matrices G with components gi, € D/ and vector
distributions F with n components f, € D/, ie., F € D.", the convolution
G * F = (ck)1<k<n 18 defined by

n
Ck = Z 8km * fn-
m=1
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One easily verifies that for the componentwise generalized derivative (G x F)’,
as in the one-dimensional case, (G * F) = G’ * F = G x F' holds. For constant
matrices A, G, and B as above, and a vector distribution F', we have (AG+B)* F =
A(G*F)+BxF.

With the well-known fundamental matrix e?’ of the system, we can now
formulate the following theorem, where s is again the unit step function:

Theorem 9.10

1. The system X = AX + F has the uniquely determined causal solution
U=GxF

for F € D" with G(t) = e 5(1).
2. For F € D/+" and a given vector Xg € R", the vector distribution T, defined by
T = Gx(F+x06) = G* F+ GXx, is the uniquely determined causal solution of

X =AX+F +x08.
For continuous disturbances F, T is regular, and for t > 0, it coincides with the
classical solution X of the initial value problem X = AX + F, X (0) = Xy.

t
X(1) = e xg + /eA(t_’) F(v)dr.
0

Proof

1. With the identity matrix E, it follows from
U=G*F=(AG+E&«F=AU+F,

that U = G = F is a solution. U is causal, and thus uniquely determined.
2. For the distribution T = G * F + GXo,
T=Gx«F+ Gxo
=(AG+ Ed) x F+ (AG + Eb)X¢
= AT + F + x¢6.
Thus, T is the uniquely determined causal solution of the posed problem. With
continuous F, T is also regular, continuous, and obviously for ¢ > 0, it coincides

with the known classical solution X of the initial value problem with X (0) = xy.
O



228 9 Application Examples for Distributions

Remarks

1. What entries are in the matrix eA! ?

The matrix e’ s(¢) here plays the role that the causal fundamental solution had
in the one-dimensional case. The k-th column of e?! s() shows the response of
all state variables to a §-disturbance of the state variables x;. The response of
the system to the disturbance F' = 1,6 is eAl 1,s(¢) with the vector 1,,, whose
components are all one. It describes the reaction of each component of the state
vector X to simultaneous §-disturbances of these components.

The elements of the matrix e’ are therefore linear combinations of functions
of the form 1™ sin(at) ef” and 1" cos(yt) e* withm,n € Ny and «, B, ¥, & € R,
depending on the roots of the characteristic polynomial of the matrix A.

2. The equation X = AX + F + x4 is the adequate mathematical formulation
for an initial value problem that one wants to solve in D/, x --- x D/, . For the
explicit determination of the fundamental matrix e’ one can work well with
a computer algebra system or with the Laplace transform already mentioned
for small matrices in simple application examples. An analysis of numerical
algorithms for the computation of e’ for larger matrices A can be found in
the recommendable work of Moler and Van Loan (2003).

The Malgrange-Ehrenpreis Theorem

The method of fundamental solutions remains valid for linear partial differential
equations with constant coefficients (see p. 196). The existence of fundamental
solutions is guaranteed by the theorem of B. Malgrange (1956) and Ehrenpreis
(1954). Interested readers can find proofs of this important result on the solvability
of linear differential equations, for example, in Hormander (2003) or W. Rudin
(1991). In Chap. 12, we follow a proof as an application of the Fourier transform,
which is based on the work of Ortner and Wagner (1994), and Wagner (2009),
providing an explicit formula for the representation of fundamental solutions.

9.3 Application to Linear Electrical Networks

We test the method of fundamental solutions on four simple application examples
for electrical networks. The analysis of the behavior of such oscillating circuits
under different excitations is part of the basic education in a physics degree and,
of course, in electrical engineering.

Example 9.1 Given is the following “R L-network” with electrical resistance R and
inductance L (Fig.9.9):
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Fig. 9.9 Schematic RL L ()
circuit o -
U(t) R
O
0 fort <0
— i = t 01
For U(¢) { Uy sin(wt) for 1 > 0 the current 7 (¢) with I(¢) 0fort < Ois

sought from the corresponding differential equation

di (1) _
LT + RI(t) =U@).

The causal impulse response is given by
U~/ : -
h(t) = T e s(t), s(¢) the unit step function,
because
; R _(rLy —(R/L)t R _(r/Ly
Lh(t) + Rh(?) =—Ze s(t) +e 8(t)+ze s(t) = 8(1).

The solution 7(¢) follows from this immediately through the convolution of the
regular distributions 4 (¢) and U (¢). Both distributions have their supports in [0, oo [.
Fort > Oitis

t

It)=(h=xU)1) = /h(t —1)U(7)dr.

0

Carrying out the integration yields for¢# > 0, I(#) =0 forz <0

Uy i UpwL —(R/L)t
I(t) = ————— (Rsin(wt) — wLcos(wt)) + ——= € .
O = Ry (o) (Rt =l cos@n) + 457 s
stationary decaying
part transient

Example 9.2 (Schematic Highpass Filter) In the highpass filter of Example 9.3
on p. 222 assume the input voltage to be U.(t) = Uy — Ups(¢). The circuit is
described with a charged capacitor by the initial value problem

: 1
Ua + Ua = =Upb and Ug(0-) = 0.
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The general solution Uy (¢) of the corresponding homogeneous differential equation
is

Uy (t) = K e /(RO (K € Rarbitrary).
As a causal fundamental solution, we obtain
g(t) = e RO (1),

The corresponding impulse response % is determined with the differential oper-
ator % on the right side of the output equation by differentiating the fundamental
solution g:

h(t) = §(t) = 8(1) — % e /RO g (p).

For the input voltage U, (t) = Ups(—t), the solution is
Ua(t) = —Uo(g  8)(1) = —Upe ™"/ RV 5(r).

If the excitation is a (ideal) voltage pulse U, () = UyR1C16(¢) with the impulse
strength UpR1C1 in the physical unit Vs (cf. p. 163), produced, for example, with
an (ideal) upstream differentiator, and U,(0—) = 0, then the output voltage U, for
this input impulse is obtained by convolving with the causal impulse response 4:

UoR,C
U, (t) = h(t) * UgR;C18(1) = UgR1C8(t) — OR—él e~/ (RO) g1y,

Example 9.3 Given is the depicted RLC circuit with resistance R, capacitance C,
and inductance L (Fig.9.10).
The differential equation

. 2 . 1 . .
Ua + \/T_CUa + EUG = U18 and Ua(O—) = U() s Ua(O—) =0

describes the circuit under critical damping (R?>=4L/C) with input voltage U, (1) =
U1s(t) and given initial values. The solution is the voltage at the inductance.
The causal fundamental solution is

Fig. 9.10 Schematic RLC o—[F+——
circuit R C
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g@t) =1e " VEC (1),

The solution according to our theorem from p. 222 is

Ua(t) = g % (Uid) + z,

Us(t) = <U1 - %) e_t/‘/ﬁs(t) + <U0 + UTOIC) e t/VLC

It satisfies U, (0—) = Up and U, (0+) = Uy + U;. For large negative values t, U, (¢)
certainly does not represent a realistic voltage, and in general, the “real” voltage
characteristic over the entire past # < 0 remains probably unknown. Therefore, we
consider the initial value problem only on the half-line # > 0, and disregarding the
past we obtain the solution 7 € D/, with the distributional equation

L2 .1 . 2U ,
T T —T=Ud+ 225+ Upd

vLC LC vLC

from the theorem on p. 223, namely 7' = U,s,

T(t) = <Uo T U+ (UO_—\/L_(CJW> e~IVLC g1y,

Example 9.4 We consider the sketched block diagram of adders, integrators, and
multipliers in Fig. 9.11. Its components (operational amplifiers, resistors, capacitors)
can be realized in such a way that for voltage inputs f, all occurring state variables
X0, - - - Xm—1 and Xo, . .. X;,— are again voltages. We will see later that a large class
of linear transmission systems, possessing a specified frequency response, can be
constructed in this way (Sect. 11.2).

Fig. 9.11 Block diagram for a realization of a first-order system
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The state description of this network by a first-order system with vanishing initial
values is

X(1) = AX(1) + ¢ £ (1)

with x() = (xo(t), x1(t), ..., xm—1 ()T, e = (co,c1,...,cm—1)T and
O vverrnnennnns —ap
10 - —o
L
A= :
0 1 0 —opm
I —op—1

To calculate concretely, we choose
— _ 03 _ _ _ 03 _ 2 _
m=3,co=8",c1=c=0, g =827, a) =28°, ap = 252.

Later in Sect. 11.2 it will be shown that this describes a Butterworth lowpass filter
of order 3 with cutoff frequency £2/(27). A representation of the corresponding
frequency response can be found on p. 335.

We choose as the input signal a voltage pulse f = k& (k in the unit Vs) and ask,
for example, for the output voltage x2(r) = v(r) € D/, as the corresponding impulse
response. The state description then reads:

X0 00— 2%\ /xo k$238
al=1lto=—222| x|+ 0
X 01 -28 X5 0

Usually, it is quite tedious to calculate the fundamental matrix e4’. As already
mentioned, the Laplace transform or computer algebra systems like Mathematica,
Maple, or Matlab offer good support in this process. In the present case, the required
component g31 of G(¢) = e’ s(¢) results in:

)) s(1).

! ! 30t
g3l(f)zﬁ<3e_m—36_m/2cos<\/_ ) +/3e7 912 (f

The desired output voltage for the input signal k8 with k = 1 Vs, i.e., the causal
impulse response of the given Butterworth filter, is then x»(t) = k §23g31(¢).

Readers are encouraged to determine the complete matrix e’ as an exercise
using the methods of linear algebra (e.g., with support of a suitable computer algebra
system).
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9.4 3D Potential Problems

We will now begin with applications of distribution methods to spatial problems.
It is assumed that readers have already studied functions with several variables
in their basic mathematics courses and can use the most important theorems of
vector analysis, particularly Gauss’s divergence theorem and Green’s formulas.
These theorems are also collected in Appendix B.

In many physical problems, the task is to calculate a force field from its
divergences and vortices. Such tasks can often be formulated as potential problems.
For example, if a spatially bounded charge distribution in a vacuum is given by the
charge density p, the fact that the charges are the sources or sinks of the generated
electric field has been described by J. C. Maxwell (1831-1879) through the equation
divE = o/¢o, where gp denotes the electric field constant. With E = — grad u, the
electrostatic field E in space can be calculated from a solution u of the potential
equation:

div gradu = Au = —g.
£0
. . . . 92 2 a2
In Cartesian coordinates, the Laplace operator is given by A = % + dB)—z + 367

A solution u is a Coulomb potential corresponding to o. For u : R® — R and
E = (E1, E;, E3) with scalar components E1, E>, and E3, we have

(Bu u Bu) 0E; 0E, 0JE3
gradu =

— =, — and divE= — 4+ — + —.
dx dy 0z ax ay 0z

Similarly, in the case of a stationary E field and a given current density j,
Maxwell’s equations rotB = pgj and divB = 0O for the generated magnetic vortex
field in a vacuum with B = rot A can be transformed into an equation for the vector
potential A:

—rot rotA = AA = —uoj.

For A = (Ay, Az, A3), AA = (AA|, AA;y, AA3), o is the magnetic field constant,
and

<8A3 0A, 0A; 0A3 0A; 8A1)
rotA = .

Corresponding potential problems arise when calculating gravitational fields from
given mass distributions or in the mechanics of fluids and gases.

Since all the concepts and results from the previous sections can be translated
to functions with more than one variable (see Sect.8.7), one can use the funda-
mental solution method to solve partial linear differential equations with constant
coefficients. We calculate, as an example, a potential u generated by an electric



234 9 Application Examples for Distributions

charge distribution in a bounded spatial region. We treat the charge density o as a
distribution with bounded support. The corresponding partial differential equation is

Au = —g.

€0

First, we verify that the function g(x, y,z) = —1L =1 provides a funda-

N X24y2422 T
mental solution. Here, r? = |r|> = x? 4+ y?> 4+ z% forr = (x, y, z), and the function
g is considered as a regular distribution (see page 189):

1. Ag(x,y,z) = 01in any region that does not include the origin. The reader should
verify this through appropriate differentiation.
2. For test functions ¢ = ¢(x, y, z) = ¢(r), we have

(Ag, ) = (g, Ag)

///g(x v, 2)A@(x, v, z)dxdydz
gi_%///g(xyy,z)Aw(x,y,z)dxdydz.

r>e>0

We use Green’s second formula from vector analysis (see Appendix B on page
499):

/ (gA¢ — pAg)dr’ = / (ggradp — pgradg) - ndo,
G

where n denotes the unit outward normal, da3 is the volume element, do is the
surface element, i.e., the surface measure on the boundary dG of G, and G is the
spherical shell

G={reR|0<e<|r| <a}.

The outer radius a is chosen such that for r = |r| > a the test function ¢(r)

vanishes:
o(x,y,z2) =0 for \/m> a

Then, with Ag = 0 for r > ¢ and the directional derivative g—ﬁ =gradp - n :

d d
/gA(pd)ﬁ:/g—q)do—/ —gdo
dn dn

r>e r=e r=e
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Now, g(r) = % for all r with |r| = ¢. From the boundedness of g—ﬁ, it follows:

do 1

T dol = =
'/gdn 0’ £
r=e

Hence, for ¢ — 0, the first surface integral on the right-hand side vanishes:

1
< —-4me? - K for suitable K € R.
e

r=e

I 9 4o =0
im —do =0.
e—0 § dn
r=e

Because on the inner sphere r = ¢, the normal vector n points toward the origin,
we there have

dg 1

—(r) = —.

dn( ) &2

Consequently, for the second surface integral, we get:

dg 1
— [ ¢p—=do=—— [ pdo = —4n M. ().
dn g2

r=¢& r=¢g

Here, M, (¢) denotes the mean value of ¢ on the sphere with radius ¢:

1
do.
47‘[82/¢0

r=e

M (p) =

For ¢ — 0, M. (p) —6 ¢(0), and thus, we obtain:
£—

. Ap 3
(Ag,9) = hH(l) —dA” = —4me(0) = —4n (8, ).
&— r

r=e

1 1
Theorem 9.11 (Coulomb Potential) The function — o g(r) = I is a fun-
o4 Tr

damental solution of the potential equation in R3. By convolution, a particular

solution for the equation Au = —— is obtained as follows:
€0
1
L (9.4)
gy 4nr

Here, o can be any distribution with bounded support. For regular charge densities
o, this is the Poisson integral formula in R3
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(57,9 = — /// ol v, v) dudvd
ulx,y,z) = udvdw.
’ 4meo Js Ve —u)?+ -2+ —w)?

Two Coulomb potentials of the same charge distribution o differ at most by a
constant due to the relationship V - E = /gy for the electric field strength.
The regular distribution g/(4mwepr) is the potential of a charge ¢ at the origin,
which vanishes at infinity. Accordingly, g/(4mweo(r — rp)) is the contribution to
the potential at the point r by such a charge at the point rg. Through the above
convolution integral with the charge density o(r), the contributions of all points
in space to the total potential are summed. For “simple” charge densities o, the
potential u can be directly calculated from the Poisson convolution integral.

Examples

1. In space, let there be a thin rod § = {(x,y,z) € R} :x = y = 0,]z] <
[} of length 2/ with homogeneous mass density oo (with the unit kg/m) given.
We describe this spatial mass distribution with the indicator function 1[—; ;1(z)
through the distributional tensor product (see p. 191)

0(x,y,2) =38(x) ®(y) ® 0ol{—1,1(2).

From the potential equation Au = 4wy o with the gravitational constant y, the
gravitational potential vanishing at infinity follows

1
U=—yo*—.
r

For (x, y, z) & S, the potential u is obtained through integration:

I
1

u(x,y,z) = —)/Qo/ dw

21 2 — 2

g, \/x +y 4+ (z — w)

w=+I

= —yooln (2\/)62 +y24+(z—w)2+ 2w — 22)

w=—I[

Jooln V2+y2 4+ @ —D2 41—z
—v00 .
V23 + @+ D> —1—2

With F = — grad 4 one then finds the corresponding gravitational field F.
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Fig. 9.12 Equipotential
surface of two charges ¢ and
— 2q in the half-space y > 0

Fig. 9.13 Illustration of the Interior Problem Exterior Problem

interior and the exterior

Dirichlet problem
w soughtin B w sought in the complement of K U 0K

2. If o is a regular surface charge density on the surface of the sphere with radius
R around the origin, denoted by the singular distribution o(x) = o (x)8(|X| — R)
(see p. 189), then from u = g * 1/(4mwepr), one obtains Coulomb’s formula for
the potential vanishing at infinity

o (x)

1
u(xg) = / do(x) .
4eg |x — Xg|
Ix|=R

3. Figure 9.12 illustrates an equipotential surface of the Coulomb field generated
by two charges g and — 2¢ in the half-space y > 0:

Approaches for Solving Boundary Value Problems

Poisson’s formula can be used for potential computation when a known charge
distribution is available. However, many problems 